七年级数学上册 2.3 绝对值教学设计 (新版)北师大版

时间:2019-05-13 00:40:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《七年级数学上册 2.3 绝对值教学设计 (新版)北师大版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《七年级数学上册 2.3 绝对值教学设计 (新版)北师大版》。

第一篇:七年级数学上册 2.3 绝对值教学设计 (新版)北师大版

绝对值

【教学目标】

知识与技能

1.使学生初步理解绝对值的概念.2.明确绝对值的代数定义和几何意义,会求一个已知数的绝对值,会在已知一个数的绝对值的条件下求这个数.过程与方法

培养学生用数形结合思想解决问题的能力,渗透分类讨论的数学思想.情感、态度与价值观

通过由具体实例抽象概括的独立思考和合作学习的过程培养学生积极主动的学习习惯.【教学重难点】

重点:让学生理解绝对值的概念,并掌握求一个已知数的绝对值的方法.难点:绝对值的几何意义和代数定义的导出与对“负数的绝对值是它的相反数”的理解.【教学过程】

一、创设情境,引入新课

师:同学们能发现3与-3有什么相同点吗?与-呢?5与-5呢? 生:每对数的两个数只有符号不同.师:对!像这样,如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数.0的相反数还是0,而且每对相反数在数轴上到原点的距离都相等.引导学生从代数与几何两方面的特点出发总结得出相反数的定义.从几何方面可以说,在数轴上原点两旁、离原点距离相等的两个点所表示的两个数互为相反数;从代数方面说,只有符号不同的两个数互为相反数.那么互为相反数的两个数有什么相同的特征呢?由此引入新课,归纳出绝对值的定义.二、讲授新课

师:下面我们一起来学习新课.1.发现、总结绝对值的定义.我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.例如,在数轴上表示数-6与表示数6的点与原点的距离都是6,所以-6和6的绝对值都是6,记作|-6|=|6|=6.同样可知,|-4|=4,|+1.7|=1.7.2.试一试:你能从中发现什么规律?由绝对值的意义,我们可以知道:(1)|+2|=

,=

,|+8.2|=

;(2)|0|=

;(3)|-3|=

,|-0.2|=

,|-8.2|=

.教师引导学生概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点,在原点左边的点表示的数(负数)的绝对值又有什么特点.由学生分类讨论,归纳出数a的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2)0的绝对值是0;(3)一个负数的绝对值是它的相反数.即①若a>0,则|a|=a;②若a<0,则|a|=-a;③若a=0,则|a|=0.或写成:|a|= 3.绝对值的非负性.由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|≥0.三、例题讲解

师:下面我们一起来做几个例题巩固一下.【例1】 求下列各数的绝对值:-7,+,-4.75,10.5.解:=7;=;|-4.75|=4.75;|10.5|=10.5 【例2】 化简:(1);(2)-.解:(1)==;(2)-=-1 【例3】 判断下列说法是否正确.(1)-5是5的相反数.()(2)5是-5的相反数.()(3)5与-5互为相反数.()(4)-5是相反数.()(5)正数的相反数是负数,负数的相反数是正数.()解(1)√(2)√(3)√(4)×(5)√

【例4】 计算:(1)|0.32|+|0.3|;(2)|-4.2|-|4.2|;(3)-(-).分析:求一个数的绝对值必须判断这个数是正数还是负数,然后由绝对值的性质得到.在(3)中要注意区分绝对值符号与括号的不同含义.解:(1)0.62;(2)0;(3).【例5】 比较下列每组数的大小:(1)-1和-5;(2)-和-2.7.解:(1)因为|-1|=1,|-5|=5,1<5, 所以-1>-5(2)因为=,|-2.7|=2.7,<2.7, 所以->-2.7.四、课堂小结 教师引导学生小结: 1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值时注意先判断这个数是正数还是负数.

第二篇:初中七年级数学上册《绝对值》教学设计

初中七年级数学上册《绝对值》教学设

第一部分:教学分析

(一)教学内容:

《绝对值》是七年级数学教材上册1.2.4节内容,此前,学生已经学习了有理数的分类,数轴与相反数等基础知识,为本课学习的基础。绝对值不仅可以使学生加深对有理数的认识,还会为以后学习两个负数的大小比较以及有理数的运算做准备。所以本课在有理数一章起到承上启下的作用。

(二)教学目标:

根据数学课程内容标准要求及教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:

1,理解、掌握绝对值概念.体会绝对值的作用与意义; 2,能正确求出一个数的绝对值;

3,掌握绝对值的几何意义,渗透数形结合和分类思想.体验运用直观知识解决数学问题的成功;

(三)教学重、难点分析:

教学重点:掌握绝对值的概念会求已知数的绝对值.教学难点:掌握有理数的概念及分类。

(四)教学辅助手段

利用多媒体(实物投影)、学案进行辅助教学 第二部分:教学设计 教学过程 师生互动 设计意图

一、创设情境、引入新课

二、合作交流、探索新知 问题1:什么叫做绝对值?

怎么用数学符号表示一个数的绝对值?

问题2:互为相反数的绝对值的关系怎样?

问题3:正数的绝对值是什么数?零的绝对值是什么数?负数的绝对值是什么数?

问题4:设

a表示一个数,|a|等于什么?

三、拓展提高、应用巩固

1.判断下列说法是否正确:(1)符号相反的数互为相反数().(2)符号相反且绝对值相等的数互为相反数()

(3)一个数的绝对值越大,表示它的点在数轴上越靠右.()

(4)一个数的绝对值越大,表示它的点在数轴上离远点越远.()

2.求下列各数的绝对值:

,0,.四、概括总结、布置作业 课堂小结:

1、本节课收获:由学生进行总结,其他同学帮忙补充,教师提示。

2、对于本节课的知识,如果还有不明白的地方请提出来,同学和老师共同帮助解决 布置作业:

课本p11第1,2,3,教师展示投影,甲乙两车相向而行问题,学生在学案上画出数轴,并根据学案的要求,思考甲乙两车行驶的距离引出的三个问题。

本环节教师关注重点:

学生能否区分方向和距离的不同。

学生能够理解从距离角度看数即绝对值的意义。

教师展示投影,讲解-10到原点的距离叫做-10的绝对值,然后引导学生回答10的绝对值表示什么意义?为加深记忆在大屏幕上展示-2,0.25绝对值代表什么意义? 学生口头回答老师的问题

对绝对值意义理解后教师让学生用自己的语言概括绝对值的定义?

学生相互讨论发言,教师进行补充并板书在黑板上,给出绝对值的数学符号书写规范。学生巩固练习。

本环节教师关注重点:

学生是否正确理解了绝对值的概念并自己概括出来。

通过以下表格内容: 数值-3-2 0 2 3 绝对值符号

绝对值

让学生填写表格后并通过表格小组讨论这些数能发现哪些规律?

学生进行小组讨论共同分析总结,得出组内结论。

本环节教师关注重点:

学生能否从正负数的角度看数的绝对值。组织好小组讨论,使小组能真正发挥作用。

教师根据小组结论内容进行提问,得出绝对值的规律。

教师提醒和引导从正负数零的角度来思考。学生小组讨论后教师进行补充。

给学生2分钟时间完成习题

学生完成后,教师在黑板上进行板演写出完整的解题过程。

学生独立完成,找两名学生到黑板进行板演,对比过程的书写并由学生进行纠错,总结出完成的解题过程。

计算结果正确的学生举手示意教师;

本环节教师关注重点:(1)

学生对于绝对值概念的掌握及灵活应用。(2)

培养学生的分类的数学思维

学生独立完成,教师检查各组组长完成情况,并由组长检查组内成员,最后统一各组完成情况反馈给教师并进行展示 有本题引出下节课所要研究的重点内容。本环节教师关注重点:(1)

注重学生数学思维的形成(2)

提高学生的解题能力。

学生总结本节课内容后,小组间互相提问,看哪组将问题处理的正确、清晰。

用一个小情境让学生在兴趣中体验绝对值所代表的距离的意义,有实际问题引出绝对值的概念。

让学生通过实际的意义来正确的了解绝对值的概念,并通过讨论自己发表对绝对值概念的理解,发散学生的思维。

让学生通过自主学习找答案,观察数的规律自己总结不同数的绝对值的规律,提高学生的观察力和思考能力。

让学生自己总结,既锻炼学生的语言表达能力,又能加深学生对知识的掌握和理解。培养学生的数学语言及分类的数学思维。

通过习题加深学生的记忆和对绝对值的概念的掌握。

通过总结和提问帮助学生记忆本节课知识点,并加深理解,进行实际运用。

第三篇:七年级数学上册1.2.4绝对值教案(新版)新人教版(新)(模版)

绝对值

教学目标:

1、掌握绝对值的概念,会求一个有理数的绝对值.

2、会用绝对值比较两个或多个有理数的大小.

3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

教学重点: 1.给出一个数会求它的绝对值。2.利用数轴和绝对值比较有理数的大小。教学难点:绝对值的几何意义;利用绝对值和数轴比较两个负数的大小。教学过程:

一、创设问题情境,引入新课

活动1:两辆汽车从同一处O出发,分别向东、向西方向行驶10千米,到达A、B两处(如图),它们行驶路程的远近(线段OA、OB的长度)相同吗?

它们行驶的路程都是10千米.教师指出:A、B两点到原点O的距离,就是我们这节课要学习的A、B两点所表示的有理数的绝对值。

二、讲授新课:

探究一:绝对值的定义

活动2:借助于数轴给出绝对值的定义:

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作a。

注:这里a可以是正数,也可以是负数和0.例如:在问题1的问题中,A、B两点分别表示10和一10,它们与原点的距离都是10个单位长度,所以10和一10的绝对值都是10,即1010,1010。显然,00。

因为点A、B表示的数互为相反数,且它们的绝对值相等,因此我们可得出:互为相反数的两个数的绝对值相等.活动3:在数轴上表示出下列各数,并求出它们的绝对值。-2,1.5,0,7,-3.5,5. 解:依题意得:数轴可表示为:

如图所示数轴上的A、B、O、C、D、E分别表示-2,1.5,0,7,-3.5,5. |-2|=2,|1.5|=1.5,|0|=0,|7|=7,|-3.5|=3.5,|5|=5.

根据此题的结果我们可归纳总结正数的绝对值、负数的绝对值、0的绝对值各有的特点,因此可得出 绝对值的性质:

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.代数表示(数学语言)是:字母a可个有理数。(1)当a是正数时,a= a ;(2)当a是负数时,a=-a ;(3)当a是0时,a= 0.活动4:例1:求 +

8、-

12、-

3、+

3、-1.6的绝对值.

解:|+8|=8 ;|-12|=12 ; |-3|= 3; |+3|= 3 ;∣-1.6∣=1.6.思考:求一个有理数的绝对值的方法: 1.利用数轴去求一个数的绝对值;

2.只需知道这个数是正数、负数还是0,利用绝对值的性质即可求出一个数的绝对值。活动5:跟踪练习:

写出下列各数的绝对值: 6,-8,-3.9,52,-,100,0 211解:6=6,-8=8,-3.9=3.9,=,-525222=,100=100,0=01111.判断下列说法是否正确: 符号相反的数互为相反数;

一个数的绝对值越大,表示它的点在数轴上越靠右;

(3)一个数的绝对值越大,表示它的点在数轴上离原点越远;

a(4)当a≠0时,总是大于0.答案:(1)错(2)错(3)对(4)对.判断下列各式是否正确:

5=-5(1)(2)-5=-5(3)

-5=-5.答案:(1)对(2)错(3)错

探究二:有理数的比较大小。活动6:观察下图给出的一周中每天的最高气温和最低气温,其中最低的是-4 ℃,最高的是 9 ℃,你能将这14个温度按从低到高的顺序排列吗?

学生将上图中的14个温度按从你到高排列为:

一4,一3,一2,一1,0,1,2,3,4,5,6,7,8,9.数学中规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。由这个规定可以比较上述各数(如一4和一3,一2和0,一1和1)的大小。一4<一3,一2<0,一1<1.由学生分组讨论:不通过数轴就可以比较两个有理数大小的方法呢? 结论:

(1)正数大于0,也大于负数,0大于负数。(2)两个负数比较大小,绝对值大的反而小。活动7:例2:较下列各对数的大小:(1)一(一1)和一(+2)(2)83和 217(3)一(一0.3)和13

解:(1)先化简,-(-1)=1,-(+2)=-2,因为正数大于负数,所以1>-2,即-(-1)>-(+2);

83883399838=,-==,,--,21所以21>7。(2)因为2121772121217-1111-=,3(3)因为-(-0.3)=0.3,330.3<,所以-(-0.3)<3.师生共同归纳总结:

异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值;特别是两个负数比较大小。

活动:8:跟踪练习:

1.比较下列各对数的大小:

(1)3和-5;(2)-3和-5;(3)-2.5和--2.25;(4)-35和-34.解:(1)3>-5;(2)-3>-5;(3)-2.5<--2.25;(4)-335>-4.2.比较下列各组数的大小.(1)45与34(2)13,12,|13|,0.

解:(1)|-45|=45=1620,|-34|=3154=20,因为1620>154320,所以-5 <-4;

(2)因为-|-13|=-13>-12,所以 13 >0>-|-113|>-2.

课堂小结:这节课我们学习了哪些知识?

数轴上表示数a的点与原点的距离叫做数a的绝对值。(1)如果a>0,那么|a|=a(2)如果a<0,那么|a|=-a(3)如果a=0,那么|a|=0.互为相反数的两个数的绝对值相等.4.在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。5.(1)正数大于0,也大于负数,0大于负数。(2)两个负数比较大小,绝对值大的反而小。课后作业:

课本P 14习题1.2 的第5、6、7题。

第四篇:七年级数学上册《绝对值》教案 新人教版

广东省广州市白云区汇侨中学七年级数学上册《绝对值》教案

新人教版 新人教版

今天我说课的内容是人教版七年级上册1.2.4绝对值内容。首先,我对本节教材进行一些分析:

一、教材分析(说教材):

(一)、教材所处的地位和作用:

本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1.2.4节内容。在此之前,学生已学习了有理数,数轴与相反数等基础内容,这为过渡到本节的学习起着铺垫作用。绝对值不仅可以使学生加深对有理数的认识,还为以后学习两个负数的比较大小以及有理数的运算作好必要的准备!所以说本讲内容在有理数这一节中,占据了一个承上启下的位置。

(二)、教育教学目标:

根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:

1、知识目标: 1)使学生了解绝对值的表示法,会计算有理数的绝对值。

2)能利用数形结合思想来理解绝对值的几何定义;理解绝对值非负的意义。3)能利用分类讨论思想来理解绝对值的代数定义;理解字母a的任意性。

2、能力目标:

通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。

3、思想目标: 通过对绝对值的教学,让学生初步认识到数学知识来源于实践,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度。

(三):重点,难点以及确定的依据:

本课中绝对值的两种定义是重点,绝对值的代数定义是本课的难点,其理论依据是如何突破绝对值符号里字母a的任意性这一难点,由于学生年龄小,解决实际问题能力弱,对数学分类讨论思想理解难度大。

下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈 谈:

二、教学策略(说教法)

(一)、教学手段:

由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,相反数,对正负数,相反数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。教学中积极利用多媒体课件,向学生提供更多的活动机会和空间,使学生在动脑、动手的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。

为充分发挥学生的主体性和教师的主导辅助作用,教学过程中我设计了七个教学环节: 1、温故知新,激发情趣 2、得出定义,揭示内涵 3、手脑并用,深入理解、启发诱导,初步运用 5、反馈矫正,注重参与、归纳小结,强化思想 7、布置作业,引导预习

(二)、教学方法及其理论依据:

坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据七年级学生的心理发展规律,联系实际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生来理解教材中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。三:学情分析:(说学法)

1、知识掌握上,七年级学生刚刚学习有理数中的相反数,对相反数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。

2、学生学习本节课的知识障碍。学生对绝对值两种概念,不易理解,容易出错,所以教学中教师应予以简单明白、深入浅出的分析。

3、由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用多媒体课件,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

4、心理上,学生对数学课的重视与兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。最后我来具体谈一谈这一堂课的教学过程:

四、教学程序设计

(一)、温故知新,激发情趣:

首先打出第一张幻灯片复习提问:什么叫做相反数?学生回答后让大家讨论:你能找出互为相反数的两个数在数轴上表示的点的共同特点吗?学生会积极回答第一个问题,但第二个问题学生可能难以准确回答,于是打出第二张幻灯片引导学生仔细观察,认真思考。从而引出课题:绝对值。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。

(二)、得出定义,揭示内涵:

由于学生是第一次接触绝对值这样比较深奥的数学名词,所以我利用数轴在第三张幻灯片里直接给出绝对值的几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,(absolute value)这个定义学生接受起来比较容易。

给出定义后引导学生讨论:“定义里的数a可以表示什么样的数?(通过教师的亲切的语言启发学生,以培养师生间的默契)通过讨论由师生共同得到:绝对值定义里的数a可以是正数,负数和0。

然后再回到第一张幻灯片里提出的问题:互为相反数的两个数的绝对值有什么关系?

(三)、手脑并用,深入理解:

1、在上一环节与学生一起理解了绝对值的定义后,我再提出问题:如何由文字语言向数学符号语言的转化,即如何简单地标记绝对值,而不用汉字?在此不用提问学生,采取自问自答形式给出绝对值的记法。

2、为进一步强化概念,在对绝对值有了正确认识的基础上,请学生做教材的课堂练习第一题,写出一些数的绝对值。可以请学生起立回答。我就学生的回答情况给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并再次强调绝对值的定义。

3、在完成第一题的练习后,我又给出一新的幻灯片,并提出问题:议一议 一个数的绝对值与这个数有什么关系?启发学生举一些实际的例子来发现规律,并总结规律。从而引出绝对值的第二个定义。

(四)、启发诱导,初步运用:

有了绝对值的两个定义后,我安排了10道不同层次的判断题让学生思考。特别注重对于不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。

(五)、反馈矫正,注重参与:

为巩固本节的教学重点我再次给出三道问题:

1)绝对值是7的数有几个?各是什么?有没有绝对值是-2的数? 2)绝对值是0的数有几个?各是什么?

3)绝对值小于3的整数一共有多少个?先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。

视学生的反馈情况以及剩余时间的多少我还预备了五道课堂升华的思考题,再次强化训练,启发学生的思维。

(六)、归纳小结,强化思想:

(七)、布置作业,引导预习:

1、全体学生必做课本习题 1.2 3,4,5,10。

2、选作两道思考题:(1)求绝对值不大于2的整数;(2)已知x是整数,且2.5<|x|<7,求x. 总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。

第五篇:新课标人教版七年级数学上册《绝对值》教学设计二

一:教学目标: 知识与技能目标:(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。过程与方法目标:(1)、通过运用“||”来表示一个数的绝对值,培养学生[此文转于斐斐课件园ffkj.net]的数感和符号感,达到发展学生抽象思维的目的;(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过观察,发现规律、总结方法,发展学生的实践能力,培养创新意识; 情感态度与价值观:

借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“想一想”“议一议”“做一做”问题的思考及回答,培养学生[此文转于斐斐课件园ffkj.net]积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生[此文转于斐斐课件园ffkj.net]合作探索、合作交流、合作学习的新型学习方式。二:教学重点和难点

重点: 理解绝对值的概念;

难点:求一个数的绝对值;比较两个负数的大小。

本节课设计了五个教学环节:第一环节:创设情境,导入新课;第二环节:合作交流,解读探究;第三环节:应用迁移,巩固提高;第四环节:总结反思,拓展升华;第五环节:布置作业。

第一环节创设情境,导入新课

活动内容:让学生观察图画,并回答问题,“大象和两只小狗分别距离原点多远?”利用图画将学生引入一定的问题情境,学生积极思考问题,解决问题,进入主题的重要环节。,0,-7.8。

(学生充分思考后,让学生回答,老师板书)3.每两个同学相互给对方任意写出三个正数、三个负数和零,然后要求对方求出它们的绝对值。

(给学生充分时间,让学生相互出题、答题)

4.通过上面例子,引导学生归纳总结出一个数的绝对值与这个数的关系。

(老师可在学生充分发表自己的观点后,再与学生一起归纳总结出:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.)

5.“做一做”:

(1)在数轴上表示下列各数,并比较它们的大小:

-1.5,-3,-1,-5;

(2)求出(1)中各数的绝对值,并比较它们的大小;

(3)你发现了什么?

(老师可引导学生多举一些例子,让学生合作讨论完成)活动目的:学生根据情境感知,初步认知绝对值,并通过对其概念的理解求解一个数的绝对值。通过学生举例思考,对互为相反数的两个数的绝对值进行观察对比,从而得到它们的关系。学生从“特殊——一般”分类归纳绝对值的代数意义,并通过归纳,总结出绝对值的内在涵义,体现学生的主体性。探索用绝对值比较两负数的方法,体验概念的形成过程。实际效果:同桌之间举例,效果良好,体现了“自主——协作”学习。积极调动学生的思维,使学生在协商、讨论中将问题逐渐明朗化、具体化,在共享集体思维成果的基础上达到对当前所学内容比较全面、正确的理解。第三环节:应用迁移,巩固提高 活动内容:

例2 比较下列每组数的大小:

(1)-1和-5;(2)和-2.7。

(给学生充分的时间思考、探究不同解法,并评价不同方法之间的差异。)随堂练习:

1.一个数的绝对值是它本身,那么这个数一定是。2.绝对值小于3的整数有个,分别是。

3.如果一个数的绝对值等于4,那么这个数等于。4.用&、<、=号填空 │-5│0,│+3│0, │+8││-8│,│-5││-8│.5.在数轴上表示下列各数,并求它们的绝对值:,6,-3,;

6.比较下列各组数的大小:

(1)(2)

(3)(4)活动目的:对本节知识进行巩固训练,进一步培养学生[此文转于斐斐课件园ffkj.net]分析问题、解决问题的能力。通

过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。实际效果:通过以上题组训练,学生对本节知识有了更深一步的理解,并进一步明确了绝对值的内涵与意义,解决问题的能力得到了大大提高。

第四环节:总结反思,拓展升华

活动内容:总结:1.本节学习的数学知识;2.本节学习的数学方法。

(老师可先鼓励学生描述出自己的认识与收获,然后再作进一步归纳总结。)反思:两个负数比较大小,方法有几种?请举例说明。

拓展:1.字母a表示一个数,-a表示什么?-a一定是负数吗? 2.已知:,求2x+3y的值。

活动目的:通过对绝对值定义,代数意义及数学思想方法的归纳总结,充分发挥学生的自主归纳能力,使学生能够系统的、完全的理解知识点。并明确在数学思想和方法的指导下,运用数学方法解决数学问题的重要性。在反思与拓展中使学生的认识得到经一步升华。 实际效果:学生能够互相点评,共同归纳,并做进一步反思与拓展,这样既发展了学生自主学习能力,又强化了协作精神,同时使知识得到了进一步完善与升华。

第五环节:布置作业 必做题:

习题2.3,知识技能第2,3,4题. 选做题: 若则a0;若则a0.四、教学反思:

本节课设计了一个三只动物离原点距离的问题情境,使本节课一开始就充满趣味,让学生产生强烈的好奇心,进而积极主动地投入到学习之中,然后安排同学之间互相合作交流,给同学们创造了很好的学习氛围,激发了同学们参与学习的积极性,使原本难以理解的绝对值概念变得简单;另外,在整节课中我还给学生提供了很多探索问题的时间和空间,并让学生自己归纳和总结获得新知识,锻炼了学生有条理地表达自己的思想以及在与他人交流中学会表达自己思想的能力。

下载七年级数学上册 2.3 绝对值教学设计 (新版)北师大版word格式文档
下载七年级数学上册 2.3 绝对值教学设计 (新版)北师大版.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    七年级上册《绝对值》教案

    七年级上册《绝对值》教案 题 23绝对值 教 学 目标 借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。 2通过应用绝对值解决实际问题,体会......

    数学北师大版七年级上册4.3角 教学设计

    七年级上册第四章基本平面图形 4.3角 教学设计 灵璧县大路中学 李磊 2016-11-2 《4.3 角》教学设计 教学目标: 知识与技能目标:1.理解角的有关概念,熟悉角的四种表示方法;认......

    新北师大版七年级上册数学工作总结

    七年级上册数学工作总结 饶小荣 本学期我担任七年级14、5两班的数学教学工作。七年级的学生刚升入初中,精力旺盛,对任何事物充满好奇,学生学习的积极性和动力很足。但初中数学......

    北师大七年级数学上册教学资源

    教学计划本期教材知识内容为“丰富的图形世界”、“有理数及其运算”、“字母表示数”、“平面图形及其位置关系”、“一元一次方 初一全科目课件教案习题汇总语文数学英语......

    七年级数学绝对值教案

    七年级数学绝对值教案 本资料为woRD文档,请点击下载地址下载全文下载地址 www.5y kj.co m1.2.4绝 对 值 一、学习与导学目标: 知识与技能:会求出一个数的绝对值,能利用数轴及绝对......

    1.2.4绝对值学案-人教版七年级上册数学

    教学方案年级:七年级学科:数学第一章有理数第2小节第4课时累计课时主备教师:上课教师:审批领导:授课时间:年月日课题1.2.4绝对值教学目标1.理解绝对值的几何意义和代数意义;2......

    1.3绝对值练习题-浙教版七年级数学上册

    1.3 绝对值【基础练习】知识点1 绝对值的意义1.数轴上表示2的点到原点的距离是    ,所以|2|=    ;数轴上表示-2的点到原点的距离是    ,所以|-2|=  ......

    【备课参考】华师大版七年级数学上册教学设计:2-4 绝对值(五篇)

    2.4 绝对值 【名师说课】 课程标准分析 本节课要求学生借助数轴,初步理解绝对值的概念,能求一个数的绝对值,并能够利用绝对值的非负性进行相关计算.通过应用绝对值养成解决......