七年级数学上册 第三章 3.6探索规律(二)教学设计 北师大版

时间:2019-05-12 22:42:49下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《七年级数学上册 第三章 3.6探索规律(二)教学设计 北师大版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《七年级数学上册 第三章 3.6探索规律(二)教学设计 北师大版》。

第一篇:七年级数学上册 第三章 3.6探索规律(二)教学设计 北师大版

第三章 字母表示数 6.探索规律

(二)一、学生起点分析:

本节内容是北师大版数学教材七年级上册第三章《字母表示数》的最后一节——“6.探索规律”的第二课时,它既是对全章知识的复习巩固,也是对全章知识的综合运用。在本节课前,学生在《字母能表示什么》与《去括号》等节的学习中,已经初步地进行了对简单图形规律的探索,也得到了从不同角度分析问题方法的训练。再加上上一课时学生对生活中熟悉的日历及其简单图形的规律的探索,在学生的头脑中已经基本形成了探索规律的方法和技巧,这些均为本节课的顺利完成做好了铺垫。

二、教学任务分析:

本节课的学习内容都是现实生活和数学计算中常见的、而且是学生熟知的,规律的发现也相对比较容易,学生完全可以通过“做数学”开展独立探索或小组合作学习完成学习任务。本节内容具有较强的趣味性、挑战性和探索性,因此是一节极好的培养学生数学兴趣和爱好的数学活动课,更是一节培养学生学会研究数学问题的探究课。

教材以学生熟知的生活中摆放桌椅问题为情境,设置问题串,为学生提供了充分的探索规律的活动,让学生在经历符号化的过程后,进一步体会用字母表示数和用代数式表示规律的含义和方法,进一步体会“从特殊到一般、再到特殊”的辩证思想。通过“摆放桌椅”问题给他们提供探索的机会并让他们尝试到探索成功的快乐,以此来激发学生探索规律的兴趣,增强他们的学习信心,培养他们的学习热情。另外,教材还为学生设置了“探索简单数列的变化规律”的内容,让学生进一步掌握“探索数量关系,运用符号表示规律,通过验算验证规律”的方法和技能。并通过“摆放桌椅”和“简单数列”问题的对照来培养学生从生活中发现数学问题的意识和用数学方法解决生活问题的能力。

根据以上分析,可确定本节课的教学目标如下:

1、知识与技能

(1)会用字母、运算符号表示简单问题的规律,并能验证所探索的规律。

(2)能综合所学知识解决实际问题和数学问题,发展学生应用数学的意识,培养学生的实践能力和创新意识。

2、过程与方法

(1)经历探索数量关系,运用符号表示规律,通过验算验证规律的过程。

(2)在解决问题的过程中体验归纳、分析、猜想、抽象还有类比、转化等思维方法,发展学生抽象思维能力,培养学生良好的思维品质。

3、情感、态度与价值观

通过对实际问题中规律的探索,体验“从特殊到一般、再到特殊”的辩证思想,激发学生的探究热情和对数学的学习热情。

教学重点:探索实际问题中蕴涵的关系和规律。教学难点:用字母、符号表示一般规律。

三、教学过程设计:

本节课设计了六个教学环节,第一环节:复习铺垫、导入新课;第二环节:创设情境、设疑激趣;第三环节:自主探究、合作交流;第四环节:动手操作、实践新知;第五环节:变式训练、巩固提高;第六环节:归纳小结、评价升华。

具体内容和过程分析如下:

第一环节 复习铺垫、导入新课 内容:

让学生通过反思以往的探索活动过程,明晰一些重要的探索规律方法。教师适时引出本课主题:探索规律(2)。

目的:通过对上节课的简要回顾,再现学生探索规律的方法,为本节课作好必要的铺垫和准备。效果:知识的学习是一个由“旧”到“新”,由“易”到“难”,由“少”到“多”的过程,上面简要的提问和回答,其实是一个对知识梳理的过程,也是一个为学生学习本节课指引方向和方法的过程,还是一个承上启下、自然过渡的过程。因而教学很自然地就过渡到了下一个环节,达到了复习铺垫、过渡自然、导入新课的目的。

第二环节 创设情境、设疑激趣 内容:

设计学生熟悉并感兴趣的、具有探索空间的问题情景,或直接给出教材中的实例,以激发学生的兴趣和探究欲望。目的:

创设情境、设疑激趣,目的是把学生置于一种探究的欲望之中。让学生欲答而不能,欲说而无语,迫使学生不得不去思,不得不去想,不得不去“做数学”。同时,设置情境也达到了丰富教学内容的作用。效果:

联系实际学数学,学生就会感到熟悉,设置疑难让学生来解决,学生就会感到有事做,就会感到自身的价质。因此,学生就有了对该问题探究的欲望,更有了后面学习的情感储备和思维、灵感储备。

第三环节 自主探究、合作交流。内容:

探索上述问题情境中蕴含的数学规律。在活动过程中,教师应及时了解学生的活动情况,或以合作者的身份参与交流、或及时给出必要的帮助。讨论结束后,在班级组织交流。目的:

一是给学生自主探究的时间和空间,让学生学会独立思考问题的习惯,再次经历探索数量关系、运用符号表示规律、通过计算验证规律的过程,进一步发展其符号感。二是给学生交流表达的机会,让学生明确说理的方法和技巧,并能对简单的规律进行解释。效果:

一是因为本环节的场景是学生生活中非常熟悉的事物,因此有效地调动了学生的积极性。二是由于给了学生自主探究的时间和空间,所以学生在回答问题时快而准确,也较好地培养了学生独立解决问题的能力。三是师生共同交流较为充分,并不断鼓励学生用不同方法解释规律,倡导探索规律方法的多样性。这些都较好地帮助学生突破了用含n的代数式表示出桌椅摆放的规律这一重点和难点问题。同时经过尝试比较,也培养了学生优化方案设计的意识。

第四环节 动手操作、实践新知 内容:

完成教材第126页做一做。在学生完成问题解答以后,适时提出反思性要求,尤其是对解决问题方法的反思,以帮助学生归纳出具有一般意义的基本方法:

“特殊—一般—特殊”的方法;“观察、分析、比较、归纳、猜想、验证”的过程。目的:

通过这一环节,让学生感受这种探索规律的方法与上一环节中探索规律方法的共同点和不同之处,使学生明白不同的问题需要灵活对待,切不可生搬硬套。同时让学生在这个问题的讨论中明白,对于这种数列的规律的探索思路是从渐变趋势中得出变化规律的。这是对探索规律过程的再次体验,通过这个过程让学生体会到探索规律的方法的多样性,以培养学生的发散思维和创新精神。效果:

通过计算,学生很快能够明白数列的规律和变化趋势,并可根据这个规律或趋势来作出正确的结论。由于这部分内容并不是很难,所以教师要敢于放手让学生自己“做数学”,要积极参与学生的活动,在巡视的过程中兼顾对学困生的指导和帮助,这样的效果就会更好。

第五环节 变式训练、巩固提高 内容:

完成教材第127页问题解决及其相关拓展内容。如:

下列每个图是由若干盆花组成的“△”图案,每条边有n(n>1)盆花,每个图案花盆的总数是S,按此规律推断,S与n关系式为。

目的:

安排学生独立作业,对学生进行变式训练,目的是让学生巩固所学知识,进一步掌握探索规律的方法和技能。设计变式训练的另一个目的是拓展探索规律的范围,以便开拓学生视野,训练学生的发散思维品质。效果:

同学们基本上能独立完成本环节的第1题和第2题,一部分同学还能完成第3题,另一部分同学开始对于算式S=1+2+3+4+„„+n=

„„

nn1,(n>1)这个结果不是很理解,但在教师引导学生

2分析后都能理解和明确,并能很好地掌握。

第六环节 归纳小结、评价升华

内容:

教师指导学生归纳与整理所感受的方法;布置作业。目的:

通过学生归纳小结和完成作业,目的是帮助学生梳理知识体系,提炼思维方法,揭示事物的规律。通过对学生学习情况的了解,对学生作出真实、可靠并带有鼓励性的评价,帮助学生对自己的学习情况有个确切地了解和树立长久的学习热情。同时也是为了帮助学生巩固所学知识,提高学生的独立思考问题的能力和灵活运用能力。效果:

由学生在课中进行归纳总结时的精彩表现,到课后教师对学生作业的批改,可以说学生顺利地通过了对全节的回顾而较好地完成了“特殊——一般——特殊”抽象过程。通常情况下学生能够在课内完成作业题的第1、第2两题,第3题可让学有余力的同学选做。

四、教学反思与点评

本节课是笔者在听取过多个教师上过这节内容后的一个综合实录,也算是吸取了众家之长之后而形成的一个新的教学设计,可以说是一节较好地体现了以生为本的新理念和“动手实践、自主探索、合作交流”新要求的课。具体说来本节教学设计有以下三个主要特点:

1、注重学生的动手实践活动,给学生提供充足的“做数学”的时间和空间。动手实践的本质就是学生再创造的过程,在这一过程中,要求学生不仅要通过自主学习学到相关知识、掌握一些方法和技巧,而且重要的要学生在动手实践的过程中获得一种深刻的体验,学会用数学的方法解决问题的策略。本节课中教师安排了三个学生自主学习和动手实践的活动:一是安排了学生自主探究“摆放桌椅”问题,并在学生自己探究的基础上教师再引导学生一起交流和讨论,再由学生共同得出结论。这种设计改变了以往有的教师常用的在直接出示了问题后就让学生立即回答的老作法。这种在给了学生自主探究的时间和空间后让学生再来回答的方法,才使得学生有了真正意义上的自主学习。二是让学生动手做“简单数列的变化规律”问题,三是安排了一组习题供学生独立完成。三个活动都给了学生充足的“做数学”的时间和空间。尤其值得一提的是,教师让学生自主学、自主做时并没有放弃教师应有的作用,教师是组织者、引导者和参与者的角色位置定位准确,教学过程中教师组织、引导和学生自主学习、合作交流做到了有机结合。

2、重视生生之间、师生之间的合作与交流,构建和谐的课堂教学氛围。“没有交往、没有互动,就不成其为教学。”因此,教师要重视生生之间、师生之间的合作与交流,给学生提供充分交流的机会。因为学生在没有任何外力的情况下,一些大胆的设想、意见才会在讨论和争论中得到统一的认识,碰撞出思维的火花。本课时设计了多个交流活动,比如,在上课一开始就让学生交流了已学过 5 的探索规律的方法,以便唤醒学生的已有知识和经验,为本节课的顺利完成打下了基础。再如,在课中让学生交流了各种摆放桌椅的方法,交流了探索简单数列的变化规律与探索图形规律的异同,等等。还在课尾安排了学生交流学习本节课的收获、畅谈学习体会等交流活动。这些交流活动为开拓学生视野,发展学生思维能力起到了重要的作用。更重要的是,这些安排使得课堂更加和谐和生动,给课堂带来了生命的活力。

3.重视巩固和应用所学知识,加强学生学习能力的自主建构活动。探索规律这一节运用了有理数运算、字母表示数、合并同类项等数学知识,从运算的过程和推理的结果,都强化了对上一课时乃至本章所学知识的巩固和应用。本课时为这些内容提供了充裕的例题和练习题供学生学习和“做数学”,这样的课堂就使得学生的运算能力、推理能力、发现和解决问题的能力都有所加强。这正是新课标所倡导的,也正是因为这样才能使得学生的学习变被动接受为主动探究,形成了学习能力的自主建构。

应用本教学设计值得注意的是,一是笔者为本教学设计提供了一个PPT(PowerPoint文档)课件,教师教学时可以用来创设教学情境、提高教学效益,但在学生交流过程中,教师不能完全依赖于PPT课件,教师还要适当地在黑板上进行必要的板书,这样才有助于帮助学生理清思维脉络,展示思维过程和方法。二是教师在学生探究过程中不要急于给出结论,也不要为了完成教学任务而加快教学速度,更不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。而是要恰到好处地给足学生的时间和空间给他们“做数学”的过程,让他们亲身经历实践、观察、猜想、归纳、验证、交流的过程,并在此过程中鼓励学生大胆尝试,从中获得成功的经验,激发学生的学习热情。若因学生交流而影响了教学时间和教学进度,可适当删去作业题的第1题、第3题,这样做仍能保证本节内容的有效落实。

第二篇:七年级数学3.6探索规律教案Microsoft Word 文档

七年级数学3.6探索规律教案

一、教学目标:

1.通过观察、分析、总结等一系列过程,经历探索数量关系,运用符号表示规律,通过运算验证规律的过程。

2.会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律。

3.通过动手操作、观察、思考,体验数学活动是充满着探索性和创造性的过程; 4.通过交流合作,体验在解决问题的过程中与他人合作的重要性。

二、创设情境,导入新课:

小时侯我们都玩过搭积木的游戏,今天我们不妨重拾童年趣事,利用手中的火柴棒搭建一些常见的图形,探索规律。

三、合作交流,探索规律:

活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形

⑴填写下表:

⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒? ★注意引导学生概括“探索规律”的一般步骤: ① 寻找数量关系; ② 用代数式表示规律 ③ 验证规律。

★练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢? 活动二:探索具体情景下事物的规律

问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法?

问题2.若按图2方式摆放桌子和椅子 ⑴一张桌子可坐6人,2张桌子可坐 人。⑵按照上图方式继续排列桌子,完成下表:

问题3.如果按图3的方式将桌子拼在一起

⑴2张桌子拼在一起可坐多少人?3张呢?n张呢?

⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐 人。

⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐 人。

活动三:探索图表的规律 下面是2000年八月份的日历:

⑴日历中的绿色方框中的9个数之和与该方框正中间的数有什么关系?

⑵这个关系对其它这样的方框成立吗?你能用代数式表示这个关系吗?

⑶这个关系对任何一个月的日历都成立吗?为什么?

⑷你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示。

⑸你还能提出那些问题?

思考题:将一张长方形的纸对折,可得到一条折痕。继续对折,对折时每次与上次的折痕保平行。连续6次后,可以得到几条折痕?如果对折10次呢?对折n次呢?

四、课堂总结:

其实在我们周围的生活中存在着许多很多的数学信息,今天我们就利用数学知识发现了很多身边事物所存在的数学规律。希望同学们做生活的有心人,继续去探索周围生活中的数学规律。

五、作业:观察生活,编一道探索数学规律的题目。

第三篇:探索规律(二)教学设计

第三章

整式及其加减

5.探索与表达规律

(二)湖北省宜昌市第九中学

程雪琼

(邮编:443000 电话:***)

一、学生起点分析

本节课是第5节的第二课时,它既是对全章知识的复习巩固,也是对全章知识的综合运用。在本节课前,学生在前面各节的学习中,已经初步地进行了对简单图形规律的探索,也得到了从不同角度分析问题方法的训练。再加上上一课时学生对生活中熟悉的日历及其简单图形的规律的探索,在学生的头脑中已经基本形成了探索规律的方法和技巧,这些均为本节课的顺利完成做好了铺垫。

二、教学任务分析

本节课的学习内容都是现实生活和数学计算中常见的、而且是学生熟知的,规律的发现也相对比较难,但学生完全可以通过“做数学”开展独立探索或小组合作学习完成学习任务。本节内容具有较强的趣味性、挑战性和探索性,因此是一节极好的培养学生数学兴趣和爱好的数学活动课,更是一节培养学生学会研究数学问题的探究课。

教材以学生较为感兴趣的数字游戏入手为情境,设置悬念,为学生提供了充分的探索规律的活动,让学生在经历符号化的过程后,进一步体会用字母表示数和用代数式表示规律的含义和方法,进一步体会“从特殊到一般、再到特殊”的辩证思想。

根据以上分析,可确定本节课的教学目标如下:

1、知识与技能

(1)能利用字母表示及其代数式运算解释具体问题中蕴含的一般规律或现象。(2)能综合所学知识解决实际问题和数学问题,发展学生应用数学的意识,培养学生的实践能力和创新意识。

2、过程与方法

(1)经历探索数量关系,运用符号表示规律,通过验算验证规律的过程。(2)在解决问题的过程中体验归纳、分析、猜想、抽象还有类比、转化等思维方法,发展学生抽象思维能力,培养学生良好的思维品质。

3、情感、态度与价值观

通过对实际问题中规律的探索,体验“从特殊到一般、再到特殊”的辩证思想,激发学生的探究热情和对数学的学习热情。教学重点:探索实际问题中蕴涵的关系和规律。教学难点:用字母、符号表示一般规律。

三、教学过程设计

本节课教学过程遵循探究式教学原则,渗透“分析——表示——验证”的数学学习方法,共设计了五大环节,即数字游戏、回顾旧知、探索新知、归纳提炼、拓展延伸、布置作业.其具体内容与分析如下:

第一环节

数字游戏

内容:

请你任意想一个数,将这个数减去1后乘以2,再减去3,然后加上5,将最后的结果告诉老师。让老师猜猜你心中想的那个数是几?

这节课我们将一起探究数学中的规律,从而引出课题:探索规律 目的:

通过数字游戏创设问题情境,目的是让学生在玩中形成认知冲突,激发学生的学习兴趣和探究欲望,为本节课作好情感、方法和思维铺垫,同时也让学生呼之欲出由“任意”想到“字母表示数”。目的是把学生置于一种探究的欲望之中。让学生欲答而不能,欲说而无语,迫使学生不得不去思,不得不去想,不得不去“做数学”。同时,设置情境也达到了丰富教学内容的作用。效果:

联系学生实际学数学,学生就会感到熟悉,设置有戏疑难让学生感到既新奇又急于解决,学生就会感到有事做,就会感到自身的价值。因此,学生就有了对该问题探究的欲望,也有了想解开数学神秘的好奇心,更有了想往后面学习的情感储备和思维、灵感储备。

第二环节

回顾旧知 内容:

(一)填空

1.如果长方形的长为m,宽为n,则长方形的周长为2(m+n),面积为mn.2.若圆的半径为r,则其面积为∏r2,周长为2∏r.3.若长方体的长宽高分别为a,b,c,则其体积表示为abc.4.用字母表示运算律:

加法交换律:a+b=b+a

加法结合律:a+b+c=a+(b+c)

乘法交换律:ab=ba

乘法结合律:abc=a(bc)

乘法分配律:a(b+c)=ab+ac

(二)代数式的定义:形如2(m+n),mn,∏ r2,2∏r,abc,a+b,ab+ac这样 的式子.即用运算符号(+、-、×、÷、乘方、开方)把数或表示数的字母连结而成的 式子.

(三)代数式的书写:

1.数字与字母、字母与字母相乘,要把乘号省略;

2.数字与字母、字母与字母相除,要把它写成分数的形式; 3.如果字母前面的数字是带分数,要把它写成假分数.目的:通过对整章知识字母表示数以及列代数式这两节的简要回顾,使学生进一步加强对“未知”或“不确定”的处理方法,再现学生列代数式进行符号表示的一般方法,为本节课作好必要的铺垫和准备。

效果:知识的学习是一个由“旧”到“新”,由“易”到“难”,由“少”到“多”的过程,上面简要的提问和回答,其实是一个对知识梳理的过程,也是一个为学生学习本节课指引方向和方法的过程,还是一个承上启下、自然过渡的过程。因而教学很自然地就过渡到了下一个环节,达到了复习铺垫、过渡自然、导入新课的目的。第三环节

探索新知 内容:

(一)小明:你在心里想好一个两位数,将十位数字乘以2,然后加上3,再把所得新数乘以5,最后把得到的新数加上个位数字。把你的结果告诉我,我就知道你心里想的两位数。小亮:怎么知道的呢? 探究活动1:请学生探究其中的规律.(二)更上一层楼

1.任意写出一个两位数;2.交换这个两位数的十位数字和个位数字,又得到一个数;3.求这两个数的和.这些和有什么规律?你们组能发现并验证这个规律吗?(三)探究活动2 1.请解决本节课最初的游戏问题;

2.以小组为单位,设计类似的数字游戏并解释其中的道理.目的:

一是给学生自主探究的时间和空间,让学生学会独立思考问题的习惯,再次经历探索数量关系、运用符号表示规律、通过计算验证规律的过程,进一步发展其符号感。二是给学生交流表达的机会,让学生明确说理的方法和技巧,并能对简单的规律进行解释。通过这一环节,让学生感受这种探索规律的方法与上一环节中探索规律方法的共同点和不同之处,使学生明白不同的问题需要灵活对待,切不可生搬硬套。效果:

一是因为本环节的场景是学生学习中非常熟悉的数学问题,因此有效地调动了学生的积极性。二是由于给了学生自主探究的时间和空间,所以学生在回答问题时快而准确,也较好地培养了学生独立解决问题的能力。三是师生共同交流较为充分,并不断鼓励学生用不同的设未知数的方法解释规律,这些都较好地帮助学生突破了用含n的代数式表示出“任意数”这一重点和难点问题。同时经过尝试比较,也培养了学生自己优化设计的意识。由于这部分内容并不是很难,所以教师要敢于放手让学生自己“做数学”,要积极参与学生的活动,在巡视的过程中兼顾对学困生的指导和帮助,这样的效果就会更好。

第四环节

归纳提炼 内容:

请学生谈谈学习本节课的收获和体会,包括基本知识和基本方法。目的:

由师生交流来“归纳小结、评价升华”,一方面是通过对全课的回顾帮学生梳理 知识体系,归纳学习方法,了解其学习情况,提升其思维层次。另一方面是给学生准确、全面表述自己观点的机会,并培养学生及时总结、归纳知识的好习惯。效果:

课堂上,学生发言非常积极,而且能够准确全面的表述,达到了预期的目的。第四环节

拓展延伸 内容:

提供能够吸引学生、且富有相应数学整除规律的游戏,让学生在做游戏的过程中从事探索性活动。

一个三位数能不能被3整除,只要看这个数的各位数字的和能不能被3整除,这是为什么?四位数能否被3整除是否也有这样的规律?你还能得到哪些结论? 目的:

通过创设问题情境,目的是让学生在解决问题中形成认知冲突,激发学生的学习兴趣和探究欲望,为本节课作好情感、方法和思维铺垫,同时也让学生初步体验解决任意性问题的方法。

效果:

当要学生列举数字时,学生一定会觉得麻烦,必然会把学生置于一种急于探究的氛 围之中。这样学生就不会再去举例了,而是想办法解决这一矛盾,想到设未知数。教师再让学生独立探索,问题很快就得到了解决。这样做既滲透了把实际问题抽象成数学问题的思想方法,也让学生初步体会到找规律可以让复杂问题简单化的新方法。第五环节

布置作业 内容:

随堂练习及问题解决.目的:

本环节的目的是为了检测学生对本节知识的理解和掌握情况,并巩固所学知识,会处理任意性问题。效果:

由学生交流答案可知,学生基本上都能独立完成问题,达到了预期的目的。

四、教学设计反思:

本节课可以说是一节较好地体现了以生为本的新理念和“动手实践、自主探索、合作交流”新要求的课。具体说来本节教学设计有以下三个主要特点:

1、注重学生的动手实践活动,给学生提供充足的“做数学”的时间和空间。动手实践的本质就是学生再创造的过程,在这一过程中,要求学生不仅要通过自主学习学到相关知识、掌握一些方法和技巧,而且重要的要学生在动手实践的过程中获得一种深刻的体验,学会用数学的方法解决问题的策略。本节课中教师安排了两个个学生自主学习和动手实践的活动:一是安排了学生自主探究“教材中”数字问题,并在学生自己探究的基础上教师再引导学生一起交流和讨论,再由学生共同得出结论。这种设计改变了以往有的教师常用的在直接出示了问题后就让学生立即回答的老作法。这种在给了学生自主探究的时间和空间后让学生再来回答的方法,才使得学生有了真正意义上的自主学习。二是让学生自己动手设计“简单数字游戏”问题,两个活动都给了学生充足的“做数学”的时间和空间。尤其值得一提的是,教师让学生自主学、自主做时并没有放弃教师应有的作用,教师是组织者、引导者和参与者的角色位置定位准确,教学过程中教师组织、引导和学生自主学习、合作交流做到了有机结合。

2、重视生生之间、师生之间的合作与交流,构建和谐的课堂教学氛围。“没有交往、没有互动,就不成其为教学。”因此,教师要重视生生之间、师生之间的合作与交流,给学生提供充分交流的机会。因为学生在没有任何外力的情况下,一些大胆的设想、意见才会在讨论和争论中得到统一的认识,碰撞出思维的火花。本课时设计了多个交流活动,比如,在上课一开始就让学生通过游戏再现处理未知的方法,以便唤醒学生的已有知识和经验,为本节课的顺利完成打下了基础。

3.重视巩固和应用所学知识,加强学生学习能力的自主建构活动。探索规律这一节运用了有理数运算、字母表示数、合并同类项等数学知识,从运算的过程和推理的结果,都强化了对上一课时乃至本章所学知识的巩固和应用。本课时为这些内容提供了充裕的例题和练习题供学生学习和“做数学”,这样的课堂就使得学生的运算能力、推理能力、发现和解决问题的能力都有所加强。这正是新课标所倡导的,也正是因为这样才能使得学生的学习变被动接受为主动探究,形成了学习能力的自主建构。

应用本教学设计值得注意的是,一是笔者为本教学设计提供了一个PPT(PowerPoint文档)课件,教师教学时可以用来创设教学情境、提高教学效益,但在学生交流过程中,教师不能完全依赖于PPT课件,教师还要适当地在黑板上进行必要的板书,这样才有助于帮助学生理清思维脉络,展示思维过程和方法。二是教师在学生探究过程中不要急于给出结论,也不要为了完成教学任务而加快教学速度,更不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。而是要恰到好处地给足学生的时间和空间给他们“做数学”的过程,让他们亲身经历实践、观察、猜想、归纳、验证、交流的过程,并在此过程中鼓励学生大胆尝试,从中获得成功的经验,激发学生的学习热情。若因学生交流而影响了教学时间和教学进度,可适当删去作业题的第1题、第3题,这样做仍能保证本节内容的有效落实。

第四篇:探索规律教学设计

探索规律教学设计

教学目标:

1、使学生结合具体情境,探索并发现简单周期现象中的排列规律,能根据确定某个序号所代表的是什么物体或图形。

2、使学生主动经历自主探索合作交流的过程,体会画图、列举等解决问题的不同策略以及方法逐步优化的过程。

3、使学生在探索规律的过程中体会数学与日常生活的联系,获得成功体验。重点:学生能用语言和其它方式把事物中的规律表示出来,教学具:多媒体课件 教学过程:

一、激趣引入

1)你们喜欢扑克牌吗?老师这里有扑克牌,你们能猜猜这里的第一张是什么 牌吗?(基本上都猜不出来)出示第一张是黑桃A 2)接着猜下一张,请没有把握的同学举手,大多数还是会举手,你们想不想看看接下来是什么牌吗?出示红桃A 3)接着猜,接着出示是草花A,方块A,让学生经历从没有把握到有把握的过程。教师问:为什么刚开始我们猜的时候没有把握。为什么现在这么有把握? 4)按“黑桃A,红桃A,草花A,方块A”的顺序排列的,是有规律的。你们在生活中碰到过这样有律的排列的现象吗?

师:(投影展示未完成的乘法表)这张乘法表中有好多的空白,你们能把它补充完整吗?

2、探索其中的规律

字之间有哪些规律?(展示完整的表)你们可以小组之间互相交流。

2)交流发现 规律?

生:从1这个表格出发,得到的数字都是样的。

师:这是什么规律呢?

生:1和任何数相乘都等于它本身.

师:还有什么规律呢?

(生各抒已见)3、找规律,填一填。

1)811 14 17()23()2)4 9 16 25()49 64 3)1 8 27()125(),4)3 6 9 15 24()63()(学生思考其中的规律,抽生回答,并说明原因)

4、学校计划按图摆放桌子椅子,照这样的方式继续摆放,第5张桌子、第20张桌子分别可以坐多少人呢?

学生认真思考,找出其中的规律,并尝试用字母表示出来。

5、为了迎接“六一”的到来,我班准备按如下的方式为教室挂上气球

红 黄 红 红 黄 红 黄 红 红 黄 那么第20个气球是什么颜色的,第27个呢?

(抽生回答问题,并说明理由)

6、一些小球按下面的方式堆放,你知道第5 堆有多少个?第8堆有多少个,其中的规律是什么?

抽生回答问题,并说明理由

7、学生讨论生活中还有哪些有规律的事情?(激发学生的学习兴趣,体会数学的美)

三、本节小结

今天老师和大家一起探索了许多有趣的规律,同时也运用发现的规律解决了生活中的许多问题,在我们的数学乐园里还有许多更有趣的知识等待我们大家去继续探索,希望大家做有心人,永攀高峰。

第五篇:《探索规律》教学设计

《探索规律》教学设计

学院街小学 穆家宜

教学内容:

北师大版六年级下册P66—P67《探索规律》。

教学目标:

知识与技能:探索给定的事物(数与数、图形与图形)中隐含的规律或变化趋势,并能利用探索出的规律来解决实际的问题。

过程与方法:利用个人分析、小组合作的形式来探索并完整的叙述规律,从而培养学生分析问题和解决问题的能力。

情感态度与价值观:在探索规律的过程中培养面对挑战勇于克服困难的意志,鼓励大胆尝试,从中获得成功的体验,激发学习热情。

教学重点:

探索数与数之间、图形与图形之间的规律,能用语言或运用算式符号描述、表示事物中的规律并利用规律解决问题。

教学难点:

语言或运用算式符号描述、表示事物中的规律。

教学准备:

有关本课内容的电子白板课件。

教学过程:

一、游戏引入,激发兴趣

师:我们一起来做一个数学游戏,请你想好一个数记在心里,现在将它加上5,然后乘以2,再减去4,再除以2,然后减去你记在心里的那个数,结果得到的数是什么?

(不管学生心里想好的数是几,最后的结果始终等于3。)

这是个很有趣的数学题,其实老师是利用了算式中的规律,才算出来的。同学们掌握了这个规律也能办到。规律是客观存在的,今天我们就一起来研究探索事物中的规律。(板书课题:探索规律)

二、探索活动,发现规律

1.探索乘法表中所包含的数学规律。(1)填表。请同学们打开书P66,这张乘法表中有好多的空白,你们能快速的把它补充完整吗?(2)找规律。

你能在一分钟内记住这些数并说出它们的准确位置吗?找学生试一试,可以利用数对的知识来记忆。(多点几位同学回答,尽量说出更多的规律。)(3)引导学生探索出主要规律有:

a.横着看,竖着看,每一行,每一列都是第一个数的倍数。

b.沿对角线斜着的一组数字1,4,9,16,25,36,49,64,81分别是1,2,3,4,5,6,7,8,9,的平方。

c.以对角斜线为对称轴的画,整个乘法表是一幅轴对称图形。

d.如果找出积相等的数,这些数所对应的两个乘数成反比例关系。

小结:通过自己的观察与探索,找出了乘法表中所包含的规律,大家的方法都很好,学会了怎样有序的进行观察。

2、说一说生活中存在的数学规律。

例:每四年中就有一个闰年。一小时每等于60分3600秒。日历中的规律。小明上学如果速度越快,所花的时间会而越少(速度与时间成反比例)……

三、巩固与应用

那下面我们从多种角度来观察数字找规律。第1题:找规律,填一填。(课件出示题目)

(1)8,11,14,17,(),23,();(相邻数之间相差3。)

(2)4,9,16,25,(),49,64;(每个数都是平方数。n的立方)(3)1,8,27,(),125,();(每个数都是立方数。n的立方)(4)3,6,9,15,24,(),63,();(第三个数是前两个数的和。)

学生独立完成后再全班交流。重点还要学生正确的叙述出每题中所包含的规律。

下面探索图形中的规律。

第2题:按下图摆放桌子和椅子。(课件出示题图)

(回答题中提出的问题)

(1)1张桌子可坐6人,2张桌子可坐()人。(2)按照上图方式继续摆桌子,完成下表。

学生试做,完成后点名填写完表格,重点讲解n张桌子可坐6+(n-1)×4人,其实也可以换一种思路,用4n+2来表示n张桌子所坐的人数。利用规律解决问题。

第3题:六(2)班同学按下面规律为教室挂上气球。(课件出示题图)

第20个气球是什么颜色的?第27个呢?

注意本题所包含的规律是5个气球为一个周期,而不是3个。

因为20÷5=4,商后面没有余数,说明最后一个气球是一个周期中的最后一个即黄色气球。同理27÷5=5……2,即一个周期中的第二个,所以也是黄色气球。

4、继续探索规律并解决问题。(课件出示题图)一些小球按下面的方式堆放。

你知道第5堆有多少个小球吗?第8堆呢?

学生独立完成后再分两人小组讨论本题的规律及计算的结果。一般的规律是用求一个等差数列的方法来计算一共有多少个气球。如1+2+3+4+5=15(个)1+2+3+4+5+6+7+8=36(个)

教师在学生回答完后提出,怎样利用一个公式来最快的求出一共有多少个球呢?最好能有学生说出本题的能项公式是(1+n)n÷2。

四、全课小结

今天在探索规律中,你有什么收获? 让学生明确在解决此类问题之前

五、探究活动。

探究日历中存在的规律。(课件出示题图)学生分小组进行探究活动,然后回答后面的问题。

(1)绿色方框中的9个数之和与该方框正中间的数有什么关系?(2)这个关系对其他这样的方框成立吗?你能用含有字母的式子表示这个关系吗?

让学生在充分探索的氛围中了解到日历中存在的数学规律,理解生活的一些事物都是存在一定的规律性的基本哲学思想。

附:板书设计

探索规律

数字中存在的规律

图形中存在的规律 32

52(62)72 82

4n+2 23

33(43)

53(63)

20÷5=4

27÷5=5……2

1+2+3+4+5=15

1+2+3+4+5+6+7+8=36

(1+n)n÷2

下载七年级数学上册 第三章 3.6探索规律(二)教学设计 北师大版word格式文档
下载七年级数学上册 第三章 3.6探索规律(二)教学设计 北师大版.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学北师大版七年级上册4.3角 教学设计

    七年级上册第四章基本平面图形 4.3角 教学设计 灵璧县大路中学 李磊 2016-11-2 《4.3 角》教学设计 教学目标: 知识与技能目标:1.理解角的有关概念,熟悉角的四种表示方法;认......

    北师大七年级数学上册教学资源

    教学计划本期教材知识内容为“丰富的图形世界”、“有理数及其运算”、“字母表示数”、“平面图形及其位置关系”、“一元一次方 初一全科目课件教案习题汇总语文数学英语......

    北师大版六年级下册数学《探索规律》教学案例

    北师大版六年级下册数学 《探索规律》教学案例 【教学内容】 北师大六年级下册数学第66-67页的内容 【教学目标】 1、探求给定的事物中隐含的规律或变化趋势。 2、体会解决......

    七年级数学上册 2.3 绝对值教学设计 (新版)北师大版

    绝对值 【教学目标】 知识与技能 1.使学生初步理解绝对值的概念. 2.明确绝对值的代数定义和几何意义,会求一个已知数的绝对值,会在已知一个数的绝对值的条件下求这个数. 过......

    七年级数学(北师大)上册教学计划

    七年级数学(北师大)上册教学计划 来源一、学生基本情况分析: 本期我担任的数学教学工作。 七班共有名学生,通过小学的升学成绩来看,学生的数学成绩较好,不及格的同学较少;在学习习......

    北师大七年级上册数学教学计划

    七年级上册数学教科研计划 一、指导思想 根据九年义务教育的要求,以新课标为准绳,以“面向每一个学生,一切为了学生的发展”为指导思想,落实新课改,体现新理念,探索有效教学的新......

    探索规律的教学设计

    篇一:探索规律教学设计课题:探索规律。(西师版小学数学第十册)教学目标:1、通过观察、猜测等活动,发现图形和数的简单排列规律。2、经历探索规律的过程,培养观察能力、推理能力、创......

    初中数学北师大版《七年级上》《第三章 字母表示数》《3.6 探索规律》精选课后测试试题【18】(含答

    初中数学北师大版《七年级上》《第三章 字母表示数》《3.6 探索规律》精选课后测试试题【18】(含答案考点及解析) 班级:___________ 姓名:___________ 分数:___________ 1.已......