第一篇:数学教学与学生创造思维能力的培养
数学教学与学生创造思维能力的培养"号排列起来。对于这道题,学生通常都是采用先通分再比较的方法,但由于公分母太大,解答非常麻烦。为此,我在教学中,安排学生回头观察后桌同学抄的题目(7/
3、13/
6、9/
4、25/12),然后再想一想可以怎样比较这些数的大小,倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再
比较大小的简捷方法。
总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。
结束语:学生的创造思维能力如何培养如何提高是学校教学工件新的难题,以上仅代表本人的观点,不足之处请大家指正。
第二篇:数学教学中培养学生创造思维能力
21世纪将是一个知识创新的世纪,新世纪正在召唤大批高素质创造型人才。人的创造力包括创造思维能力和创造个性两个方面,而创造思维是创造力的核心。所谓创造思维就是与众不同的思考。数学教学中所研究的创造思维,一般是指对思维主体来说是新颖独到的一种思维活动。它包括发现新事物,提示新规律,创造新方法,解决新问题等思维过程。尽管这种思维结果通常并不是首次发现或前所未有的,但一定是思维主体自身的首次发现或超越常规的思考。它具有独特性、求异性、批判性等思维特征,思考问题的突破常规和新颖独特是创造思维的具体表现。这种思维能力是正常人经过培养可以具备的。那么如何培养学生的创造思维能力呢?
一、指导观察
观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?
首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。例如教学圆的认识时,我把一根细线的两端各系一个小球,然后 甩动其中一个小球,使它旋转成一个圆。引导学生观察小球被甩动时,一端固定不动,另一端旋转一周形成圆的过程。提问:“你发现了什么?”学生们纷纷发言:“小球旋转形成了一个圆”小球始终绕着中心旋转而不跑到别的地方去。“我还看见好像有无数条线”……¨从这些学生朴素的语言中,其实蕴含着丰富的内涵,渗透了圆的定义:到定点的距离相等的点的轨迹。看到“无数条线”则为理解圆的半径有无数条提供了感性材料。
二、引导想象
想象是思维探索的翅膀。爱因斯坦说:“想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。”在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。
想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。例如,在复习三角形、平行四边形、梯形面积时,要求学生想象如何把梯形的上底变得与下底同样长,这时变成什么图形?与梯形面积有什么关系?如果把梯形上底缩短为0,这时又变成了什么图形?与梯形面积有什么关系?问题一提出学生想象的闸门打开了:三角形可以看作上底为0的梯形,平行四边形可以看作是上底和下底相等的梯形。这样拓宽了学生思维的空间,培养了学生想象思维的能力。
三、鼓励求异
求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异思维是指从不同角度,不同方向,去想别人没想不到,去找别人没有找到的方法和窍门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。例如:教学“分数应用题”时,有这么一道习题:“修路队修一条3600米的公路,前4天修了全长的1/6,照这样的速度,修完余下的工
程还要多少天?”就要引导学生从不同角度去思考,用不同方法去解答。用上具体量,解1;3600÷(3600×1/6÷4)-4;解2:(3600-3600×1/6)÷(3600×1/6÷4);解3:4×[(3600-3600×1/6)] ÷(3600×1/6÷4)。思维较好的同学将本题与工程问题联系起来,抛开3600米这个具体量,将全程看作单位“1”,解4:1÷(1/6÷4)-4;解5:(1-1/6)÷(1/6÷4);解6:4×(1÷1/6-1);此时学生思维处于高度活跃状态,又有同学想出 解7:4÷1/6-4;解8:4×(1÷1/6)-4;解9:4×(6-1)。学生在求异思维中不断获得解决问题的简捷方法,有利于各层次的同学参与,有利于创造思维能力的发展。
四、诱发灵感
灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。
在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。
例如,有这样的一道题:把3/
7、6/
13、4/
9、12/25用“>”号排列起来。对于这道题,学生通常都是采用先通分再比较的方法,但由于公分母太大,解答非常麻烦。为此,我在教学中,安排学生回头观察后桌同学抄的题目(7/
3、13/
6、9/
4、25/12),然后再想一想可以怎样比较这些数的大小,倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再比较大小的简捷方法。
总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。
第三篇:数学教学中培养学生创造思维能力
悦考网www.xiexiebang.com
数学教学中培养学生创造思维能力
21世纪将是一个知识创新的世纪,新世纪正在召唤大批高素质创造型人才。人的创造力包括创造思维能力和创造个性两个方面,而创造思维是创造力的核心。所谓创造思维就是与众不同的思考。数学教学中所研究的创造思维,一般是指对思维主体来说是新颖独到的一种思维活动。它包括发现新事物,提示新规律,创造新方法,解决新问题等思维过程。尽管这种思维结果通常并不是首次发现或前所未有的,但一定是思维主体自身的首次发现或超越常规的思考。它具有独特性、求异性、批判性等思维特征,思考问题的突破常规和新颖独特是创造思维的具体表现。这种思维能力是正常人经过培养可以具备的。那么如何培养学生的创造思维能力呢?
一、指导观察
观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?
首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。例如教学圆的认识时,我把一根细线的两端各系一个小球,然后甩动其中一个小球,使它旋转成一个圆。引导学生观察小球被甩动时,一端固定不动,另一端旋转一周形成圆的过程。提问:“你发现了什么?”学生们纷纷发言:“小球旋转形成了一个圆”小球始终绕着中心旋转而不跑到别的地方去。“我还看见好像有无数条线”„„¨从这些学生朴素的语言中,其实蕴含着丰富的内涵,渗透了圆的定义:到定点的距离相等的点的轨迹。看到“无数条线”则为理解圆的半径有无数条提供了感性材料。
二、引导想象
想象是思维探索的翅膀。爱因斯坦说:“想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。”在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。
想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。例悦考网www.xiexiebang.com 悦考网www.xiexiebang.com
如,在复习三角形、平行四边形、梯形面积时,要求学生想象如何把梯形的上底变得与下底同样长,这时变成什么图形?与梯形面积有什么关系?如果把梯形上底缩短为0,这时又变成了什么图形?与梯形面积有什么关系?问题一提出学生想象的闸门打开了:三角形可以看作上底为0的梯形,平行四边形可以看作是上底和下底相等的梯形。这样拓宽了学生思维的空间,培养了学生想象思维的能力。
三、鼓励求异
求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异思维是指从不同角度,不同方向,去想别人没想不到,去找别人没有找到的方法和窍门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。例如:教学“分数应用题”时,有这么一道习题:“修路队修一条3600米的公路,前4天修了全长的1/6,照这样的速度,修完余下的工转程还要多少天?”就要引导学生从不同角度去思考,用不同方法去解答。用上具体量,解1;3600÷(3600×1/6÷4)-4;解2:(3600-3600×1/6)÷(3600×1/6÷4);解3:4×[(3600-3600×1/6)]÷(3600×1/6÷4)。思维较好的同学将本题与工程问题联系起来,抛开3600米这个具体量,将全程看作单位“1”,解4:1÷(1/6÷4)-4;解5:(1-1/6)÷(1/6÷4);解6:4×(1÷1/6-1);此时学生思维处于高度活跃状态,又有同学想出解7:4÷1/6-4;解8:4×(1÷1/6)-4;解9:4×(6-1)。学生在求异思维中不断获得解决问题的简捷方法,有利于各层次的同学参与,有利于创造思维能力的发展。
四、诱发灵感
灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。
在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。
例如,有这样的一道题:把3/
7、6/
13、4/
9、12/25用“>”号排列起来。对于这道题,学生通常都是采用先通分再比较的方法,但由于公分母太大,解答非常麻烦。为此,我在教学中,安排学生回头观察后桌同学抄的题目(7/
3、13/
6、9/
4、25/12),然后再想一想可以怎样比较这些数的大小,倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再比较大小的简捷方法。
悦考网www.xiexiebang.com 悦考网www.xiexiebang.com
总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。
与初三同学谈如何学好数学
经过二年多的初中学习,同学们随着年龄的增长,知识的不断丰富,学习自觉性的不断增强,理解力和思维能力的不断提高,教材也随之加深拓广,老师的教学也由扶着同学们走路到逐渐放开手让同学们自己走路,这是在中学阶段深化学习的必由之路。
二年多来,大部分同学的学习都取得了一定的进步,有的同学很快就适应了初中数学课程的学习,通过自己的努力,进步很大;但也有的同学一下子不能适应初三阶段紧张的学习和生活,自信心下降,与其他同学拉大了差距。随着学习的进一步深入,这种差距在顺其自然的情况下还会不断加大。
为了同学们的前途和末来,我觉得同学们在学习中不能顺其自然,而应力求改变现状,变被动学习为主动学习,尽快把学习成绩赶上去。根据我多年的教学经验,我认为同学们掌握正确的数学思想和方法是至关重要的,是事半功倍的关键所在。
通过二年多的学习,想必同学们都有这样的亲身体会,在学初中的有关基础知识内容时,只要认真听老师讲解,都能听得懂,所以要掌握一般的基础知识并不难。练习中一步到位的与新知识有关的简单题也并不难做,难的是较复杂一点的、与以前学过但自己又没有掌握好的知识联系在一起的综合题。所谓“数学学习,一步跟不上,则步步跟不上”,就是指这一类的题目。但这并不是说,因为这样,就不要去学新知识,就学不好新知识。完全不是这么回事。即使你以前的知识都没学好,仍然能依据新学的这些知识去解决有关的简单问题。并且从中可以增强自己的自信心:我这节课认真学了,听懂了,会用学到的新知识去解决一些问题了。之所以碰到难一点的题我不会做,那是因为我以前的知识没学好,在某一个地方卡住了,做不下去了,只要我把以前的知识好好补一补,像现在这样把知识一点一滴地学到手,我就不信学习成绩赶不上去。
事实是,前几届有好些个同学原本数学成绩很差,到初三了才着急起来,认真地持之以恒地补习旧知识,学习新知识,最后在中考时取得了较理想的成绩。有的从平时考十几、二十几分到中考考出七、八十分,有的从五、六十分到中考考出一百多分。当然,除这些同学自身的努力外,还与中考题大部分题目比较容易也有一定的关系(虽然中考是选拔性考试,但也要考虑到初中毕竟还是属于九年义务教育阶段,中考面临的是全体同学们,必然要照顾到绝大多数同学的实际情况;中考成绩也是体现九年义务教育阶段素质教育成果的一个重要方面,因此中考题里面始终都会有大量基础题。)但再容易的题目也要你能掌握有关知识的最基础的东西才行呀!如果你自暴自弃,每一节课都不认真学,连最简单的题也不会做,我看你到中考时也只有望题兴叹,后悔莫及。有不少同学中考后都有这样的感叹:早知中考数学题这么容易,我平时学习只要稍微认真一点,平时测验悦考网www.xiexiebang.com 悦考网www.xiexiebang.com
能真正拿个五、六十分(不是掺假的),中考拿个一百多分绝对没问题。(中考数学满分为150分)
我介绍这些情况,目的只有一个,就是劝那些怕数学的同学不要放弃数学,数学的基础知识并不难学,相信每一位同学都能学好。应树立起自信心,相信自己,相信自己通过努力一定能与其他同学缩小差距!
也许有的同学要问,那么怎样努力呢?您能不能介绍一点行之有效且并不难学的好方法啊?当然有,下面我就来谈谈如何操作才能真正学好数学。
一、该记的记,该背的背,不要以为理解了就行
有的同学认为,数学不像英语、社政,要背单词、背年代、背人名、地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九表”,你能顺利地进行运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做9×9时用九个9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同样,是运用大家熟记的法则做出来的。同时,数学中还有大量的规定需要记忆,比如在化简二次根式时规定:“如果没有特别说明,本章根号内的字母都是正数。”等等。因此,我觉得数学更像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。因此,数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。比如大家熟悉的“乘法公式、求根公式”“特殊角三角函数值”等,我看我们的同学有的背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,如果背不出这些公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这些公式和数据。
对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打造不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手,左右逢源。
二、了解几个重要的数学思想
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度×时悦考网www.xiexiebang.com 悦考网www.xiexiebang.com
间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二和初三我们学习了解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而为学好其它形式的方程打好基础。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
2、“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支——代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。
3、“对应”的思想
“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在化简求值计算中,将式子中有关字母或某个整体的值,对应代入,直接算出原式的结果。又比如我们到初三综合学习了与圆有关的角,圆心角、圆周角、弦切角的数量关系必须“对应”同一段弧才能成立。这就是运用“对应”的思想和方法来解题。初
二、初三我们还看到数轴上的点与实数之间的一一对应,悦考网www.xiexiebang.com 悦考网www.xiexiebang.com
直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。总之,“对应”的思想在今后的学习中将会发挥越来越大的作用。
4、“转化”的思想
解数学题最根本的途径是“化难为易,化繁为简,化未知为已知”,也就是把复杂繁难的数学问题通过一定的数学思维、方法和手段,逐渐将它转变成一个大家熟知的简单的数学形式,然后通过大家所熟悉的数学运算把它解决。
比如,我们学校要扩大校园,需要向某村征地。而某村给了一块形状不规则的地,如何丈量它的面积呢?首先,使用适当的测量工具,依据一定的比例,将实际地形绘制成纸上图形,然后将纸上图形分割成若干块梯形、长方形、三角形,利用学过的面积计算方法,计算出这些图形的面积之和,也就得到了这块不规则地形的总面积。在这里,我们把无法计算的不规则图形转化成了可以计算的规则图形,从而解决了土地丈量问题。另外,我们前面提到的各种多元方程、高次方程,利用“消元”、“降次”等方法,最终都可以把它们转化成一元一次方程或一元二次方程,然后用已知的步骤或公式把它们解决。
“转化和替代”的思想,是解题的最重要的思维习惯。面对难题,面对没有见过的题,首先就要想到“转化”,也总是能够“转化”的。平时,要多留心老师是怎样解题的,是怎样“化难为易、化繁为简、化未知为已知”的。同学之间也应多交流交流“成功转化”的体会,深入理解“转化”的真正含义,切实掌握“转化”的思维和技巧。
三、自学能力的培养是深化学习的必由之路
在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。
我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。去年年底我去浙江教育学院开会时,杭二中吴副校长的一番话使我感触良多。他说:我是教物理的,可是经常外出,同学们物理学得好,不是我教出来的,而是他们自己悟出来的。当然,吴副校长是谦虚的,但他说明了一个道理,同学们不能被动地学习,而应主动地学习。一个班里几十个学生,同一个老师教,差异那么大,这就是学习主动性问题了。
自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。在老师讲新课前,要能够运用自己所学过的已掌握的旧知识去预习新课,结合新课中的新规定去分析、理解新的学习内容。由于数学知识的无矛盾性,你所学过的数学知识永远都是有用悦考网www.xiexiebang.com 悦考网www.xiexiebang.com 的,都是正确的,数学的进一步学习只是加深拓广而已。因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是因为没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,力求把知识变为自己的。学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。
四、自信才能自强
在以往的历次考试中,总会看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。你都没有动手去做,又怎么知道自己不会做呢?即使是老师,拿到一道难题,也不能立即答复你。也同样要先分析、研究,找到正确的思路后才向你讲授。不敢去做稍为复杂一点的题(不一定是难题,有些题只不过是叙述多一点),是缺乏自信心的表现。在数学解题中,自信心是相当重要的。要相信自己,只要不超出自己的知识范畴,不管哪道题,总是能够用自己所学过的知识把它解出来。要敢于去做题,要善于去做题。这就叫做“在战略上藐视敌人,在战术上重视敌人”。
具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件,包括隐含条件。然后,从“所求”看“需知”,由“已知”看“可知”,构筑“可知”和“需知”之间的桥梁,形成从“已知”到“所求”的通道,使问题得以顺利解决。其实,一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做,其它的题就不会做,只会依样画葫芦,题目有些小小变化就干瞪眼,无从下手。当然,做题先从哪儿下手是一件棘手的事,不一定找得准。但是,做题一定要抓住其特殊性则绝对没错。选择一个或几个条件作为解题的突破口,看由这个条件能得出什么,得出的越多越好,然后从中选择与其它条件有关的、或与结论有关的、或与题目中的隐含条件有关的,进行推理或演算。一般难题都有多种解法,所谓“条条大路通罗马”。要相信利用这道题的条件,加上自己学过的那些知识,一定能推出正确的结论。
数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,以不变应万变,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完,但不做也不行,关键是一个“度”。在一定的限度内,我还是鼓励同学们要“多做多练,因为熟悦考网www.xiexiebang.com 悦考网www.xiexiebang.com
能生巧;多看多想,才能见多识广。”这样,通过强化的训练,培养自己良好的数学思维习惯,掌握正确的数学解题方法。那么到了中考的时候,由于题目类型见得多,所以能“触类旁通,熟能生巧”,加快了速度,节省了时间,这一点在考试时间有限的中考时显得特别重要。
解数学题目需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克一道道难关,到达成功的彼岸,创造属于自己的辉煌的明天!
资料来自:悦考网www.xiexiebang.com 悦考网www.xiexiebang.com
第四篇:物理教学与学生创造思维能力的培养
物理教学与学生创造思维能力的培养
盐城市第四中学 李
波
[摘要] 创造思维的特征就是具有独特性、求异性、批判性,思考问题的突破常规和新颖独特是创造思维的具体表现。建立更为民主、平等的师生关系,尊重、赞赏每一个学生是培养学生创造思维的前提条件,培养创造思维的教学模式有探索式教学、活动式教学、开放式教学,要注意培养观察力、想象力,注意培养发散思维,注意诱发学生的灵感。
[关键词] 创造思维 创新 培养 能力
创新是民族进步的灵魂,在物理教学中培养学生的创造思维,进行创新教学的目的是现代科技社会对人的发展的基本要求,培养具有主动、负责和不断开拓、创新的个性特征,培养具有多元化和批判性的思维方式,培养能与周围人达成理解和合作,能促进民族间的交流、协作的21世纪现代国际人才需要创新。
今天我们正处于一个社会转型期,处于一个由农业经济向工业经济转变,并且日益向知识经济逼近的时期。知识经济的曙光升起在东方的地平线上,知识经济的隆隆脚步声正日渐清晰可辨。处此情景,我们不能不看到,原有的强调教师控制的教学,可能是适应农业经济、工业经济发展的要求的,它可以批量化地培养劳动力,可以不分青红皂白、不问个别差异地把学生培养成适应某一或某些劳动岗位的生产者。而今,知识经济呼唤的不是能识文断字、能操纵大型生产工具的劳动力,而是具有创新精神、创造能力的人才,具有原创思维、在科技大潮中独领风骚的人才。要培养这样的人才,教学中就不能无视学生的个性和自主性。因为创造性正是来源于多样性,来源于个性,所以知识经济等对教育的影响,实际上是呼唤个性化的教育。在一定意义上,创造性是个性、自主性、主体性的孪生兄弟,僵化、一统的制度,产生的往往是刻板、无活力的行为模式,提供的创造空间极为狭隘,产生的相应的创新欲望就会极其淡薄,创新的能力也就无由形成,反之亦然。个性化教育的确已成了时代喊出的强音,需要每个教育工作者加以深思。本文就创造思维及物理教学中如何培养学生创造思维能力,谈谈自己的一些看法。
一、创造思维及其特征
思维就是平常所说的思考,创造思维就是与众不同的思考。物理教学中所研究的创造思维,一般是指对思维主体来说是新颖独到的一种思维活动。它包括发现新事物,提示新规律,创造新方法,解决新问题等思维过程。尽管这种思维结果通常并不是首次发现或前所未有的,但一定是思维主体自身的首次发现或超越常规的思考。
创造思维就是创造力的核心。它具有独特性、求异性、批判性等思维特征,思考问题的突破常规和新颖独特是创造思维的具体表现。这种思维能力是正常人经过培养可以具备的。
二、建立更为民主、平等的师生关系,尊重、赞赏每一个学生是培养学生创造思维的前提条件
“为了每一位学生的发展”,教师必须尊重每一个学生做人的尊严和价值。目前,一些教师仍然存在不太务实,不愿挑重担,只能教“好学生”、“听话的学生”,而不能教“差生”和个别生的问题。这些教师对教育的本质认识不透或者说缺乏为师的必要责任和敬业精神,在学生观方面相对滞后,这就严重影响甚至制约了学生的成长和发展。在课堂教学中,教师应当尊重各种不同类型的学生,以一种分类关心、个别引导、全员帮助的态度来积极营造和谐、互学、互帮的教学氛围,对有不同意见的学生更要关注,特别注意不伤害学生的自尊心。随意批评、羞辱、体罚学生等都是有悖于新课程精神和违反教育法规的不当行为。因而在课堂上,师生要零距离接触,要有伙伴式交流,这有利于张扬学生个性,放飞学生思绪,使学生真正成为课堂的主人、问题的主人、学习的主人。
注重激励、赞赏学生是培养创造思维的催化剂。抓住合适的机会给学生以诚挚的鼓励,能使他们得到自尊的首肯和努力奋发的学习动力。赞赏不仅仅针对学生学习中小小的进步、积极的努力和提高的成绩,更重要的是赞赏每一位学生的独特性、兴趣、爱好和专长,赞赏学生对教科书的大胆质疑和对教师的超越,赞赏学生的创新精神和创造能力,只有这样,我们的课堂教学才能达到真正意义上的促进学生发展,为提高全民族的素质服务。
三、培养创造思维的教学模式
教学模式是在一定教学思想指导下所建立起来的完成所提出教学任务的比较稳固的教学程序及其实施方法的策略体系。它是人们在长期教学实践中不断改革、总结而逐步形成的。它源于教学实践,又反过来指导教学实践,是影响教学的重要因素。要培养学生的创造思维,就应该有与之相适应的,能促进创造思维培养的教学模式,当前物理创新教学模式主要有以下几种形式。
1、探索式教学。这种教学模式只能适应部分的教学内容。对于这类知识 的教学,通常是采用“发现式”的问题解决,引导学生主动参与,探索知识的形成、规律的发现、问题的解决等过程。这种教学尽管可能会耗时较多,但是,磨刀不误砍柴工,它对于学生形成物理的整体能力,发展创造思维等都有极大的好处。
科学探究活动一般应掌握由简单到复杂,由教师扶着走到逐步放开,由模仿到半独立再到独立过程逐步进行,因此,教学中,对学生进行发散性提问,有助于激发学生思维,使学生逐步成为科学学习的主体,一般会安排在探究活动起始阶段。
如:初中物理教材第一册第2章《噪声的危害与控制》(后面的例子均出自初中物理教材),这一课教师首先可以问学生:当听到“噪声”这个词的时候,你们会想到什么?学生自然会联想到很多事物,这时,教师以鼓励为主,适当表扬学生的见解,注意倾听学生发言,抓住学生思维,让学生畅所欲言。然后教师再步入新课,让学生掌握“噪声是„„”大概印象,激发学生表现欲和兴趣。
在这一环节中,也可以把提问的权利完全交给学生,让学生能从“这是什么”、“为什么会这样”等角度对周围事物提出问题,教师在此中找出多数学生感兴趣的、有条件可研究的、有价值的问题。如:
本节教学中当讲授到“四大污染”时,在教学导入阶段,教者就可以对学生说:关于我们生活的周围,你知道哪些污染?还想知道哪些事情?让学生掌握主动权,学生提了很多问题,如:水是怎么污染的?喝了污染的水,人会得什么病?污染的水对植物、动物有多大影响„„然后,再引导学生把这些问题归为几类,做为这节课学习的主要任务,这样,使学生获得探究的自信,也有助于形成正确的思维方式。
2、开放式教学。这种教学模式在通常情况下,都是由教师通过开放题的引进,学生参与下的解决,使学生在问题解决的过程中体验物理的本质,品尝进行创造性物理活动的乐趣的一种教学形式。开放式教学中的开放题一般有以下几个特点。一是结果开放,对于用一个问题可以有不同的结果;二是方法开放,学生可以用不同的方法解决这个问题,而不必根据固定的解题程序;三是思路开放,强调学生解决问题时的不同思路。
有这样一道题:有几堆谷物(稻谷或小麦),要比较它们质量的好坏(所谓“质量好”是指谷物中饱满籽粒多,空瘪少),请至少说出3种不同的比较方法。本题属于结论开放性题,可以从密度、浮力知识、惯性等多方面考虑。在教学中要充分调动学生积极性,平时对物理不感兴趣的同学都能说出
一、两种方法,最多的同学能思考出五、六种方法。对于学生的每一种想法,甚至是错误的想法都要高度重视,引导学生把这些想法与物理学知识联系起来,使学生在问题解决的过程中体验物理的本质,并获得成功的乐趣。
3、活动式教学。这种教学模式主要是:让学生进行适合自己的物理活动,包括模型制作、游戏、课外小实验、小组合作讨论、调查研究等方式,使学生在活动中认识物理、理解物理、热爱物理。
例如:在“运动和静止”一节的教学中,新课教学后,利用一则广告故事,让学生 分为两组,进行辩论。正方:旅游公司是正确的,没有欺骗顾客;反方:旅游公司不正确,欺骗了顾客。辩论注意点:
1、语言要精,抓住要点;
2、紧扣本节运动和静止所学习内容。(广告故事说的是:在美国一家媒体上登了一则广告说“你想参加长途旅行吗?只要你寄来一美元,就可以参加我们公司精心组织的长达几万千米的长途旅行。”广告登出以后,在不少人真的寄去了一美元。结果寄钱的人都收到一张同样的纸条,上面写着:顾客:你好!谢谢你参加我公司组织的长途旅行,请在今晚六点,打开窗帘,在窗下放一张软床,你躺在床上,遥望天空,开始你的长途旅行吧!因为地球在自转,一昼夜可达四万千米,所以你只要躺在床上24小时,就可进行几万千米的长途旅行。××旅游公司×年×月×日)
四、怎样培养学生的创造思维能力
1、注意培养观察力
观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?
首先,物理教学中,演示实验和课外小实验非常多,教师实验前,要给学生提出明确而又具体的观察目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。
2、注意培养想象力
想象是思维探索的翅膀。爱因斯坦说:“想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。”在教学中,引导学生进行物理想象,往往能缩短解决问题的时间,获得物理发现的机会,锻炼物理思维。
想象不同于胡思乱想。物理想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。另外,还应指导学生掌握一些想象的方法,像类比、归纳等。仿生学的诞生则是类比联想的典型实例。
3、注意培养发散思维
发散思维是指从同一来源材料探求不同答案的思维过程。它具有流畅性、变通性和创造性的特征。加强发散思维能力的训练是培养学生创造思维的重要环节。根据现代心
理学的观点,一个人创造能力的大小,一般来说与他的发散思维能力是成正比例的。
在教学中,培养学生的发散思维能力一般可以从以下几个方面入手。比如训练学生对同一条件,联想多种结论;改变思维角度,进行变式训练;培养学生个性,鼓励创优创新;加强一题多解、一题多变、一题多思等。特别是近年来,随着开放性问题的出现,不仅弥补了以往习题发散训练的不足,同时也为发散思维注入了新的活力。
4、注意诱发学生的灵感
灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。
在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当应用理论联系实际、变换角度、类比形式等方法去诱导学生的物理直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。
总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。新课程为基础教育打开了一片自由发展、蓬勃向上的新天地,使我们的教育教学都能开辟出真正体现素质教育思想的新思路。新课程之下的课堂教学,作为教育教学的主阵地,完全有赖于我们的教师带着新思想、新认识、新做法去耕耘、去发挥、去创造,去呈现新的气象、新的风尚、新的成效。
[参考书目]
1、中国教育报
2、人民教育出版社,叶澜著《教育概论》
3、《中小学管理》
4、雷洪.广东省深圳市初中物理活动教学探索(课题报告)
5、唐安国,钱景华.中学物理研究.上海:百家出版社,1999
第五篇:浅谈培养学生数学逻辑思维能力
浅谈培养学生数学逻辑思维能力
巧家县新华小学
肖秀元
逻辑思维是借助于概念、判断、推理等思维形式所进行的思考活动,是一种有条件、有步骤、有根据、渐进式的思维方式,是小学生数学能力的核心。因此,在小学数学教学中必须着力培养学生的逻辑思维能力。
一、要重视思维过程的组织
要培养学生的逻辑思维能力,就必须把学生组织到对所学数学内容的分析和综合、比较和对照、抽象和概括、判断和推理等思维的过程中来。教学中要重视下列思维过程的组织。
第一,提供感性材料,组织从感性到理性的抽象概括。从具体的感性表象向抽象的理性思考启动,是小学生逻辑思维的显著特征、随着学生对具体材料感知数量的增多、程度的增强,逻辑思维也渐次开始。因此,教学中教师必须为学生提供充分的感性材料,并组织好他们对感性材料从感知到抽象的活动过程,从而帮助他们建立新的概念。例如教学循环小数时,可先演算小数除法式题,使学生初步感知“除不尽。然后引导学生观察商和余数部分,他们会发现商的小数部分从某一位起,一个数字或几个数字依次不断地重复出现,与此同时使之领会省略号所表示的意义,这样,他们可在有效数字后面想象出若干正确的数字来。这种抽象概括过程的展开,完全依赖于“观察—思考”过程的精密组织。
第二,指导积极迁移,推进旧知向新知转化的过程。数学教学的 过程,是学生在教师的指导下系统地学习前人间接知识的过程,而指导学生知识的积极迁移,推进旧知向新知转化的过程,正是学生继承前人经验的一条捷径。小学数学教材各部分内容之间都潜含着共同因素,因而使它们之间有机地联系着,挖掘这种因素,沟通其联系,指导学生将已知迁移到未知、将新知同化到旧知,让学生用已获得的判断进行推理,再获得新的判断,从而扩展他们的认知结构。为此,一方面在教学新知时,要注意唤起已学过的有关旧知。如教学除数是小数的除法时,要唤起“商不变性质”、“小数点位置移动引起小数大小变化的规律”等有关旧知的重现;另一方面要为类比新知及早铺垫。如帮助学生认识一个数乘分数的意义,要在教学整数、小数时就帮助学生理解一个数乘整数、乘以小数就是„„使学生在此前学习中所掌握的知识,成为“建立新的联系的内部刺激物和推动力。”
第三,强化练习指导,促进从一般到个别的运用。学生学习数学时,了解概念,认识原理,掌握方法,不仅要经历从个别到一般的发展过程,而且要从一般回到个别,即把一般的规律运用于解决个别的问题,这就是伴随思维过程而发生的知识具体化的过程。因此,一要加强基本练习,注重基本原理的理解;二要加强变式练习,使学生在不同的数学意境中实现知识的具体化,进而获得更一般更概括的理解;三要重视练习中的比较,使学生获得更为具体更为精确的认识;四要加强实践操作练习,促进学生“动作思维”。
第四,指导分类、整理,促进思维的系统化。教学中指导学生把所学的知识,按照一定的标准或特点进行梳理、分类、整合,可使学 生的认识组成某种序列,形成一定的结构,结成一个整体,从而促进思维的系统化。例如出示各种类型的循环小数,让学生自定标准进行分类,以达到思维的系统化,获得结构性的认识。
二、要重视寻求正确思维方向的训练
首先,指导学生认识思维的方向问题,逻辑思维具有多向性。1.顺向性。这种思维是以问题的某一条件与某一结果的联系为基础进行的,其方向只集中于某一个方面,对问题只寻求一种正确答案。也就是思维时直接利用已有的条件,通过概括和推理得出正确结论的思维方法。
2.逆向性。与顺向性思维方法相反,逆向性思维是从问题出发,寻求与问题相关联的条件,将只从一个方面起作用的单向联想,变为从两个方面起作用的双向联想的思维方法。
3.横向性。这种思维是以所给的知识为中心,从局部或侧面进行探索,把问题变换成另一种情况,唤起学生对已有知识的回忆,沟通知识的内在联系,从而开阔思路。
其次,指导学生寻求正确思维方向的方法。培养逻辑思维能力,不仅要使学生认识思维的方向性,更要指导学生寻求正确思维方向的科学方法。为使学生善于寻求正确的思维方向,教学中应注意以下几点: 1.精心设计思维感性材料。思维的感性材料,就是指用以实物直观或具体表象进行思维的材料。培养学生思维能力既要求教师为学生提供丰富的感性材料,又要求教师对大量的感性材料进行精心设计和巧妙安排,从而使学生顺利实现由感知向抽象的转化。例如教学质 数、合数概念时,先让学生写出几个大于1的自然数,在寻求其约数个数时,学生通过观察、分析、归纳后,可“发现”约数的个数有两种情况:一种是只有1和本身,另一种是除1和本身外,还有其他约数,从而便引出质数和合数的概念。
2.依据基础知识进行思维活动。小学数学基础知识包括概念、公式、定义、法则等。学生依据上述知识思考问题,便可以寻求到正确的思维方向。例如有些学生不知道如何作三角形的高,怎样寻求正确的思维方向呢?很简单,就是先弄准什么是三角形的高,“高的概念”明确了,作起来也就不难了。
3.联系旧知,进行联想和类比。旧知是思维的基础,思维是通向新知的桥梁。由旧知进行联想和类比,也是寻求正确思维方向的有效途径。联想和类比,就是把两种相近或相似的知识或问题进行比较,找到彼此的联系和区别,进而对所探索的问题找到正确的答案。
4.反复训练,培养思维的多向性。学生思维能力培养,不是靠一两次的练习、训练所能奏效的,需要反复训练,多次实践才能完成。由于学生思维方向常是单一的,存在某种思维定势,所以不仅需要反复训练,而且注意引导学生从不同的方向去思考问题,培养思维的多向性。
三、要重视对良好思维品质的培养
思维品质如何将直接影响着思维能力的强弱,因此培养学生逻辑思维能力必须重视良好思维品质的培养。
1.培养思维敏捷性和灵活性。教学中要充分重视教材中例题和 练习中“也可这样算”、“看谁算得快”、“怎样算简单就怎样算”等提示,指导学生通过联想和类比,拓宽思路,选择最佳思路,从而培养学生思维的敏捷性和灵活性。
2.培养思维的广阔性和深刻性。教学中注意沟通知识之间的联系,可以培养思维的广阔性和深刻性。例如教学分数应用题时启发学生联想起倍数应用题,教学百分数应用题时启发学生联想起分数应用题,这样可以调整和完善学生头脑中的认知结构,从几倍的“几”到几分之几的“几”,到百分之几的“几”,从而使之连成一个整体,不仅培养了学生思维广阔性,也培养了思维的深刻性。
3.培养思维的独立性和创造性。教学中要创造性地使用教材和借助形象思维的参与,培养学生思维的独立性和创造性。例如教材例题中前面的多是为学习新知起指导、铺垫作用的,后面的则是为已获得的知识起巩固、加深作用的。因此,对前面例题教学的重点是使学生对原理理解清楚,对后面例题教学则应侧重于实践,即采劝放手让学生自己去思考、去做的方法,以培养他们思维的独立性。
教学中要重视从直观形象入手,充分调动他们的各种感官,获取多方面感性认识,并借助于形象思维的参与,加强对知识的理解和思维的发展,培养学生逻辑思维能力的创造性。