引导学生在做数学中创造数学——《最大公约数》教学设计与思考

时间:2019-05-12 22:54:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《引导学生在做数学中创造数学——《最大公约数》教学设计与思考》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《引导学生在做数学中创造数学——《最大公约数》教学设计与思考》。

第一篇:引导学生在做数学中创造数学——《最大公约数》教学设计与思考

[引导学生在做数学中创造数学——《最大公约数》教学设计与思考]

作者:江苏省睢宁实验小学 杜义超

一 指导思想 人教版与苏教版教材中对最大公约数认识的编排顺序是相同的:分别找出两个数的约数→比较,生成公约数、最大公约数的概念→会求两个数的最大公约数→应用(最大)公约数知识解决实际问题,引导学生在做数学中创造数学——《最大公约数》教学设计与思考。

沿这种思路设计教学,学生对新知的接受常是被动的,并且也只能达成“知识与技能”单一教学目标。数学课程标准“强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力,情感态度与价值观等多方面得到进步和发展。”在这新的教学理念指导下,怎样结合学生的实际生活,在运用知识解决问题的实践操作中,经历知识产生过程,萌发创造新知需要,并完成对新知的建构呢?二 教学设计 1.观察——感知生活数学

学习约数与倍数之后,布置学生回家观察客厅或卧室,也可到广场上,看看所贴的地板砖数是否正好为整数块数(没有切割)。如果是,沿着长铺了多少块?沿着宽铺了多少块?测量一方砖的边长和房间的长、宽,方砖的边长与房间的长、宽分别是什么关系?2.思考——理解数学问题

课堂教学伊始,投影出贴了地板砖的长方形广场平面图。学生能够用约数、倍数知识解释课前观察到的数学问题:长方形广场的长是方砖边长的m倍,宽是方砖边长的n倍。也可以说方砖的边长既是长方形长的约数,又是长方形宽的约数。与师生交流之后,再出示一个新的问题:我们学校的画廊高1.2米(12分米),长是3米(30分米),美术组的同学想在上面正好贴满大小相同的正方形装饰画,这种装饰画的边长应为多少分米(取整数)?会有几种不同的正方形?3.实验——建构数学模型

学生在对画廊设计问题处于愤悱状态之时,老师借用长方形纸作示范引导:这是一张长15cm,宽10cm的长方形纸,我们可以把它设想为缩小后的校园画廊,(当然也可以想象为客厅或广场的地面)老师在这张长方形纸上设计了两种不同的小正方形,(实物投影出示另一张画了方格的长方形纸)其中一面的小正方形边长为1cm,另一面的小正方形边长为5cm,它们同样整分了这张长方形纸而无剩余。想一想,小正方形边长除了1cm和5cm以外,还会有其它整厘米数吗?根据刚才自己的理解,请拿出课前准备好的一张长12cm、宽8cm的长方形纸,仿效老师的做法,设计能正好整分这个长方形纸的小正方形,在纸上画一画,看一看有几种不同的画法设计,再想一想其中有什么规律?4.总结——创造数学新知

学生完成上一步操作以后,投影展示学生设计的作品,(会有三种不同的设计:小正方形的边长分别为1cm、2cm、4cm)引导学生表述自己的想法,交流发现规律:因为小正方形要正好整分大长方形,那么,小正方形的边长既要能整除大长方形的长,也要能整除长方形的宽。也就是说小正方形的边长数1、2、4、既是12的约数,也是8的约数。同理,1和5既是15的约数,也是10的约数。至此,通过铺方砖的生活常识及几何中长、正方形关系的设计操作,学生实际上已初步感知和理解了公约数的存在及其在生活中的应用。此时,再引导学生通过命名的形式抽象出新的数学概念—公约数:请你根据1、2、4分别与12和8共有的关系给这几个数取一个新的名称,师板书:1、2、4是12和8的(),待学生大都满意之后再板书:4是12和8的()。板书设计如下:(单位:厘米)1是10的约数,也是15的约数 1是12的约数,也是8的约数 5是10的约数,也是15的约数 2是12的约数,也是8的约数 4是12的约数,也是8的约数 1、5是15和10的(公约数)1、2、4是12和8的(公约数)5是15和10的(最大公约数)4是12和8的(最大公约数)5.应用——解决实际问题

先解决画廊的装饰画设计,再解答小明分蛋糕的疑难:小明过生日的时候,妈妈给他订了一个大的长方体蛋糕,长42 cm、宽30 cm、高24 cm,小明想把它均匀地切成大小相同的正方体后,再送给每一位客人,他怎样切才能使蛋糕尽可能大一些?至少可以切成多少块?三 教学反思

1.重视数学思想——使数学学习终身受益

日本著名数学教育家米山国藏指出:“作为知识的数学出校门不到两年可能就忘了,唯有深深铭记在头脑中的是数学的精神,数学的思想、研究的方法和着眼点等,这些随时随地发生作用,使他们终身受益,小学数学教案《引导学生在做数学中创造数学——《最大公约数》教学设计与思考》”从这个教学的设计中我们可以看到,教学中不只是让学生接受一个概念知识或一种求最大公约数的方法;不只是注重数学形式层面的教学,而是更重视数学发现层面的教学,即让学生在经历“数学家”解决问题的过程中去理解、去感受一种数学的思想和观念──数学化思想。学生先是感知地板砖中隐含的数学,会用约数、倍数知识解释简单的生活现象,进而思考并尝试解决画廊内装饰画的设计,学生自然会联想到地板砖中数学知识。但是,从解释到应用设计,在没有学习公约数的情况下会存在较大的难度。于是,创设了做数学的空间。让他们在设计正方形的过程中,逐渐感知公约数的存在,建立了解决这种问题的数学模型。再反思与总结,引导学生自己创造了“公约数”与“最大公约数”的概念。数学化思想观念是指用数学眼光去认识和处理周围事物或数学问题,可以培养学生良好的“用数学”意识,使数学关系成为学生的一种思维模式。而我们的课堂中,大多还是围绕知识就事论事,没有从形成学生思维模式的角度去展开知识形成和问题解决的思维过程,去注重现代的数学思想,去隐含重要的数学方法,这样,学生学到的只是知识的堆砌,没有自主的发展和对数学本质的领悟。2.注重学习体验——让课堂焕发生命活力

扑面而来的新基础教育课程改革的浪潮强列地震撼着知识为本的传统课堂教学,关注生活、关爱学生、关照生命等极具时代气息的教学理念呼唤着以人为本的课堂。

注意学习过程中的感悟、体验是本节课设计的又一重点。观察、测量中感悟生活中的教学;对长方形纸中小方格设计的探索;总结、反思中感知公约数的存在;解决较复杂的分蛋糕问题时体会公约数的作用。教学中的各个环节,都较好地发挥了学生的主体作用,在动手操作与设计中建构了新旧知识的联系。经历了从现实生活中抽象出(最大)公约数的概念,在做数学的过程中体验了数学的真实意义。

华师大叶澜教授提出了“教育的生命基础”理论,主张“教育具有提升人的生命价值和创造人的精神生命的意义,对生命潜能的开发和发展需要的满足,教育具有不可替代的重要责任。”以学生的经验与活动为基础,以学生的积极参与、身心投入为前提,以学生的自主体验为核心的注重学生体验的教学活动,能够提升学生的生命质量,促进学生和谐发展。如果教学过程仅是师生间简单的知识“授一受”过程,剥夺学生对知识的主体性体验,必然使他们养成被动而不是主动的,依赖而不是独立的,接受而不是创造的体验。那就会丧失了求知的欲望、体验的冲动和创造的才能,课堂学习中学生的生命意义就无从体现。所以《数学课程标准》中,把目标区分为知识技能目标和过程性目标,而过程性目标中的“经历、体验、探索”也可理解为学生的体验过程。体现了《标准》对学生在数学思考、解决问题、以及情感与态度等方面要求的同时,隐含了对学生生命质量的关注和重视。3.开发教学资源——师生同为资源创生的主体

教材只是供教学使用的一种材料,不是一成不变的经典。面对新课程标准,教师要有强烈的课程资源开发意识,不仅自己能针对学习内容开发出有利学生学习和发展的新材料,而且要善于引导学生去寻找和发现身边的数学学习资源。在本节课的教学中,除了教师提示的卧室(广场)地板砖,画廊设计、分蛋糕之外,学生也列举了许多类似的现象:教室内水磨石地面,银行墙壁上的方形面砖,家中客厅顶部木质方块的装饰„„学生在资源的识别与解释中,逐步掌握了(最大)公约数的知识,为今后创造性的运用知识打下了良好的基础。引导学生在做数学中创造数学——《最大公约数》教学设计与思考

第二篇:引导学生在做数学中创造数学——《最大公约数》教学设计与思考

引导学生在做数学中创造数学《最大公约数》教学设计与思考

一 指导思想

人教版与苏教版教材中对最大公约数认识的编排顺序是相同的:分别找出两个数的约数比较,生成公约数、最大公约数的概念会求两个数的最大公约数应用(最大)公约数知识解决实际问题。

沿这种思路设计教学,学生对新知的接受常是被动的,并且也只能达成知识与技能单一教学目标。数学课程标准强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力,情感态度与价值观等多方面得到进步和发展。在这新的教学理念指导下,怎样结合学生的实际生活,在运用知识解决问题的实践操作中,经历知识产生过程,萌发创造新知需要,并完成对新知的建构呢?

二 教学设计

1.观察感知生活数学

学习约数与倍数之后,布置学生回家观察客厅或卧室,也可到广场上,看看所贴的地板砖数是否正好为整数块数(没有切割)。如果是,沿着长铺了多少块?沿着宽铺了多少块?测量一方砖的边长和房间的长、宽,方砖的边长与房间的长、宽分别是什么关系?

2.思考理解数学问题

课堂教学伊始,投影出贴了地板砖的长方形广场平面图。学生能够用约数、倍数知识解释课前观察到的数学问题:长方形广场的长是方砖边长的m倍,宽是方砖边长的n倍。也可以说方砖的边长既是长方形长的约数,又是长方形宽的约数。与师生交流之后,再出示一个新的问题:我们学校的画廊高1.2米(12分米),长是3米(30分米),美术组的同学想在上面正好贴满大小相同的正方形装饰画,这种装饰画的边长应为多少分米(取整数)?会有几种不同的正方形?

3.实验建构数学模型

学生在对画廊设计问题处于愤悱状态之时,老师借用长方形纸作示范引导:这是一张长15cm,宽10cm的长方形纸,我们可以把它设想为缩小后的校园画廊,(当然也可以想象为客厅或广场的地面)老师在这张长方形纸上设计了两种不同的小正方形,(实物投影出示另一张画了方格的长方形纸)其中一面的小正方形边长为1cm,另一面的小正方形边长为5cm,它们同样整分了这张长方形纸而无剩余。想一想,小正方形边长除了1cm和5cm以外,还会有其它整厘米数吗?根据刚才自己的理解,请拿出课前准备好的一张长12cm、宽8cm的长方形纸,仿效老师的做法,设计能正好整分这个长方形纸的小正方形,在纸上画一画,看一看有几种不同的画法设计,再想一想其中有什么规律?

4.总结创造数学新知

学生完成上一步操作以后,投影展示学生设计的作品,(会有三种不同的设计:小正方形的边长分别为1cm、2cm、4cm)引导学生表述自己的想法,交流发现规律:因为小正方形要正好整分大长方形,那么,小正方形的边长既要能整除大长方形的长,也要能整除长方形的宽。也就是说小正方形的边长数1、2、4、既是12的约数,也是8的约数。同理,1和5既是15的约数,也是10的约数。

至此,通过铺方砖的生活常识及几何中长、正方形关系的设计操作,学生实际上已初步感知和理解了公约数的存在及其在生活中的应用。此时,再引导学生通过命名的形式抽象出新的数学概念公约数:请你根据1、2、4分别与12和8共有的关系给这几个数取一个新的名称,师板书:1、2、4是12和8的(),待学生大都满意之后再板书:4是12和8的()。

板书设计如下:(单位:厘米)

1是10的约数,也是15的约数 1是12的约数,也是8的约数

5是10的约数,也是15的约数 2是12的约数,也是8的约数

4是12的约数,也是8的约数 1、5是15和10的(公约数)1、2、4是12和8的(公约数)

5是15和10的(最大公约数)4是12和8的(最大公约数)

5.应用解决实际问题

先解决画廊的装饰画设计,再解答小明分蛋糕的疑难:小明过生日的时候,妈妈给他订了一个大的长方体蛋糕,长42 cm、宽30 cm、高24 cm,小明想把它均匀地切成大小相同的正方体后,再送给每一位客人,他怎样切才能使蛋糕尽可能大一些?至少可以切成多少块?

三 教学反思

1.重视数学思想使数学学习终身受益

日本著名数学教育家米山国藏指出:作为知识的数学出校门不到两年可能就忘了,唯有深深铭记在头脑中的是数学的精神,数学的思想、研究的方法和着眼点等,这些随时随地发生作用,使他们终身受益。从这个教学的设计中我们可以看到,教学中不只是让学生接受一个概念知识或一种求最大公约数的方法;不只是注重数学形式层面的教学,而是更重视数学发现层面的教学,即让学生在经历数学家解决问题的过程中去理解、去感受一种数学的思想和观念──数学化思想。学生先是感知地板砖中隐含的数学,会用约数、倍数知识解释简单的生活现象,进而思考并尝试解决画廊内装饰画的设计,学生自然会联想到地板砖中数学知识。但是,从解释到应用设计,在没有学习公约数的情况下会存在较大的难度。于是,创设了做数学的空间。让他们在设计正方形的过程中,逐渐感知公约数的存在,建立了解决这种问题的数学模型。再反思与总结,引导学生自己创造了公约数与最大公约数的概念。

数学化思想观念是指用数学眼光去认识和处理周围事物或数学问题,可以培养学生良好的用数学意识,使数学关系成为学生的一种思维模式。而我们的课堂中,大多还是围绕知识就事论事,没有从形成学生思维模式的角度去展开知识形成和问题解决的思维过程,去注重现代的数学思想,去隐含重要的数学方法,这样,学生学到的只是知识的堆砌,没有自主的发展和对数学本质的领悟。

2.注重学习体验让课堂焕发生命活力

扑面而来的新基础教育课程改革的浪潮强列地震撼着知识为本的传统课堂教学,关注生活、关爱学生、关照生命等极具时代气息的教学理念呼唤着以人为本的课堂。

注意学习过程中的感悟、体验是本节课设计的又一重点。观察、测量中感悟生活中的教学;对长方形纸中小方格设计的探索;总结、反思中感知公约数的存在;解决较复杂的分蛋糕问题时体会公约数的作用。教学中的各个环节,都较好地发挥了学生的主体作用,在动手操作与设计中建构了新旧知识的联系。经历了从现实生活中抽象出(最大)公约数的概念,在做数学的过程中体验了数学的真实意义。

华师大叶澜教授提出了教育的生命基础理论,主张教育具有提升人的生命价值和创造人的精神生命的意义,对生命潜能的开发和发展需要的满足,教育具有不可替代的重要责任。以学生的经验与活动为基础,以学生的积极参与、身心投入为前提,以学生的自主体验为核心的注重学生体验的教学活动,能够提升学生的生命质量,促进学生和谐发展。如果教学过程仅是师生间简单的知识授一受过程,剥夺学生对知识的主体性体验,必然使他们养成被动而不是主动的,依赖而不是独立的,接受而不是创造的体验。那就会丧失了求知的欲望、体验的冲动和创造的才能,课堂学习中学生的生命意义就无从体现。所以《数学课程标准》中,把目标区分为知识技能目标和过程性目标,而过程性目标中的经历、体验、探索也可理解为学生的体验过程。体现了《标准》对学生在数学思考、解决问题、以及情感与态度等方面要求的同时,隐含了对学生生命质量的关注和重视。

3.开发教学资源师生同为资源创生的主体

教材只是供教学使用的一种材料,不是一成不变的经典。面对新课程标准,教师要有强烈的课程资源开发意识,不仅自己能针对学习内容开发出有利学生学习和发展的新材料,而且要善于引导学生去寻找和发现身边的数学学习资源。在本节课的教学中,除了教师提示的卧室(广场)地板砖,画廊设计、分蛋糕之外,学生也列举了许多类似的现象:教室内水磨石地面,银行墙壁上的方形面砖,家中客厅顶部木质方块的装饰学生在资源的识别与解释中,逐步掌握了(最大)公约数的知识,为今后创造性的运用知识打下了良好的基础。

第三篇:数学教学中培养学生创造思维能力

21世纪将是一个知识创新的世纪,新世纪正在召唤大批高素质创造型人才。人的创造力包括创造思维能力和创造个性两个方面,而创造思维是创造力的核心。所谓创造思维就是与众不同的思考。数学教学中所研究的创造思维,一般是指对思维主体来说是新颖独到的一种思维活动。它包括发现新事物,提示新规律,创造新方法,解决新问题等思维过程。尽管这种思维结果通常并不是首次发现或前所未有的,但一定是思维主体自身的首次发现或超越常规的思考。它具有独特性、求异性、批判性等思维特征,思考问题的突破常规和新颖独特是创造思维的具体表现。这种思维能力是正常人经过培养可以具备的。那么如何培养学生的创造思维能力呢?

一、指导观察

观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?

首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。例如教学圆的认识时,我把一根细线的两端各系一个小球,然后 甩动其中一个小球,使它旋转成一个圆。引导学生观察小球被甩动时,一端固定不动,另一端旋转一周形成圆的过程。提问:“你发现了什么?”学生们纷纷发言:“小球旋转形成了一个圆”小球始终绕着中心旋转而不跑到别的地方去。“我还看见好像有无数条线”……¨从这些学生朴素的语言中,其实蕴含着丰富的内涵,渗透了圆的定义:到定点的距离相等的点的轨迹。看到“无数条线”则为理解圆的半径有无数条提供了感性材料。

二、引导想象

想象是思维探索的翅膀。爱因斯坦说:“想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。”在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。

想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。例如,在复习三角形、平行四边形、梯形面积时,要求学生想象如何把梯形的上底变得与下底同样长,这时变成什么图形?与梯形面积有什么关系?如果把梯形上底缩短为0,这时又变成了什么图形?与梯形面积有什么关系?问题一提出学生想象的闸门打开了:三角形可以看作上底为0的梯形,平行四边形可以看作是上底和下底相等的梯形。这样拓宽了学生思维的空间,培养了学生想象思维的能力。

三、鼓励求异

求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异思维是指从不同角度,不同方向,去想别人没想不到,去找别人没有找到的方法和窍门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。例如:教学“分数应用题”时,有这么一道习题:“修路队修一条3600米的公路,前4天修了全长的1/6,照这样的速度,修完余下的工

程还要多少天?”就要引导学生从不同角度去思考,用不同方法去解答。用上具体量,解1;3600÷(3600×1/6÷4)-4;解2:(3600-3600×1/6)÷(3600×1/6÷4);解3:4×[(3600-3600×1/6)] ÷(3600×1/6÷4)。思维较好的同学将本题与工程问题联系起来,抛开3600米这个具体量,将全程看作单位“1”,解4:1÷(1/6÷4)-4;解5:(1-1/6)÷(1/6÷4);解6:4×(1÷1/6-1);此时学生思维处于高度活跃状态,又有同学想出 解7:4÷1/6-4;解8:4×(1÷1/6)-4;解9:4×(6-1)。学生在求异思维中不断获得解决问题的简捷方法,有利于各层次的同学参与,有利于创造思维能力的发展。

四、诱发灵感

灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。

在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。

例如,有这样的一道题:把3/

7、6/

13、4/

9、12/25用“>”号排列起来。对于这道题,学生通常都是采用先通分再比较的方法,但由于公分母太大,解答非常麻烦。为此,我在教学中,安排学生回头观察后桌同学抄的题目(7/

3、13/

6、9/

4、25/12),然后再想一想可以怎样比较这些数的大小,倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再比较大小的简捷方法。

总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。

第四篇:数学教学中培养学生创造思维能力

悦考网www.xiexiebang.com

数学教学中培养学生创造思维能力

21世纪将是一个知识创新的世纪,新世纪正在召唤大批高素质创造型人才。人的创造力包括创造思维能力和创造个性两个方面,而创造思维是创造力的核心。所谓创造思维就是与众不同的思考。数学教学中所研究的创造思维,一般是指对思维主体来说是新颖独到的一种思维活动。它包括发现新事物,提示新规律,创造新方法,解决新问题等思维过程。尽管这种思维结果通常并不是首次发现或前所未有的,但一定是思维主体自身的首次发现或超越常规的思考。它具有独特性、求异性、批判性等思维特征,思考问题的突破常规和新颖独特是创造思维的具体表现。这种思维能力是正常人经过培养可以具备的。那么如何培养学生的创造思维能力呢?

一、指导观察

观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?

首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。例如教学圆的认识时,我把一根细线的两端各系一个小球,然后甩动其中一个小球,使它旋转成一个圆。引导学生观察小球被甩动时,一端固定不动,另一端旋转一周形成圆的过程。提问:“你发现了什么?”学生们纷纷发言:“小球旋转形成了一个圆”小球始终绕着中心旋转而不跑到别的地方去。“我还看见好像有无数条线”„„¨从这些学生朴素的语言中,其实蕴含着丰富的内涵,渗透了圆的定义:到定点的距离相等的点的轨迹。看到“无数条线”则为理解圆的半径有无数条提供了感性材料。

二、引导想象

想象是思维探索的翅膀。爱因斯坦说:“想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。”在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。

想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。例悦考网www.xiexiebang.com 悦考网www.xiexiebang.com

如,在复习三角形、平行四边形、梯形面积时,要求学生想象如何把梯形的上底变得与下底同样长,这时变成什么图形?与梯形面积有什么关系?如果把梯形上底缩短为0,这时又变成了什么图形?与梯形面积有什么关系?问题一提出学生想象的闸门打开了:三角形可以看作上底为0的梯形,平行四边形可以看作是上底和下底相等的梯形。这样拓宽了学生思维的空间,培养了学生想象思维的能力。

三、鼓励求异

求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异思维是指从不同角度,不同方向,去想别人没想不到,去找别人没有找到的方法和窍门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。例如:教学“分数应用题”时,有这么一道习题:“修路队修一条3600米的公路,前4天修了全长的1/6,照这样的速度,修完余下的工转程还要多少天?”就要引导学生从不同角度去思考,用不同方法去解答。用上具体量,解1;3600÷(3600×1/6÷4)-4;解2:(3600-3600×1/6)÷(3600×1/6÷4);解3:4×[(3600-3600×1/6)]÷(3600×1/6÷4)。思维较好的同学将本题与工程问题联系起来,抛开3600米这个具体量,将全程看作单位“1”,解4:1÷(1/6÷4)-4;解5:(1-1/6)÷(1/6÷4);解6:4×(1÷1/6-1);此时学生思维处于高度活跃状态,又有同学想出解7:4÷1/6-4;解8:4×(1÷1/6)-4;解9:4×(6-1)。学生在求异思维中不断获得解决问题的简捷方法,有利于各层次的同学参与,有利于创造思维能力的发展。

四、诱发灵感

灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。

在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。

例如,有这样的一道题:把3/

7、6/

13、4/

9、12/25用“>”号排列起来。对于这道题,学生通常都是采用先通分再比较的方法,但由于公分母太大,解答非常麻烦。为此,我在教学中,安排学生回头观察后桌同学抄的题目(7/

3、13/

6、9/

4、25/12),然后再想一想可以怎样比较这些数的大小,倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再比较大小的简捷方法。

悦考网www.xiexiebang.com 悦考网www.xiexiebang.com

总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。

与初三同学谈如何学好数学

经过二年多的初中学习,同学们随着年龄的增长,知识的不断丰富,学习自觉性的不断增强,理解力和思维能力的不断提高,教材也随之加深拓广,老师的教学也由扶着同学们走路到逐渐放开手让同学们自己走路,这是在中学阶段深化学习的必由之路。

二年多来,大部分同学的学习都取得了一定的进步,有的同学很快就适应了初中数学课程的学习,通过自己的努力,进步很大;但也有的同学一下子不能适应初三阶段紧张的学习和生活,自信心下降,与其他同学拉大了差距。随着学习的进一步深入,这种差距在顺其自然的情况下还会不断加大。

为了同学们的前途和末来,我觉得同学们在学习中不能顺其自然,而应力求改变现状,变被动学习为主动学习,尽快把学习成绩赶上去。根据我多年的教学经验,我认为同学们掌握正确的数学思想和方法是至关重要的,是事半功倍的关键所在。

通过二年多的学习,想必同学们都有这样的亲身体会,在学初中的有关基础知识内容时,只要认真听老师讲解,都能听得懂,所以要掌握一般的基础知识并不难。练习中一步到位的与新知识有关的简单题也并不难做,难的是较复杂一点的、与以前学过但自己又没有掌握好的知识联系在一起的综合题。所谓“数学学习,一步跟不上,则步步跟不上”,就是指这一类的题目。但这并不是说,因为这样,就不要去学新知识,就学不好新知识。完全不是这么回事。即使你以前的知识都没学好,仍然能依据新学的这些知识去解决有关的简单问题。并且从中可以增强自己的自信心:我这节课认真学了,听懂了,会用学到的新知识去解决一些问题了。之所以碰到难一点的题我不会做,那是因为我以前的知识没学好,在某一个地方卡住了,做不下去了,只要我把以前的知识好好补一补,像现在这样把知识一点一滴地学到手,我就不信学习成绩赶不上去。

事实是,前几届有好些个同学原本数学成绩很差,到初三了才着急起来,认真地持之以恒地补习旧知识,学习新知识,最后在中考时取得了较理想的成绩。有的从平时考十几、二十几分到中考考出七、八十分,有的从五、六十分到中考考出一百多分。当然,除这些同学自身的努力外,还与中考题大部分题目比较容易也有一定的关系(虽然中考是选拔性考试,但也要考虑到初中毕竟还是属于九年义务教育阶段,中考面临的是全体同学们,必然要照顾到绝大多数同学的实际情况;中考成绩也是体现九年义务教育阶段素质教育成果的一个重要方面,因此中考题里面始终都会有大量基础题。)但再容易的题目也要你能掌握有关知识的最基础的东西才行呀!如果你自暴自弃,每一节课都不认真学,连最简单的题也不会做,我看你到中考时也只有望题兴叹,后悔莫及。有不少同学中考后都有这样的感叹:早知中考数学题这么容易,我平时学习只要稍微认真一点,平时测验悦考网www.xiexiebang.com 悦考网www.xiexiebang.com

能真正拿个五、六十分(不是掺假的),中考拿个一百多分绝对没问题。(中考数学满分为150分)

我介绍这些情况,目的只有一个,就是劝那些怕数学的同学不要放弃数学,数学的基础知识并不难学,相信每一位同学都能学好。应树立起自信心,相信自己,相信自己通过努力一定能与其他同学缩小差距!

也许有的同学要问,那么怎样努力呢?您能不能介绍一点行之有效且并不难学的好方法啊?当然有,下面我就来谈谈如何操作才能真正学好数学。

一、该记的记,该背的背,不要以为理解了就行

有的同学认为,数学不像英语、社政,要背单词、背年代、背人名、地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九表”,你能顺利地进行运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做9×9时用九个9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同样,是运用大家熟记的法则做出来的。同时,数学中还有大量的规定需要记忆,比如在化简二次根式时规定:“如果没有特别说明,本章根号内的字母都是正数。”等等。因此,我觉得数学更像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。因此,数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。比如大家熟悉的“乘法公式、求根公式”“特殊角三角函数值”等,我看我们的同学有的背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,如果背不出这些公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这些公式和数据。

对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打造不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手,左右逢源。

二、了解几个重要的数学思想

1、“方程”的思想

数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度×时悦考网www.xiexiebang.com 悦考网www.xiexiebang.com

间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二和初三我们学习了解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而为学好其它形式的方程打好基础。

所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。

2、“数形结合”的思想

大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支——代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。

3、“对应”的思想

“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在化简求值计算中,将式子中有关字母或某个整体的值,对应代入,直接算出原式的结果。又比如我们到初三综合学习了与圆有关的角,圆心角、圆周角、弦切角的数量关系必须“对应”同一段弧才能成立。这就是运用“对应”的思想和方法来解题。初

二、初三我们还看到数轴上的点与实数之间的一一对应,悦考网www.xiexiebang.com 悦考网www.xiexiebang.com

直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。总之,“对应”的思想在今后的学习中将会发挥越来越大的作用。

4、“转化”的思想

解数学题最根本的途径是“化难为易,化繁为简,化未知为已知”,也就是把复杂繁难的数学问题通过一定的数学思维、方法和手段,逐渐将它转变成一个大家熟知的简单的数学形式,然后通过大家所熟悉的数学运算把它解决。

比如,我们学校要扩大校园,需要向某村征地。而某村给了一块形状不规则的地,如何丈量它的面积呢?首先,使用适当的测量工具,依据一定的比例,将实际地形绘制成纸上图形,然后将纸上图形分割成若干块梯形、长方形、三角形,利用学过的面积计算方法,计算出这些图形的面积之和,也就得到了这块不规则地形的总面积。在这里,我们把无法计算的不规则图形转化成了可以计算的规则图形,从而解决了土地丈量问题。另外,我们前面提到的各种多元方程、高次方程,利用“消元”、“降次”等方法,最终都可以把它们转化成一元一次方程或一元二次方程,然后用已知的步骤或公式把它们解决。

“转化和替代”的思想,是解题的最重要的思维习惯。面对难题,面对没有见过的题,首先就要想到“转化”,也总是能够“转化”的。平时,要多留心老师是怎样解题的,是怎样“化难为易、化繁为简、化未知为已知”的。同学之间也应多交流交流“成功转化”的体会,深入理解“转化”的真正含义,切实掌握“转化”的思维和技巧。

三、自学能力的培养是深化学习的必由之路

在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。

我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。去年年底我去浙江教育学院开会时,杭二中吴副校长的一番话使我感触良多。他说:我是教物理的,可是经常外出,同学们物理学得好,不是我教出来的,而是他们自己悟出来的。当然,吴副校长是谦虚的,但他说明了一个道理,同学们不能被动地学习,而应主动地学习。一个班里几十个学生,同一个老师教,差异那么大,这就是学习主动性问题了。

自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。在老师讲新课前,要能够运用自己所学过的已掌握的旧知识去预习新课,结合新课中的新规定去分析、理解新的学习内容。由于数学知识的无矛盾性,你所学过的数学知识永远都是有用悦考网www.xiexiebang.com 悦考网www.xiexiebang.com 的,都是正确的,数学的进一步学习只是加深拓广而已。因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是因为没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,力求把知识变为自己的。学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。

四、自信才能自强

在以往的历次考试中,总会看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。你都没有动手去做,又怎么知道自己不会做呢?即使是老师,拿到一道难题,也不能立即答复你。也同样要先分析、研究,找到正确的思路后才向你讲授。不敢去做稍为复杂一点的题(不一定是难题,有些题只不过是叙述多一点),是缺乏自信心的表现。在数学解题中,自信心是相当重要的。要相信自己,只要不超出自己的知识范畴,不管哪道题,总是能够用自己所学过的知识把它解出来。要敢于去做题,要善于去做题。这就叫做“在战略上藐视敌人,在战术上重视敌人”。

具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件,包括隐含条件。然后,从“所求”看“需知”,由“已知”看“可知”,构筑“可知”和“需知”之间的桥梁,形成从“已知”到“所求”的通道,使问题得以顺利解决。其实,一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做,其它的题就不会做,只会依样画葫芦,题目有些小小变化就干瞪眼,无从下手。当然,做题先从哪儿下手是一件棘手的事,不一定找得准。但是,做题一定要抓住其特殊性则绝对没错。选择一个或几个条件作为解题的突破口,看由这个条件能得出什么,得出的越多越好,然后从中选择与其它条件有关的、或与结论有关的、或与题目中的隐含条件有关的,进行推理或演算。一般难题都有多种解法,所谓“条条大路通罗马”。要相信利用这道题的条件,加上自己学过的那些知识,一定能推出正确的结论。

数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,以不变应万变,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完,但不做也不行,关键是一个“度”。在一定的限度内,我还是鼓励同学们要“多做多练,因为熟悦考网www.xiexiebang.com 悦考网www.xiexiebang.com

能生巧;多看多想,才能见多识广。”这样,通过强化的训练,培养自己良好的数学思维习惯,掌握正确的数学解题方法。那么到了中考的时候,由于题目类型见得多,所以能“触类旁通,熟能生巧”,加快了速度,节省了时间,这一点在考试时间有限的中考时显得特别重要。

解数学题目需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克一道道难关,到达成功的彼岸,创造属于自己的辉煌的明天!

资料来自:悦考网www.xiexiebang.com 悦考网www.xiexiebang.com

第五篇:数学教学中如何引导学生进行反思

著名教育家弗赖登塔尔也指出:“反思是数学思维活动的核心和动力。”《数学课程标准》指出:通过数学学习,使学生初步形成反思意识以及进行质疑和独立思考的习惯。我个人认为反思是学生对一个问题的思维结果进行科学慎重的批判性回顾、分析和检查。教学的实质就是引导学生理解学习的过程,在教学中,培养学生的反思意识,引导学生多层次、多角度地对解决问题的思维过程进行全面的考察、分析和思考,可以深化对问题的理解,优化思维的过程,完善认知结构。在平时的课堂教学过程中,部分教师仅从认知的角度来考虑教学内容,关心的是数学知识的连贯性和系统性,缺乏引导学生对学习过程和结果进行反思,造成学生缺乏反思意识和反思能力,因此,需要教师针对数学学科的特点,有意识地探索培养学生的反思能力和反思习惯。

一、在反思中促进数学知识的内化

杜威认为:反思是一种以产生思维活动的怀疑、犹豫、困惑的状态,和一种为了发现解决这种怀疑,消除这种困惑而进行探究的行为。从心理学上来说,反思是引起认知结构的冲突,从而唤起思维,激发探究、发现、再创新的欲望,由学习者到“研究者”的转变。但是,学生的思维活动只有内隐性和自动化的特征,缺乏反思意识和反思能力,所以,需要教师以认知理论作指导来培养学生的反思能力。

⒈创设情境,激发内需

有积极情绪支持的反思过程是一个高效的学习过程。教学中,教师要营造充满兴趣的教学情境,让学生觉得宽松、自然,敢于质疑。例:在一次“简单的数据整理和简单的统计表”的公开课中,某老师这样创设问题情境:我们全校刚上星期去西山公园春游了,我感觉很多同学好象不太喜欢去西山公园,那你们有想去些什么地方呢?范围限定在家乡境内。抛出这么个话题后,学生纷纷举手,说了自己想去的地方。然后老师又抛出问题:可是,我们该怎么样才知道哪个地方想去的同学最多呢?学生意见纷纷 …… 最后决定用投票的方法。投票之后,该老师又问:接下去该怎么办呢?同学们又纷纷发表意见。由于学生都急于想知道结果,所以自然而然的都参与进来了,学生的思维欲望由此被激发出来,寻求到了知识的本质和内在联系,这样的问题情境无疑是成功的。

⒉体验成功,适时鼓励

在教学探究和反思活动中,教师要让学生有成功的体验。如在讲授《三角形的认识》一课时,我设计了一个游戏化的教学场景,学生兴趣很高。但学生对三角形三条边之间的关系认识很模糊。有个学生竟然问:“老师,是不是所有的三根小棒都能围成三角形呢?”我就让学生反思拼搭的过程,结果经过学生自己的实践、反思得出了结论,由此获得了成功的体验。这时我对学生的探究与反思给予了及时的肯定,学生也因此兴趣盎然,其反思意识亦越加强烈。

⒊因疑设疑,扶放结合把思维的机会、时间和空间留给学生。对于学生的质疑不回避、不应付或置之不理,要让学生遇疑不慌、处疑不惊,教师要因疑引疑、设疑质疑,半扶半放、扶放结合,引导学生通过反思,把思考的知识转化为能力。

二、在反思中促进数学思想的渗透

数学思想方法是数学学习和研究的“核心”和“灵魂”。数学教学中,只有多方位、多途径、有计划、有步骤地反复渗透,才能使学生领悟到数学思想方法的价值,从而初步学会运用数学思想方法将所学知识由未知转化到已知。笛卡尔说:“走过两遍的路就是方法。”数学思想方法最终要为学生所领悟掌握,回顾反思是一条必经之途。因此解完题后,教师要趁热打铁,督促、引导学生反思解题过程、回顾解题思维、体会解题中所使用的思想方法。这里回顾反思起到的是“促使转化”而不是“代替转化”的作用。在随时可能进行的反思中,教师可采用“因果假设与反思、比较归纳与反思、演变设问与反思、正误设问与反思、迁移设问与反思”等方法来对前面的反思进行再反思。使学生在反思交流中学会反思与推理,以使达到理性交流层次。例如在学习了《平行四边形的面积》之后,学生掌握了通过拼、移、转化的方法去思考,在后续的《三角形的面积》、《梯形的面积》的学习过程中,只要引导学生反思上节课的探索过程,让学生在回顾中迁移,在反思中猜想,轻而易举地就能完成教学任务。同时,也使学生深刻体会到反思的优势所在,乐于在今后的学习中反思,有利于学生反思意识的培养。又如教学分数的基本性质时,教师引导学生反思分数与除法的联系,通过学生自己的分析讨论,正向迁移得到分数的基本性质。不用教师苦口婆心的教授,通过学生内心重组已有的知识,反思新知识与旧知识的联系,得到新知识,这就能更深刻地掌握分数与除法的关系。学生通过举一反

三、融会贯通,自己发现新知识,远比通过教师灌输获得知识,效果要好得多。

三、在反思中促进思维品质的提高

思维品质是思维发生和发展中所表现出来的个性差异。数学教学中,我们经常可以发现,有的学生思维敏捷、思路开阔、有独创性;而有的学生思维速度很慢、思路狭窄、看问题片面简单,这就是思维品质的差异。良好的数学思维品质需要培养,而培养思维品质的途径就是通过相应的思维训练。反思作为一种思维训练的方式,对提高数学思维的灵活性、批判性和严谨性均能起到良好的作用。通过反思,能使学生思考问题符合逻辑、严密、准确;通过反思,可使学生对一个问题能从多方面进行广泛深入的思考和选择,学会一题多解来寻找最简捷的解题方法;通过反思,还能使学生发现自己和他人原有认知的错误和不足,及时转向,迅速找到解决问题的最佳途径和方法。

⒈比较异同

让学生自己在比较中发现问题,并自己反思解决问题的方法选择优化,不仅使学生知道怎样做,而且懂得怎样做才能做得更好,实现知识和能力的两个提高。如我要求学生“运用已学过的乘法运算定律进行简便计算”完成48×125,学生出现了三种解法:

⑴(50-2)×125=50×125-2×125=6250-250=6000;

⑵(40+8)×125=40×125+8×125=5000+1000=6000;

⑶ 6×8×125=6×(8×125)=6×1000=6000。

教师在选择算法优化的时候,与学生进行了如下的对话:“从所得到的结果与解题过程中你发现什么?”学生发现给“48”拆数后再根据定律改写算式,计算的每一步结果都能凑整,而且125与8凑千最方便。在呈现各种解法的时候,教师不急于下定论,让学生自己去比较,自己去发现,学生经历了一个对自己认知的再认知,最后恍然大悟,得出最佳解法。学生也在体验、感悟和反思中掌握了其中的内在规律,理解也更加深刻。

⒉留有空白

知识的简单积累并不能形成良好的认知结构,实现知识的内化,要适当留下“空白”,让学生反思。例《角的分类》教学中,学生经过学习交流得出了角的分类表,在这张表中两边都空着,在周角与平角之间也空着,空白之处让人去体验,去感悟,去揣摩,激起了学生深入的反思:比锐角还小的角有吗?比周角大的角有吗?比平角大而比周角小的角叫什么角?更有学生通过反思发出感慨:我们所学的只是大海里的一滴水,真是学无止境!

⒊集体反思

集体反思的结果可以强化个人的反思,突破知识的相对狭窄和有限,丰富思考方法,增强迁移能力。在一个分组测量并计算中队旗的面积的数学活动中,学生小组合作,通过小组讨论、汇报得到了多种解决方案。接着,教师说:“比较一下我们刚才找到的求中队旗面积的方法,你有什么发现?”最后在活动的结尾设计了一个“点睛之笔”,提问:“下面请大家回顾一下刚才的活动过程,你有什么体会?”在教师指导下的集体研讨过程中,学生对自己的学习结果进行反思,如不规则的图形面积的计算就是运用“补”和“拆”的方法把它们转化成已经学过的图形;对整个学习过程进行了反思,总结了自己的学习表现、合作中合理分工的优点、测量中方法的优劣、从同学中获得解决新知识的方法等各方面的内容,显示了良好的反思能力。

由此可见,反思不仅仅是对数学学习一般性的回顾或重复,更重要的是它能带动学生积极、主动、探究性地投入到数学学习活动中,增强学生学会数学思维的灵敏性,提高学生的创新能力。从这个意义上说,反思其实是一把启迪学生数学智慧的钥匙。

下载引导学生在做数学中创造数学——《最大公约数》教学设计与思考word格式文档
下载引导学生在做数学中创造数学——《最大公约数》教学设计与思考.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    浅谈数学教学中如何引导学生进行探究学习

    浅谈数学教学中如何引导学生进行探究学习湖北省竹山县宝丰中学方黎明 进几年,随着全国课改实践的深入,数学课堂教学中,探究学习已成为一线教师关注的热点话题。而在实践过程中......

    浅谈小学数学教学中如何引导学生进行小组讨论.

    浅谈小学数学教学中如何引导学生进行小组讨论 目前,新一轮素质教育改革正在如火如荼地进行。新课改工作任务之一,是改变师生传统的教与学的方式。小组学习作为一种新型的教学......

    在数学教学中如何引导学生进行有效

    在数学教学中如何引导学生进行有效“猜想” 猜想是展开数学思维过程的重要方法,它是建立在已有的事实经验的 基础上,运用非逻辑手段而得到的一种假定,是一种合理推理。“没......

    数学思考,教学设计

    六年级数学下册《数学思考》教学设计 一. 创设情境引入新课 谁能告诉老师你今年几岁?你知道你是哪一年出生的吗?(2000)如果把你出生的年份看成是2000个点,这些点可以连成多少条线......

    《数学思考》教学设计

    《数学思考(一)》教学设计 执教者:张敦太 指导教师:何嘉斌 郭祥平【教学内容】 《义务教育课程标准实验教科书·数学》六年级下册第100页例1及练习十八第2~3题。 【教学目标】......

    数学思考教学设计

    《数学思考》教学设计 教学内容:人教版六年级下册P93《数学思考》例7 教学目标:1、通过合作探讨和交流,初步学习掌握利用列表法进行逻辑推理的方法。 2、会初步搜集信息并借助......

    《数学思考》教学设计

    《 数学思考》教学设计陈文婷 【教学目标】 1.通过学生观察、探索,使学生掌握数线段的方法。 2.渗透“化难为易”的数学思想方法,能运用一定规律解决较复杂的数学问题。 3.培养学......

    数学思考教学设计

    《数学思考》教学设计 一、游戏设疑,激趣导入。1、故事 同学们,你们听过曹冲称象的故事吗?(课件出示) 要称一头大象的重量,在当时来讲本来是一件很(难)的事,曹冲却利用浮力原理,变称大......