数学思考逻辑推理教学设计

时间:2019-05-12 19:37:50下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学思考逻辑推理教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学思考逻辑推理教学设计》。

第一篇:数学思考逻辑推理教学设计

“数学思考—逻辑推理”教学设计 连城县城关二小周云英 教材分析:

《数学思考》是人教版六年级下册《整理和复习》这一单元的一节教学内容,它充分体现了新教材的特点,对发展学生的空间观念、形象思维、解题策略以及数学语言的表达能力等方面都有着举足轻重的作用。此节内容选取了四道极具代表性的例题,融合了整个小学阶段所涉及到的数学思想方法,其目的是为了进一步巩固、发展学生找规律的能力、分步枚举组合的能力及列表推理、演绎推理的能力。

逻辑推理,这部分内容是难度比较大的,以前是属于奥数的范畴,现在纳入教材中,这进一步体现了新课标对学生思维能力训练的要求,重视对学生数学思考方法的培养。本课之前,学生已具备了一定的数学推理能力。在六年级下册教材安排本节内容,呈现富有挑战性的问题,旨在让学生在纷繁的信息中去分析、推理,作出准确判断,感受解决问题策略的多样化,感悟列表法解决问题的优势,培养学生有顺序地、全面地思考问题的意识,培养学生的分析推理能力。

教学内容:义务教育教科书人教版六年级下册第101页《数学思考--逻辑推理》例2 教学目标:

1、通过合作探讨和交流,初步学习掌握利用列表法进行逻辑推理的方法。

2、会初步搜集信息并借助列表法进行简单的逻辑推理与应用。

3、在交流探讨中进一步感受到数学的简洁美和问题解决策略的多样化,并在体验问题与信息间的的逻辑关联中感受事物间的辨证联系。教学重点:

让学生能自觉运用表格法进行逻辑推理。教学难点:

有条理地表达的自己的推理过程。教法、学法:

根据本节课的教学内容和学生年龄特点,我拟以小组合作讨论法、列表法、逻辑推理法为主,实现教学目标。教学中,我要充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。

教具、学具准备:多媒体课件、表格、图片等。课前游戏

游戏1:趣味抢答,我说一句话,请你们根据我所说的话进行推理,说出你想到的结论。(1)刘云不是学生。

(2)王叔叔上班从不走路。(3)不是男生的同学请站起来。

(4)吴胜是沈凡的哥哥,但是沈凡却不是吴胜的弟弟。

(5)百米赛跑跑了前三名的小红既不是第一名也不是第三名。

[设计意图说明:以趣味抢答引出简单推理,让学生初步感知推理,活跃学生的思维。] 游戏2:情境游戏

1.呈现推理小游戏情境:A、B、C分别代表曹格一家三个人。师:你能确定A、B、C分别代表谁吗? 师:如果C是5岁,现在可以确定了吗?

师:A的年龄更接近C的年龄,现在可以确定了吗? 2.小结:能够借助有力的信息或依据来推定某件事情,才可以称为推理。

[设计意图说明:以孩子们喜欢的曹格一家为例进一步让学生感知推理的方法和依据,建构推理框架。] 教学过程:

一、激趣揭示课题

1.师生谈话,引入课题。

师:同学们,你们知道狄仁杰吗?(他是神探)他为什么被称为神探呢?(冷静的头脑、认真观察、擅于抓住细节、有很强的推理能力等)师:你们想断个案,测测自己的推理能力吗? 示案例:

家仆说:我在后花园采梅花时,被蛇咬了一口。狄大人因此断定这位家仆就是窃贼。你能从他的话中发现破绽吗?

2.揭示课题:这节课我们一起来学习逻辑推理。板书课题:逻辑推理

二、合作探索新知

(一)进一步理解什么是推理?

(二)尝试推理 课件示例2 六年级有三个班,每班有2个班长。开班长会时,每次每班只要一个班长参加。第一次到会的有A、B、C;第二次有B、D、E;第三次有A、E、F。请问哪两位班长是同班的? 1.质疑引出问题

师:通过读题你能判断出哪两位班长是同班的?

(1)学生根据文字材料信息独立尝试推理,同桌互说。(2)组织反馈——请学生上台示范阐述推理过程 2.引导方法

师:可以用什么方法把题意给整理、表示出来? 教师引导学生用列表的方法把题意表示出来。如:用“1”表示到会,用“○”表示没到会。用“√”表示到会,用“×”表示没到会

A B C D E F

第一次 √

×

×

×

第二次

×

×

×

第三次

×

×

×

3.观察表格,小组合作学会推理。

师:从第一次到会的情况,你可以看出什么? 师:从第二次到会的情况,你可以判断出什么? 师:从第三次到会的情况,你可以判断出什么? 师:那么B和C又分别与谁同班。

4.学生借助表格展开推理过程口述思路的交流

借助表格再次口述思路,让学生体会表格的重要性。

5.小结:在列表过程中可以突出排除法的魅力,并由此推理出结果。

设计意图:在例题教学时按排了两次“说”的过程。第一次在一位学生借用文字信息进行推理的启发下,先让其他学生复述思路,并且鼓励有不同的思路;在此基础上,教师引入表格,随机将信息内容数学化,使之更简洁明了,然后又让学生进行“说”方法,促使学生的语言表达更富有逻辑性的同时,也使学生的思维过程更具有清晰感;在单一信息推理的基础上出示复合信息推理练习,让学生学着如何抓住突破口,促使推理思维在深度和广度上有进一步的发展,为今后更复杂的推理做好了思想和方法上的准备。

三、巩固形成能力(课件逐一出示。)

模仿练习:教材第101页做一做

王阿姨、刘阿姨、丁叔叔、李叔叔分别是工人、教师、军人。王阿姨是教师;丁叔叔不是工人;只有刘阿姨和李叔叔的职业相同。请问他们的职业各是什么? 2.综合推理:练习二十二第7题

在学校运动会上,1号、2号、3号、4号运动员取得了800m赛跑的前四名。小记者来采访他们各自的名次。1号说:“3号在我们3人前面冲向终点。”另一个得第3名的运动员说:“1号不是第4名。”小裁判说:“他们的号码与他们的名次都不相同。”你知道他们的名次吗?(学生独立推理——同桌互述——强调方法。)

设计意图:利用书本上两道练习题,突出矛盾——引出综合(隐藏)信息的价值——方法沟通

四、小结归纳方法

同学们,通过参与今天的学习活动,你有什么心得体会?你还有什么问题要问吗?

师:要善于思考,在生活中要学会利用方法解决数学问题,体会数学的奥妙与乐趣!最后老师再送同学们一句话:不管多么险峻的高山,总是为不畏艰难的人留下一条攀登的路。

五、拓展深化提高

1.赵、钱、孙、李四位老师中,一位是数学老师,一位是语文老师,一位是英语老师,一位是体育老师。已知赵老师不教数学,也不教体育;钱老师不教英语,也不教数学;孙老师不教体育,也不教数学;如果赵老师不教英语,那么李老师也不教数学。请问四位老师各教哪门学科?

2.警察抓住了4个偷东西的嫌疑人,其中的一个人是主谋,审问谁是主谋时,甲说:我不是主谋,乙说:丁是主谋,丙说:我不是主谋,丁说:甲是主谋。已知它们4人中只有一人说了真话,谁是主谋?

六、板书设计:

第二篇:逻辑推理教学设计

《逻辑推理》教学设计

教学内容:义务教育教科书人教版六年级下册第101页《数学思考--逻辑推理》例2 教学目标:

1、通过合作探讨和交流,初步学习掌握利用列表法进行逻辑推理的方法。

2、会初步搜集信息并借助列表法进行简单的逻辑推理与应用。

3、在交流探讨中进一步感受到数学的简洁美和问题解决策略的多样化,并在体验问题与信息间的的逻辑关联中感受事物间的辨证联系。教学重点:

让学生能自觉运用表格法进行逻辑推理。教学难点:

有条理地表达的自己的推理过程。教学过程:

一、激趣揭示课题

上课前,我们前来玩一个小游戏,我说一句话,你们根据我所说的话进行推理,说出你想到的结论。

A明明不是女生。B王叔叔上班从不走路。

C数学考试考了前三名的小红既不是第一名也不是第三名。D小华是明明的哥哥,但是明明却不是小华的弟弟。

这个游戏考验的是大家的推理能力,也就是我们今天要学习的逻辑推理(板书)。是不是觉得很简单呢,想不想挑战一下更难问题。

二、合作探索新知

六年级有三个班,每班有2个班长。开班长会时,每次每班只要一个班长参加。第一次到会的有A、B、C;第二次有B、D、E;第三次有A、E、F。请问哪两位班长是同班的?

师:通过读题你能判断出哪两位班长是同班的? 师:可以用什么方法把题意给整理、表示出来? 教师引导学生用列表的方法把题意表示出来。

如:用“1”表示到会,用“○”表示没到会。用“√”表示到会,用“×”表示没到会。分析表格:

师:从第一次到会的情况,你可以看出什么? 师:从第二次到会的情况,你可以判断出什么? 师:从第三次到会的情况,你可以判断出什么?

教师示范A和谁同班,同桌讨论B和谁同班,独立叙述C和谁同班。学生借助表格展开推理过程,借助表格口述思路,让学生体会表格的重要性。阶段小结:回顾刚才的过程

三、巩固形成能力

1.模仿练习:教材第101页做一做

王阿姨、刘阿姨、丁叔叔、李叔叔分别是工人、教师、军人。王阿姨是教师;丁叔叔不是工人;只有刘阿姨和李叔叔的职业相同。请问他们的职业各是什么?

2.综合推理:练习二十二第7题

在学校运动会上,1号、2号、3号、4号运动员取得了800m赛跑的前四名。小记者来采访他们各自的名次。1号说:“3号在我们3人前面冲向终点。”另一个得第3名的运动员说:“1号不是第4名。”小裁判说:“他们的号码与他们的名次都不相同。”你知道他们的名次吗?

四、课堂小结

同学们,通过参与今天的学习活动,你有什么心得体会?你还有什么问题要问吗?

五、课堂作业

第三篇:数学思考教学设计

《数学思考》教学设计

教学内容:人教版六年级下册P93《数学思考》例7 教学目标:

1、通过合作探讨和交流,初步学习掌握利用列表法进行逻辑推理的方法。

2、会初步搜集信息并借助列表法进行简单的逻辑推理与应用。

3、在交流探讨中进一步感受到数学的简洁美和问题解决策略的多样化,并在体验问题与信息间的的逻辑关联中感受事物间的辨证联系。教学重点:

让学生能自觉运用表格法进行逻辑推理。教学难点: 有条理地表达的自己的推理过程。教学过程:

一、激趣定标:

在上课之前,我们来玩一个游戏,趣味抢答,我说一句话,请你们根据我所说的话进行推理,说出你想到的结论。

1、明明不是女生。

2、张老师上课从不讲英语。

3、不是男生的同学请站起来。

4、小华是明明的哥哥,但是明明却不是小华的弟弟。

5、数学考试考了前三名的小红既不是第一名也不是第三名。

二、自学互动:

(一)进一步理解什么是推理?

1、呈现推理小游戏情境:A、B、C代表爷爷、爸爸、孙子三个人。你能确定A、B、C分别代表谁吗? 如果C是7岁,现在可以确定了吗?

A的年龄更接近C的年龄,现在可以确定了吗?

2、小结:能够借助有力的信息或依据来推定某件事情,才可以称为推理。

(二)尝试推理 出示例7 六年级有三个班,每班有2个班长。开班长会时,每次每班只要一个班长参加。第一次到会的有A、B、C;第二次有B、D、E;第三次有A、E、F。请问哪两位班长是同班的?

1、质疑引出问题

通过读题你能判断出哪两位班长是同班的?

(1)学生根据文字材料信息独立尝试推理,同桌互说。

(学生可以在小组中先进行议论,可能有学生能通过口头表述推理出结果,但语言或许比较复杂,语言表述无法记忆。)(2)组织反馈——请学生上台示范阐述推理过程(允许方法多样化,并适时请学生复述过程。)

2、引导方法

可以用什么方法把题意给整理、表示出来?

(可能有学生会提议用列表的方法来解决,教师要适时表扬,并由此引出表格。)

教师引导学生用列表的方法把题意表示出来。

(媒体出示表格,学生也可以在练习本上自己学着画。)如:用“∕”表示到会,用“○”表示没到会。

A B C D E F 第一次 第二次 第三次 1 1 0 0 0 0 1

0 1 1 0 0

0 0 1 1

3、观察表格,学会推理。

从第一次到会的情况,你可以看出什么?

(学生:可以看出:A只可能和D、E或F同班。)从第二次到会的情况,你可以判断出什么?(学生:可以判断:A只可能和D或E同班。)从第三次到会的情况,你可以判断出什么?(学生:可以判断:A只可能和D同班。)那么B和C又分别与谁同班。

(学生模仿尝试,个别反馈从第一次到会的情况可以看出,B只可能和E或F同班。所以,C只可能与E同班。)

4、学生借助表格展开推理过程口述思路的交流

5、小结:在列表过程中可以突出排除法的魅力,并由此推理出结果。

三、练习

1、模仿练习:练习十八第6题:

王阿姨、刘阿姨、丁叔叔、李叔叔分别是工人、教师、军人。王阿姨是教师;丁叔叔不是工人;只有刘阿姨和李叔叔的职业相同。请问他们的职业各是什么?

2、综合推理:练习十八第7题:

在学校运动会上,1号、2号、3号、4号运动员取得了800m赛跑的前四名。小记者来采访他们各自的名次。1号说:“3号在我们3人前面冲向终点。”另一个得第3名的运动员说:“1号不是第4名。”小裁判说:“他们的号码与他们的名次都不相同。”你知道他们的名次吗?

3、帮帮忙。

我们学校有姓许、马、张、王四位数学老师,他们来自平罗县、永宁县、贺兰县和中宁县。你能根据以下信息判断出他们是哪里人吗?(1)许老师不是贺兰人;

(2)平罗人和王老师与许老师性别不同;(3)贺兰人、平罗人和张老师中午都不回家;(4)许老师经常与中宁人讨论问题。

四、小结

同学们,通过参与今天的学习活动,你有什么心得体会?你还有什么问题要问吗?

学生发言。(可能会说我学习了利用表格法进行推理,也可能说在列表格时,可以更清晰的利用排除法找到结果)

师:要善于思考,在生活中要学会利用方法解决数学问题,体会数学的奥妙与乐趣!

五、达标测评:

甲、乙、丙、丁分别获得了比赛的一、二、三、四名。已知甲不是第一名,乙是第一或第三名,丙是第二或第三名,丁不是第二或第四名。第二名是谁?丙。

提示:乙、丁分别是第l,3名,丙是第2名。提示:C不是乙的同班女生。

《数学思考》教学设计

吴鹏 2014年5月16日

第四篇:《数学思考》教学设计

《 数学思考》教学设计

陈文婷

【教学目标】

1.通过学生观察、探索,使学生掌握数线段的方法。2.渗透“化难为易”的数学思想方法,能运用一定规律解决较复杂的数学问题。3.培养学生归纳推理探索规律的能力。【教学重、难点】

引导学生发现规律,找到数线段的方法。

一、游戏设疑,激趣导入。

1.师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。

2.师:同学们,有结果了吗?大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。

二、逐层探究,发现规律。

1.从简到繁,动态演示,经历连线过程。

师:同学们,用8个点来连线,我们觉得很困难,如果把点减少一些,是不是会容易一些呢?下面我们就先从2个点开始,逐步增加点数,找找其中的规律。师:2个点可以连1条线段。为了方便表述我们把这两个点设为点A和点B。

师:如果增加1个点,我们用点C表示,现在有几个点呢?(生:3个点)如果每2个点连1条线段,这样会增加几条线段?(生:2条线段)那么3个点就连了几条线段?(生:3条线段)

师:你说得很好!为了便于观察,我们把这次连线情况也记录在表格里。

师:如果再增加1个点,用点D表示,现在有几个点?又会增加几条线段呢?

那么4个点可以连出几条线段?

师:大家接着想想5个点可以连出多少条线段?为什么?(引导学生明白:4个点连了6条线段,再增加1个点后,又会增加4条线段,所以5个点时可以连出10条线段。)

师:现在大家再想想,6个点可以连多少条线段呢?就请同学们翻到书第91页,请看到表格的第6列,自己动手连一连,再把相应的数据填写好。2.观察对比,发现增加线段与点数的关系。

师:仔细观察这张表格,在这张表格里有哪些信息呢?

(引导学生明确:2个点时总条数是1,3个点时就增加2条线段,总条数是3;4个点时增加了3条线段,总条数是6;5个点时增加了4条线段,总条数是10;到6个点时增加了5条线段,总条数是15。)师:那么,看着这些信息你有什么发现吗?

(学生尝试回答出:2个点时连1条线段,增加到3个点时就增加了2条线段,到4个点时就会再增加3条线段,5个点就增加4条线段,6个点就增加5条线段。每次增加的线段数和点数相差1。)

师也可以提问引导:当3个点时,增加条数是几?(生:2条)那点数是4时,增加条数是多少?(生:3条)点数是5时呢?(4条)6时呢?(5条)那么,你们有什么新发现?

师小结:我们可以发现,每次增加的线段数就是(点数-1)。3.进一步探究,推导总线段数的算法。

(1)分步指导,逐个列出求总线段数的算式。

师:同学们,我们知道了6个点可以连15条线段,现在你们有什么办法知道8个点可以连多少条线段吗?(尝试让学生回答,学生可能会从7个点连线的情况去推理8个点的连线情况。)师追问:如果当点数再大一些时,我们这样去计算是不是很麻烦呢? 师:我们先来看看,3个点时,可以连多少条线段?你是怎么知道的? 生:2个点连1条线段,增加一个点,就增加了2条线段,1+2=3(条),所以3个点就连了3条线

(贴示黑板条:)

师:接着想想4个点共连了6条线段,这又可以怎么计算呢?(贴示:)

师:计算3个点连出的线段数时,我们用了1+2,再增加1个点,就在增加了3条线段,我们就再加3,所以列式为1+2+3=6(条),那么按着这个方法,你能列出5个点共连线段的算式吗?(根据学生回答,贴示:)

(2)观察算式,探究算理。

师:下面,同学们仔细观察看看这些算式,有什么发现吗?(3)归纳小结,应用规律。师:现在我们知道了总线段数其实就是从1依次连加到点数减1的那个数的自然数数列之和。因此,我们只要知道点数是几,就从1开始,依次加到几减1,所得的和就是总线段数。同学们,你们明白了吗? 师:下面我们运用这条规律去计算一下6个点和8个点时共连的线段数,就请同学们打开数学书91页,把算式写在书上相应的横线上!4.回应课前游戏的设疑,进一步提升。

(1)师:现在我们就知道了课前游戏的答案,在纸上任意点上8个点,每两点连成一条线,可以连成28条线段。有这么多条,难怪同学们数时会比较麻烦呢!看来利用这个规律可以非常方便的帮助我们计算点数较多时的总线段数。下面你们能根据这个规律,计算出12个点、20个点能连多少条线段?(2)反馈

师:我们来看看答案吧!(课件示:12个点共连了1+2+3+4+5+6+7+8+9+10+11=45(条),师:20个点共连的线段数为:1+2+3+4+5一直加到19,为了书写方便,这些列式还可以省略不写中间的一些加数,列式可以写为:1+2+3„„+9+10+11=45(条)(课件示)

5.还原生活,解决问题。

师:下面,我们一起来看看小精灵聪聪给我们带来了什么题目!(课件示情景问

题:10个好朋友,每2位好朋友握手1次,大家一共要握多少次手?)师:你们能帮他解决这个问题吗?小组同学互相说说!(小组合作交流,之后学生回答:这道题其实就可以把它转化为我们刚才解决的连线问题。那么答案就是1+2+3+„+9=45)

三、巩固练习

师:同学们,在我们生活中有许多看似复杂的问题,我们都可以尝试从简单问题去思考,逐步找到其中的规律,从而来解决复杂的问题。下面我们就来看看书上的几道练习题,看看能不能运用这样的思考方法去解决它们。1.练习十八第2题。

师:同学们,你们可以先用小棒摆一摆,找找其中的规律。(学生独立完成,鼓励学生多角度思考问题,多样化解决方法)2.练习十八第3题。师:仔细观察表格,你能找出规律吗?请同学们想想多边形的内角和与它的边数有什么关系呢?(1)小组交流(2)反馈

注意引导学生发现:多边形里分成的三角形个数正好是这个多边形的边数-2!所以,多边形内角和就等于边数减2的差去乘180? 3.练习十八第1题。

师:同学们,前面几道题我们通过看图列表,或是动手摆小棒等活动,找到一定的规律来解决问题,下面我们来做一道找规律填数的题目。请翻开书94页,看到第1题,同学们自己在书上填写答案.(1)学生独立完成(2)反馈

四、全课总结

师:今天同学们都表现得非常棒,我们运用了化难为易的数学思考方法,解决了一些问题。希望同学们在以后的学习中经常运用数学思考方法去解决生活中的问题。

第五篇:数学思考教学设计

《数学思考》教学设计

一、游戏设疑,激趣导入。

1、故事

同学们,你们听过曹冲称象的故事吗?(课件出示)

要称一头大象的重量,在当时来讲本来是一件很

(难)的事,曹冲却利用浮力原理,变称大象为称石头。使本来很难的事情变得比较

(容易)。多聪明的一个孩子!亲爱的同学们,在数学研究中,只要爱动脑筋,咱们可以尝试运用一些数学的思考方法,探索数学问题当中的规律,使原本困难复杂的问题,变得简单容易,老师相信你们也能做得和他一样棒。有信心吗?(有)好,带着满满的信心,我们一起进入今天的学习主题!

板书:数学思考

2、操作

师:首先,咱们来做一个游戏吧。要求

课件出示

(拿出纸和笔在练习本上任意点上8个点,关将它们每两点连成一条线段,再数一数,看看一共连成了多少条线段?时间为两分钟,看谁先得到答案,开始吧!)

学生操作

3、师:同学们,有结果了吗?(多点几个孩子汇报结果)

这么多不同的结果,看来分歧挺大,老师想问问同学们感觉怎样?好数吗?(不好数)为什么不好数?(线段太多了)对点数太多以致于线段太多,一下就用8个点来连,确实有点为难同学们了。

有没有什么好为法呢?请同学们分组讨论(生讨论,回答)咱们可以把点数减少一些,从最简单的2个点入手,逐步增加点数,看一看随着点数的增加,线段的总条数的条数发生了什么变化?多找几次,看能不能找出规律来。也就是“化难为易找规律”(板书)

二、逐层探究,发现规律

1、师:用8个点来连线,我们觉得很困难,如果把点减少一些,是不是会容易一些呢?下面我们就先从2个点开始研究。

2个点可以连1条线段。为了方便表述我们把这两个点设为点A和点B。(同步演示课件,动态连出AB,之后缩小放至表格内,并出现相应数据,如下图)

师:如果增加1个点,我们用点C表示,现在有几个点呢?(生:3个点)

如果每2个点连1条线段,这样会增加几条线段?(生:2条线段,课件动态连线AC和BC)那么3个点就连了几条线段?(生:3条线段)

师:你说得很好!为了便于观察,我们把这次连线情况也记录在表格里。(课件动态演示,如下图)

师:如果再增加1个点,用点D表示(课件出现点D)现在有几个点?又会增加几条线段呢?根据学生回答课件动态演示连线过程)那么4个点可以连出几条线段?(生:4个点可以连出6条线段。课件动态演示,如下图)

师:大家接着想想5个点可以连出多少条线段?为什么?(引导学生明白:4个点连了6条线段,再增加1个点后,又会增加4条线段,所以5个点时可以连出10条线段。课件根据学生回答同步演示,如下图)

师:现在大家再想想,6个点可以连多少条线段呢?就请同学们翻到书第91页,请看到表格的第6列,自己动手连一连,再把相应的数据填写好。(学生动手操作,之后指名一生展示作品并介绍连线情况,课件演示:完整表格中6个点的图与数据)

【评析】让学生从2个点开始连线,逐步经历连线过程,随着点数的增多,得出每次增加的线段数和总线段数,初步感知点数、增加的线段数和总线段数之间的联系。

2.观察对比,发现增加线段与点数的关系。

师:仔细观察这张表格,在这张表格里有哪些信息呢?

(引导学生明确:2个点时总条数是1,3个点时就增加2条线段,总条数是3;4个点时增加

了3条线段,总条数是6;5个点时增加了4条线段,总条数是10;到6个点时增加了5条线段,总条数是15。)

师:那么,看着这些信息你有什么发现吗?

(学生尝试回答出:2个点时连1条线段,增加到3个点时就增加了2条线段,到4个点时就会再增加3条线段,5个点就增加4条线段,6个点就增加5条线段。每次增加的线段数和点数相差1。)

师也可以提问引导:当3个点时,增加条数是几?(生:2条)那点数是4时,增加条数是多少?(生:3条)点数是5时呢?(4条)6时呢?(5条)那么,你们有什么新发现?

师小结:我们可以发现,每次增加的线段数就是(点数-1)。3.进一步探究,推导总线段数的算法。

(1)分步指导,逐个列出求总线段数的算式。

师:同学们,我们知道了6个点可以连15条线段,现在你们有什么办法知道8个点可以连多少条线段吗?

(尝试让学生回答,学生可能会从7个点连线的情况去推理8个点的连线情况。)师追问:如果当点数再大一些时,我们这样去计算是不是很麻烦呢? 师:我们先来看看,3个点时,可以连多少条线段?你是怎么知道的? 生:2个点连1条线段,增加一个点,就增加了2条线段,1+2=3(条),所以3个点就连了3条线(贴示黑板条:)

师:接着想想4个点共连了6条线段,这又可以怎么计算呢?(贴示:)师:计算3个点连出的线段数时,我们用了1+2,再增加1个点,就在增加了3条线段,我们就再加3,所以列式为1+2+3=6(条),那么按着这个方法,你能列出5个点共连线段的算式吗?(根据学生回答,贴示:)

(2)观察算式,探究算理。

师:下面,同学们仔细观察看看这些算式,有什么发现吗?

生1:计算3个点的总线段数是1+2,计算4个人的总线段数是1+2+3,计算5个点的总线段数是1+2+3+4,它们都是从1开始依次加的。

生2:我觉得计算总线段数其实就是从1开始加2,加3,加4,一直加到比点数少1的数。生3 :可以,比如3个点的总线段数,就是从1加到2;4个点的总线段数,就是从1开始依次加到3,5个点时,就是1一直加到4,这样推理下去,就是从1开始一直加到点数数减1的那个数。

师:那么你说的点数减1的那个数其实是什么数?(生:就是每次增加一个点时,增加的线段数。)

(3)归纳小结,应用规律。

师:现在我们知道了总线段数其实就是从1依次连加到点数减1的那个数的自然数数列之和。因此,我们只要知道点数是几,就从1开始,依次加到几减1,所得的和就是总线段数。同学们,你们明白了吗?

师:下面我们运用这条规律去计算一下6个点和8个点时共连的线段数,就请同学们打开数学书91页,把算式写在书上相应的横线上!

(学生独立完成,教师巡视,之后学生板演算式集体评议)4.回应课前游戏的设疑,进一步提升。

(1)师:现在我们就知道了课前游戏的答案,在纸上任意点上8个点,每两点连成一条线,可以连成28条线段。有这么多条,难怪同学们数时会比较麻烦呢!看来利用这个规律可以非常方便的帮助我们计算点数较多时的总线段数。下面你们能根据这个规律,计算出12个点、20个点能

连多少条线段?(学生独立完成)

(2)反馈 师:我们来看看答案吧!(课件示:12个点共连了1+2+3+4+5+6+7+8+9+10+11=45(条),师:20个点共连的线段数为:1+2+3+4+5一直加到19,为了书写方便,这些列式还可以省略不写中间的一些加数,列式可以写为:1+2+3……+9+10+11=45(条)(课件示)

5.还原生活,解决问题。

师:不仅是连线,生活中还有很多类似这样的问题,我们一起来看看,(课件示情景问题:10个好朋友,每2位好朋友握手1次,大家一共要握多少次手?)师:你们能帮他解决这个问题吗?小组同学互相说说!(小组合作交流,之后学生回答:这道题其实就可以把它转化为我们刚才解决的连线问题。10个好朋友相当于10个点,每2位好朋友握手1次相当于每2个点之间连1个线段)你会做了吗?动动笔吧。那么答案就是1+2+3+…+9=45)

三、巩固练习

师:同学们,在我们生活中有许多看似复杂的问题,我们都可以尝试从简单问题去思考,逐步找到其中的规律,从而来解决复杂的问题。下面我们就来看看书上的几道练习题,看看能不能运用这样的思考方法去解决它们。

注意引导学生发现:多边形里分成的三角形个数正好是这个多边形的边数-2!所以,多边形内角和就等于边数减2的差去乘180? 3.练习十八第1题。

师:同学们,前面几道题我们通过看图列表,或是动手摆小棒等活动,找到一定的规律来解决问题,下面我们来做一道找规律填数的题目。请翻开书94页,看到第1题,同学们自己在书上填写答案.四、全课总结

1、这节课你有什么收获?

2、师:今天同学们都表现得非常棒,我们运用了化难为易的数学思考方法,解决了一些问题。希望同学们在以后的学习中经常运用数学思考方法去解决生活中的问题。

——化难为易

n个点:1+2+3+4+5+„„+(n-1)

下载数学思考逻辑推理教学设计word格式文档
下载数学思考逻辑推理教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学思考教学设计

    《数学思考》教学设计 【教学内容】 《义务教育课程标准实验教科书.数学》六年级下册91页。 【教材分析】 给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;......

    数学思考,教学设计

    六年级数学下册《数学思考》教学设计 一. 创设情境引入新课 谁能告诉老师你今年几岁?你知道你是哪一年出生的吗?(2000)如果把你出生的年份看成是2000个点,这些点可以连成多少条线......

    《数学思考》教学设计

    《数学思考(一)》教学设计 执教者:张敦太 指导教师:何嘉斌 郭祥平【教学内容】 《义务教育课程标准实验教科书·数学》六年级下册第100页例1及练习十八第2~3题。 【教学目标】......

    _数学思考公开课教学设计

    课题:数学思考 教学内容:六年级下册第100页例1及练习二十二第1、2、4题。 教学目标: 1、通过学生观察、探索,掌握正确计算线段数的方法。 2、渗透“化难为易”的数学思想方法,能......

    数学思考---教学设计(六下)

    “数学思考”教学设计 教学内容:六年级下册数学第91页例5 教学目标: 1.通过学生观察、探索,使学生掌握数线段的方法。 2.渗透“化难为易”的数学思想方法,能运用一定规律解决较复......

    数学思考课时教学设计

    4. 数学思考课时教学设计 第一课时 探究模式的策略 教学目标: 知识技能:通过观察、探究、记录、归纳、列表等方法解决数学实际问题,感受数学思想方法的好处。 过程与方法:能运用......

    数学教学设计思考[五篇范例]

    初中数学新课程课堂教学设计的思考 全日制义务教育数学课程标准(实验稿)》(以下简称《标准》)对我们义务教育阶段的中学数学课程改革提出了新的课程目标(总体目标、领域目标、学......

    数学思考_教学设计_教案(最终5篇)

    教学准备 1. 教学目标 1.1 知识与技能: 通过引导学生观察、探究、记录、归纳,得到解决“几个点能连成多少条线段”这类问题的方法。 1.2过程与方法: 渗透“化难为易”的数学......