第一篇:2.3 用公式法求解一元二次方程教学设计
第二章
一元二次方程
3.用公式法求解一元二次方程
丹东市凤城市四门子九年一贯制学校
徐晓丹
一.教材
本节是北师大版九年级上册第二章一元二次方程中第3节《用公式法求解一元二次方程》。本章是一元一次方程和二元一次方程的深入和发展,也是以后学习方程及函数等数学知识的基础。“一元二次方程的解法”是初中数学“方程”中的一个重要内容,特别是对于系数不特殊的一元二次方程,学习用公式法解一元二次方程很有必要,也是不可缺少的重要内容。通过本节课的学习,使学生明确公式法是解一元二次方程的通法,应该根据题目选择合适的方法解决问题。
二.学情分析
本节课的学习至关重要,为了完成教学计划,让学生更好的掌握握知识,应了解学生和学生对知识掌握情况。这要求我们教师必须从学生的认知结构和心理特征出发,他们有强烈的好奇心和求知欲,而方程对学生来说是比较难的,配方法又是刚刚学完,并不熟练,应着手让学生练习配方法并掌握公式法解一元二次方程相关知识。
三.教学目标
为了更好的完成教学计划,我制定以下教学目标
1.知识与技能:理解一元二次方程求根公式的推导过程,熟练用
公式法解一元二次方程。
2.过程与方法:通过求根公式的推导进一步使学生熟练掌握配方法。培养学生数学推导的严密性和逻辑性。
3.情感态度与价值观:培养学生寻求简便方法的探索精神和创新意识。培养学生快速准确的计算能力。
四.重难点
基于配方法的不熟练,本节课应该以配方法为基础,熟练运用公式法及判别式相关知识,重难点为:
重点:掌握用公式法解一元二次方程一般步骤,正确、熟练用公式法解一元二次方程。
难点:理解求根公式的推导和判别式与根的情况的关系。
五.教法、学法
确定了重难点,本节课借助多媒体辅助教学,采用引导发现式自主探究和交流讨论相结合的方法,发挥教师的主导作用,体现学生主体地位。利用学生已有的知识,启发诱导学生深入思考问题,多交流,主动参与到活动中。
学生对配方法还不是很熟练,让学生用配方法解练习题,回顾配方法再解一般形式。学生用分析讨论和分类归纳的方法提出问题并尝试解决问题,使思维能力得到提升。
六.教学过程
本节课设计以下六个环节:
复习引入—讲授新课—例题讲解—巩固练习—课堂小结—布置
作业
第一环节:复习引入
活动内容:
①用配方法解下列方程:(1)2x237x(2)3x22x10 全班同学在练习本上运算,可找位同学上黑板演算②由学生总结用配方法解方程的一般方法: 第一题:2x237x
解:将方程化成一般形式: 2x27x30
两边都除以一次项系数:2
x2732x20
配方:加上再减去一次项系数一半的平方
x272x(74934)21620 即:(x7254)2160
(x7254)216
两边开平方取“±” 得:
x7544
x7454
写出方程的根 ∴ x1=3 , x2
第二题:3x22x10
解:两边都除以一次项系数:3
1=2
21x2x033
配方:加上再减去一次项系数一半的平方
2113x2x()20
3392即: 125(x)20
3181225(x)318 25018∵
∴原方程无解 活动目的:
(1)进一步夯实用配方法解方程的一般步骤.在这里相对于书上的解题方法作了小小的改动:没有把常数项移到方程右边,而是在方程的左边直接加上再减去一次项系数一半的平方,这样做的目的是为了与以后二次函数一般式化顶点式保持一致。
(2)选择了一个没有解的方程,让学生切实感受并不是所有的一元二次方程在实数范围内都有解。
(3)教师还可以根据上节课作业情况,选学生出错多的题目纠错、练习.第二环节:讲授新课
(1)活动1:自主推导求根公式。
提出问题:解一元二次方程:ax2+bx+c=0(a≠0)学生在演算纸上自主推导、并针对自己推导过程中预见的问题在小范围内自由研讨。最后由师生共同归纳、总结,得出求根公式.解:两边都除以一次项系数:a
bc2xx0
aa 问:为什么可以两边都除以一次项系数:a 答:因为a≠0 配方:加上再减去一次项系数一半的平方
bb2b2cxx()20 a2a4aa2即:(xb)a2b24ac0 4a2b2b24ac(x)2a4a 问:现在可以两边开平方吗?
答:不可以,因为不能保证 b 问:什么情况下 b224ac 024a4ac 024a 学生讨论后回答:
答: ∵ a≠0 ∴ 4a2>0
要使b24ac 024a只要 b2-4ac≥0即可
∴当b2-4ac≥0时,两边开平方取“±” 得:
2bb4ac
xa4a2bb24ac xa2abb24ac xa2abb24ac x2a问:如果b2-4ac<0时,会出现什么问题? 答:方程无解
如果b2-4ac=0呢?答;方程有两个相等的实数根。活动目的:
学生能否自主推导出来并不重要,重要的是由学生亲身经历公式的推导过程,只有经历了这一过程,他们才能发现问题、汲取教训、总结经验,形成自己的认识.在集体交流的时候,才能有感而发。(2)活动2:归纳总结公式法定义和根的判别式。第三环节:例题讲解 活动内容:
1、判断下列方程是否有解:(学生口答)
(1)2x2+3=7x(2)x2-7x=18(3)3x2+2x+1=0(4)9x2+6x+1=0(5)16x2+8x=3(6)2x2-9x+8=0
学生迅速演算或口算出b2-4ac,从而判断出根的情况。问第(3)题的判断,与第一环节中的第(2)题对比,哪种方法更简捷?
2、上述方程如果有解,求出方程的解 学生口述,教师板书第(1)题,第(4)题 例:解方程 2x2+3=7x 解:先将方程化成一般形式 2x2-7x+3=0 确定a,b,c的值 a=2, b=-7, c=3 判断方程是否有根
∵b2-4ac=(-7)2-4×2×3=25>0 ∴ xbb24ac2a
72522754写出方程的根,即
x1=3,x2=-1
2问:与第一环节中的第(1)题对比,哪种解法更简捷?例:解方程 9x2+6x+1=0 确定a,b,c的值 解:a=9, b=6, c=1 判断方程是否有根 ∵b2-4ac=62-4×9×1=0 7
bb24acx2a60 ∴29601813
(剩下的题目教师根据时间情况选择使用,个别学生上黑板做题,其他同学在座位上练习)
3、课本随堂练习1、2.活动目的:通过让学生或口述交流或上黑板解方程,公示学生的思维过程,查缺补漏,了解学生的掌握情况和灵活运用所学知识的程度。第四环节:巩固练习
活动内容:x2x60,8y(2y5)25
活动目的:在这个环节我遵循巩固与发展相结合的原则,引导学生做练习题,在学生做练习时进行巡看,及时掌握学生做题情况,以便进行有针对的评价。让学生以小组为单位进行比赛,看哪组又快又准。在提高做题速度的同时,学生之间相互交流查缺补漏。
第五环节:课堂小结 活动内容: 提出问题:
1、一元二次方程ax2+bx+c=0(a≠0)的求根公式是什么?
2、如何判断一元二次方程根的情况?
3、用公式法解方程应注意的问题是什么?
4、你在解方程的过程中有哪些小技巧?
让学生在四人小组中进行回顾与反思后,进行组间交流发言。活动目的:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,通过回顾进一步巩固知识,将新知识纳入到学生个人已有的知识体系中。第六环节:布置作业
用公式法解下列方程(教师可根据实际情况选用)
1、课本47页1,2题。
2、程解应用题
(1)已知长方形城门的高比宽多6尺8寸,门的对角线长1丈,那么,门的高和宽各是多少?(2)一张桌子长4米,宽2米,台布的面积是桌面面积的2倍,铺在桌子上时,各边下垂的长度相同,求台布的长和宽
七、教学反思
1、要创造性的使用教材
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。本节课教师就根据学生实际情况,调整了配方时的个别过程,使之与后续知识学习相一致,添加了例题和练习题。
2、要为学生的终身学习奠基
这节课不能够仅仅让学生背公式、套公式解方程,而应让学生初
步建立对一些规律性的问题加以归纳、总结的数学建模意识,亲身体会公式推导的全过程,提高学生推理技能和逻辑思维能力;进一步发展学生合作交流的意识和能力.帮助学生形成积极主动的求知态度.10
第二篇:2.3 用公式法求解一元二次方程教学设计
第二章
一元二次方程
3.用公式法求解一元二次方程
(一)一、学生知识状况分析
学生的知识技能基础:学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程.学生活动经验基础:学生已经具备利用配方法解一元二次方程的经验;学生通过《规律的探求》、《勾股定理的探求》、《一次函数的图像》中一次函数增减性的总结等章节的学习,已经逐渐形成对于一些规律性的问题,用公式加以归纳总结的数学建模意识,并且已经具备本节课所需要的推理技能和逻辑思维能力.二、教学任务分析
公式法实际上是配方法的一般化和程式化,然后再利用总结出来的公式更加便利地求解一元二次方程。所以首先要夯实上节课的配方法,在此基础上再进行一般规律性的探求——推导求根公式,最后,用公式法解一元二次方程。
其中,引导学生自主的探索,正确地导出一元二次方程的求根公式是本节课的重点、难点之一;正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力是本节课的另一个重点和难点。
为此,本节课的教学目标是:
①在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。
②能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.③通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。④通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力
三、教学过程分析
本课时分为以下五个教学环节:第一环节:回忆巩固;第二环节:探究新知;第三环节:巩固新知;第四环节:收获与感悟;第五环节:布置作业。
第一环节;回忆巩固
活动内容:
①用配方法解下列方程:(1)2x2+3=7x(2)3x2+2x+1=0 全班同学在练习本上运算,可找位同学上黑板演算 ②由学生总结用配方法解方程的一般方法: 第一题: 2x2+3=7x 解:将方程化成一般形式: 2x2-7x +3=0 两边都除以一次项系数:2
x273x022
x2 配方:加上再减去一次项系数一半的平方
77493x()2024162
即:
725(x)20416725(x)2416
两边开平方取“±” 得:
x7544 7544
x1 写出方程的根 ∴ x1=3 , x2=2
第二题: 3x2+2x+1=0 解:两边都除以一次项系数:3
x221x033
x2 配方:加上再减去一次项系数一半的平方
2113x()203392
即:
125(x)20318
125(x)2318
∵
25018
∴原方程无解
活动目的:
(1)进一步夯实用配方法解方程的一般步骤.在这里相对于书上的解题方法作了小小的改动:没有把常数项移到方程右边,而是在方程的左边直接加上再减去一次项系数一半的平方,这样做的目的是为了与以后二次函数一般式化顶点式保持一致。
(2)选择了一个没有解的方程,让学生切实感受并不是所有的一元二次方程在实数范围内都有解。
(3)教师还可以根据上节课作业情况,选学生出错多的题目纠错、练习.活动的实际效果:
通过对旧知识的回顾,学生再次经历了配方法解方程的全过程,由于是旧知识,学生容易做出正确答案,并获得成功的喜悦,调动了学生的学习热情,唤醒学生的思维,为后面的探索奠定了良好的基础。
第二环节 探究新知
(1)活动1:自主推导求根公式。
提出问题:解一元二次方程:ax2+bx+c=0(a≠0)学生在演算纸上自主推导、并针对自己推导过程中预见的问题在小范围内自由研讨。最后由师生共同归纳、总结,得出求根公式.解:两边都除以一次项系数:a x2bxcaa0
问:为什么可以两边都除以一次项系数:a 答:因为a≠0 3 配方:加上再减去一次项系数一半的平方
bbbc2x2ax(2a)24a2a0即:
b2b24ac(x)0a4a2b2b24ac(x)a4a2 问:现在可以两边开平方吗?
答:不可以,因为不能保证 b4ac0
24a2 问:什么情况下 b4ac0
24a2 学生讨论后回答:
答: ∵ a≠0 ∴ 4a2>0 要使b4ac0 24a2只要 b2-4ac≥0即可
∴当b2-4ac≥0时,两边开平方取“±” 得: xbb4ac
2a4a2bb24ac
xa2a xbb4ac
2a2abb24ac x2a问:如果b2-4ac<0时,会出现什么问题? 答:方程无解
如果b2-4ac=0呢?答;方程有两个相等的实数根。活动目的:
学生能否自主推导出来并不重要,重要的是由学生亲身经历公式的推导过程,只有经历了这一过程,他们才能发现问题、汲取教训、总结经验,形成自己的认识.在集体交流的时候,才能有感而发。
活动的实际效果:
学生的主要问题通常出现在这样的几个地方:
4(1)
中b2c运算的符号出现错误和通分出现错误 bb2b2cxx()204a2aa2a4aa2(2)不能主动意识到只有当b2-4ac≥0时,两边才能开平方(3)两边开平方,忽略取“±”。
大部分学生需要在教师的帮助下,才能完善公式的推导。(2)活动2:归纳总结公式法定义和根的判别式。第三环节:巩固新知 活动内容:
1、判断下列方程是否有解:(学生口答)
(1)2x2+3=7x
(2)x2-7x=18
(3)3x2+2x+1=0(4)9x2+6x+1=0(5)16x2+8x=3(6)2x2-9x+8=0 学生迅速演算或口算出b2-4ac,从而判断出根的情况。
问第(3)题的判断,与第一环节中的第(2)题对比,哪种方法更简捷? 2、上述方程如果有解,求出方程的解 学生口述,教师板书第(1)题,第(4)题
例:解方程 2x2+3=7x 先将方程化成一般形式 解: 2x2-7x+3=0 确定a,b,c的值 a=2, b=-7, c=3 判断方程是否有根 ∵b2-4ac=(-7)2-4×2×
3=25>0 ∴
bb4acx2a725752242
写出方程的根 即x1=3,x2=-1
2问:与第一环节中的第(1)题对比,哪种解法更简捷?
例:解方程 9x2+6x+1=0 确定a,b,c的值 解:a=9, b=6, c=1 判断方程是否有根 ∵b2-4ac=62-4×9×1=0 5
bb24acx2a60 ∴ 29601813(剩下的题目教师根据时间情况选择使用,个别学生上黑板做题,其他同学在座位上练习)
3、课本随堂练习1、2.活动目的:通过让学生或口述交流或上黑板解方程,公示学生的思维过程,查缺补漏,了解学生的掌握情况和灵活运用所学知识的程度。
活动实际效果:教师引导学生分析,学生口答、板书,笔答,对比,评价,总结.大部分学生能够正确、熟练的用公式法解方程。第四环节:收获与感悟
活动内容: 提出问题:
1、一元二次方程ax2+bx+c=0(a≠0)的求根公式是什么?
2、如何判断一元二次方程根的情况?
3、用公式法解方程应注意的问题是什么?
4、你在解方程的过程中有哪些小技巧?
让学生在四人小组中进行回顾与反思后,进行组间交流发言。
活动目的:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,通过回顾进一步巩固知识,将新知识纳入到学生个人已有的知识体系中。
活动实际效果:学生通过回顾本节课的学习,感受到公式推导的全过程,发展了逻辑思维能力,提高了推理技能,在使用公式解方程的过程中,感受到有的一元二次方程的有根,而有的没有根,通过解方程,进一步提高了学生的运算能力。
第五环节:布置作业
用公式法解下列方程(教师可根据实际情况选用)
1、课本47页1,2题。
2、程解应用题
(1)已知长方形城门的高比宽多6尺8寸,门的对角线长1丈,那么,门的高和宽各是多少?(2)一张桌子长4米,宽2米,台布的面积是桌面面积的2倍,铺在桌子上时,各边下垂的长度相同,求台布的长和宽
四、教学反思
1、要创造性的使用教材
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。本节课教师就根据学生实际情况,调整了配方时的个别过程,使之与后续知识学习相一致,添加了例题和练习题。
2、要为学生的终身学习奠基
这节课不能够仅仅让学生背公式、套公式解方程,而应让学生初步建立对一些规律性的问题加以归纳、总结的数学建模意识,亲身体会公式推导的全过程,提高学生推理技能和逻辑思维能力;进一步发展学生合作交流的意识和能力.帮助学生形成积极主动的求知态度.7
第三篇:2.3+用公式法求解一元二次方程教学设计
第二章
一元二次方程
2.3用公式法求解一元二次方程
(一)一、学生知识状况分析
学生的知识技能基础:学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程.学生活动经验基础:学生已经具备利用配方法解一元二次方程的经验;学生通过《规律的探求》、《勾股定理的探求》、《一次函数的图像》中一次函数增减性的总结等章节的学习,已经逐渐形成对于一些规律性的问题,用公式加以归纳总结的数学建模意识,并且已经具备本节课所需要的推理技能和逻辑思维能力.教学重点:一元二次方程求根公式的推导及应用 教学难点:一元二次方程求根公式的推导过程
二、教学任务分析
公式法实际上是配方法的一般化和程式化,然后再利用总结出来的公式更加便利地求解一元二次方程。所以首先要夯实上节课的配方法,在此基础上再进行一般规律性的探求——推导求根公式,最后,用公式法解一元二次方程。
其中,引导学生自主的探索,正确地导出一元二次方程的求根公式是本节课的重点、难点之一;正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力是本节课的另一个重点和难点。
为此,本节课的教学目标是:
①在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。
②能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.③通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。④通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力
三、教学过程分析
本课时分为以下五个教学环节:第一环节:回忆巩固;第二环节:探究新知;第三环节:巩固新知;第四环节:收获与感悟;第五环节:布置作业。
第一环节;回忆巩固
活动内容:
①用配方法解下列方程:(1)2x2+3=7x(2)3x2+2x+1=0 全班同学在练习本上运算,可找位同学上黑板演算 ②由学生总结用配方法解方程的一般方法: 第一题: 2x2+3=7x 解:将方程化成一般形式: 2x2-7x +3=0 两边都除以一次项系数:2
x273x022
x2 配方:加上再减去一次项系数一半的平方
77493x()2024162
即:
725(x)20416725(x)2416
两边开平方取“±” 得:
x7544 7544
x1 写出方程的根 ∴ x1=3 , x2=2
第二题: 3x2+2x+1=0 解:两边都除以一次项系数:3
x221x033
x2 配方:加上再减去一次项系数一半的平方
2113x()203392
即:
125(x)20318
125(x)2318
∵
25018
∴原方程无解
第二环节 探究新知
(1)活动1:自主推导求根公式。
提出问题:解一元二次方程:ax2+bx+c=0(a≠0)学生在演算纸上自主推导、并针对自己推导过程中预见的问题在小范围内自由研讨。最后由师生共同归纳、总结,得出求根公式.解:两边都除以一次项系数:a x2bxcaa0
问:为什么可以两边都除以一次项系数:a 答:因为a≠0 配方:加上再减去一次项系数一半的平方
bbbc2x2ax(2a)24a2a0即:
b2b24ac(x)0a4a2b2b24ac(x)a4a2 问:现在可以两边开平方吗?
答:不可以,因为不能保证 b4ac0
24a2 问:什么情况下 b4ac0
24a2 学生讨论后回答:
答: ∵ a≠0 ∴ 4a2>0 要使b4ac0 24a2 3 只要 b2-4ac≥0即可
∴当b2-4ac≥0时,两边开平方取“±” 得: xbb4ac
2a4a2bb24ac xa2a xbb4ac
2a2abb24ac x2a问:如果b2-4ac<0时,会出现什么问题? 答:方程无解
如果b2-4ac=0呢?答;方程有两个相等的实数根。第三环节:巩固新知 活动内容:
1、判断下列方程是否有解:(学生口答)
(1)2x2+3=7x
(2)x2-7x=18
(3)3x2+2x+1=0(4)9x2+6x+1=0(5)16x2+8x=3(6)2x2-9x+8=0 学生迅速演算或口算出b2-4ac,从而判断出根的情况。
问第(3)题的判断,与第一环节中的第(2)题对比,哪种方法更简捷? 2、上述方程如果有解,求出方程的解 学生口述,教师板书第(1)题,第(4)题
例:解方程 2x2+3=7x 先将方程化成一般形式 解: 2x2-7x+3=0 确定a,b,c的值 a=2, b=-7, c=3 判断方程是否有根 ∵b2-4ac=(-7)2-4×2×
3=25>0 ∴
bb4acx2a725752242
写出方程的根 即x1=3,x2=-1
2问:与第一环节中的第(1)题对比,哪种解法更简捷?
例:解方程 9x2+6x+1=0 确定a,b,c的值 解:a=9, b=6, c=1 判断方程是否有根 ∵b2-4ac=62-4×9×1=0
bb24acx2a60 ∴ 29601813(剩下的题目教师根据时间情况选择使用,个别学生上黑板做题,其他同学在座位上练习)
3、课本随堂练习1、2.第四环节:收获与感悟
活动内容: 提出问题:
1、一元二次方程ax2+bx+c=0(a≠0)的求根公式是什么?
2、如何判断一元二次方程根的情况?
3、用公式法解方程应注意的问题是什么?
4、你在解方程的过程中有哪些小技巧?
让学生在四人小组中进行回顾与反思后,进行组间交流发言。第五环节:布置作业
用公式法解下列方程(教师可根据实际情况选用)
1、课本47页1,2题。
2、程解应用题
(1)已知长方形城门的高比宽多6尺8寸,门的对角线长1丈,那么,门的高和宽各是多少?(2)一张桌子长4米,宽2米,台布的面积是桌面面积的2倍,铺在桌子上时,各边下垂的长度相同,求台布的长和宽
四、教学反思
1、要创造性的使用教材
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。本节课教师就根据学生实际情况,调整了配方时的个别过程,使之与后续知识学习相一致,添加了例题和练习题。
2、要为学生的终身学习奠基
这节课不能够仅仅让学生背公式、套公式解方程,而应让学生初步建立对一些规律性的问题加以归纳、总结的数学建模意识,亲身体会公式推导的全过程,提高学生推理技能和逻辑思维能力;进一步发展学生合作交流的意识和能力.帮助学生形成积极主动的求知态度.6
第四篇:用公式法求解一元二次方程的教学反思
用公式法求解一元二次方程的教学反思
在这节课中,我首先复习了配方法,用配方法解了2道一元二次方程后,将配方法推广到一般化,进而解出一元二次方程的一般式的解,即求根公式就得到了。
本节课的设计符合学生的认知特点,从公式的推导、理解到应用,都切合学生的实际,通过让学生亲身经历公式的推导的全过程,加深对一些规律性的问题的认识与理解,课堂整体非常流畅,大部分学生能通过自主探究和合作学习推导出公式,并根据教师设计的问题完成本节课的学习,所以在教学过程中,应多给学生展示的机会,让学生走上讲台,让他们展示自己的聪明才智,激发他们的学习兴趣,并通过分析、引导和练习,使学生掌握用求根公式解一元二次方程的步骤和方法,提高学生的推理技能和逻辑思维能力,进一步发展学生合作交流的意识和能力。当然由于学生第一次接触求根公式,可以说非常陌生,所以在运用时容易出现以下错误:(1)a,b,c的符号出错,在方程中学生往往在找某个项的系数时丢掉前面的符号;(2)求根公式本身形式复杂,代入数值后出错很多。学生在解题的过程中往往会嫌麻烦而直接代入求根公式,其实在做题过程中把检验判别式这一步单独提出来做不但不麻烦,而且有助于后面的解答。在今后的教学中应注意详略得当,不该省的地方一定不能省,力求达到更好的教学效果。
第五篇:用配方法求解一元二次方程教学设计
第二章
一元二次方程
用配方法求解一元二次方程
(一)一、教学目标
知识技能:学生已经学习过开平方,知道一个正数有两个平方根, 会用开方法解形如(xm)2n(n0)的方程,理解配方法,会用配方法解二次项系数为1的一元二次方程;
过程与方法:经历用配方法求解一元二次方程的过程, 体会转化的数学思想方法
情感态度价值观:提升学生的合作与交流的能力。
二、教学过程
复习回顾
用字母表示因式分解的完全平方公式。
自主探究
你会解下列一元二次方程吗?你是怎么做的?
x25; 2x235; x22x15;(x6)272102。
做一做:(填空配成完全平方式,体会如何配方)
填上适当的数,使下列等式成立。(选4个学生口答)
x212x_____(x6)2 x26x____(x3)2 x28x____(x___)2 x24x____(x___)2
问题:上面等式的左边常数项和一次项系数有什么关系?对于形如x2ax的式子如何配成完全平方式?(小组合作交流)例题讲解
(1)解方程:x2+8x-9=0.(师生共同解决)
解:可以把常数项移到方程的右边,得 x2+8x=9 两边都加上(一次项系数8的一半的平方),得 x2+8x+42=9+42.(x+4)2=25 开平方,得 x+4=±5, 即 x+4=5,或x+4=-5.所以 x1=1, x2=-9.小结及布置作业
总结配方法解一元二次方程的基本思路和关键,以及在应用配方法时应注意的问题。
课本39页习题2.3 1题、2题
三、教学反思
课堂上要运用各种启发、激励的语言,帮助学生形成积极主动的求知态度。