第一篇:六年级数学比例的基本性质
《比例的基本性质》教学设计
祁东县风石堰镇莲花小学 龙琼林
【教学内容】《义务教育课程标准实验教科书
数学》(人教版)六年级下册第34页比例的基本性质。
【教材分析】
这部分内容是在学生学习了比例的意义基础上进行教学的,是对比例的意义的深化和发展,是后面学习解比例知识的基础。它起着承前启后的作用,是小学阶段学习比例初步知识的一项重要内容。
【教学目标】
1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
【教学重点】探索并掌握比例的基本性质。【教学难点】根据乘法等式写出正确的比例。【设计理念】
数学课程标准指出:数学课堂教学要从学生已有的知识经验出发,创设有助于学生自主学习、合作交流的情境,让学生经历观察、操作、归纳、类比、猜想、反思等数学活动,获得基本的数学知识与技能,进一步激发学生的兴趣,发展学生的思维能力。本节课的教学紧紧围绕这一理念,先让学生学习比例的各部分名称,再探究比例的基本性质,最后通过简炼的分层练习,深化比例的基本性质,体验比例基本性质的应用价值,渗透假设、验证、优化等解决问题的策略和方法,感受“一一对应”和“变与不变”的思想。
【教学预设】
一、认识比例各部分的名称
1、呈现:4:5和8:10(1)认识吗?叫什么?
(2)正确吗?为什么?(4:5=0.8,8:10=0.8,所以4:5=8:10)(3)求比值,判断两个比能否组成比例。
2、介绍比例各部分的名称 4:5=8:10 中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。
3、你能说出下面比例的内项和外项各是多少吗?
(1)1.4: =:5(2)=
【设计意图:简洁的情境,简单的问答,准确定位教学的起点,沟通比例各部分的名称,嫁接新知探究的支点。】
二、探究比例的基本性质
1、猜数
(1)老师这里也有一个比例“12∶□=□∶2”,不过它的两个內项看不清了,想一想,这两个内项可能是哪两个数?(如1和24,2和12,„„)
(2)追问:正确吗?为什么?(求比值判断)(3)还有不同答案吗?
(4)你能举出项不是整数的例子吗?(5)这样的例子举得完吗?
2、猜想
仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积;两个內项的位置可以交换„„)
3、验证
(1)是不是所有的比例都有这样的规律呢,有什么好办法?(举例验证)(2)你觉得应该怎样举例呢?
示范:①任意写一个简单的比;②求出比值;③根据比值写出另一个比的一项,求出另一项;④组成比例;⑤算出外项的积和內项的积。
(3)合作要求
1)前后4个同学为一个小组;
2)每个同学写出一个比例,小组内交换验证。3)通过举例验证,你们能得出什么结论?
4、归纳
(1)老师这里也有一个比例3:5=4:6,为什么两个外项的积不等于两个內项的积?(2)其实我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。(板书:比例的基本性质)
5、完善
(1)如果用字母表示比例的四个项,即a:b=c:d,那么,比例的基本性质可以表示成什么?(ad=bc或bc=ad)
(2)老师这里也有一个比例0:3=0:4,可以吗?3:0=4:0呢?(3)比例中两个比的后项都不能为0。
6、如果比例写成分数形式=,这怎么相乘?(交叉相乘)
【设计意图:不完整的比例激发学生根据比例的意义猜数的兴趣,教师举例示范,为学生小组合作举例验证比例的基本性质搭建支点,意在让学生经历“猜数——猜想——验证——归纳——完善”的知识探究过程,激发学生的探究欲望,让学会学习的方法,提高学习能力。】
三、巩固练习,应用比例的基本性质
1、判断下面哪组中的两个比可以组成比例。
示范:6:3和8:5
(1)1.2: 和:5
(2):和:
(3)和
〖学法指导:假设两个比能组成比例,根据比例的基本性质,分别算出两个外项和两个內项的积,再肯定两个比能否组成比例。〗
(1)先让学生尝试判断,再交流,明确思考方法。
(2)还可以用什么方法来判断?用求比值的方法判断1.2: 以吗?
(3)这两种方法,你更喜欢哪种?为什么?
和:5能否组成比例可
2、在比例中,两个外项的积等于两个內项的积,如果知道两个外项的积和两个內项的积,你会写比例吗?
六(3)班智聪同学根据“2×9=3×6”写出了比例,猜猜他可能是怎么写得?请在练习本上写一写。
追问:你为什么写得那么块?有什么窍门吗? 补问:根据这个乘法等式,一共可以写多少个比例?
3、如果a×2=b×4,则a:b=():();
如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?
那么a、b还可能是多少?你发现了什么?
4、猜猜我是谁?
6:()=5: 4
延伸:如果把 “()”改为“x”就是我们下节课要学习的知识:解比例。【设计意图:通过分层练习,巩固对比例基本性质的掌握,体验比例基本性质的应用价值,促进所有学生都能在动静结合的练习过程中获得发展,不同学生获得不同程度的发展。同时渗透假设、验证、有序思考的解题策略和方法,体验解决问题方法的多样性和优化策略,感受“一一对应”和“变与不变”的数学思想。】
四、分享收获 畅谈感想
这节课,我们学习了什么?我们是怎样探究比例的基本性质的?
五、板书设计
第二篇:六年级数学《比例基本性质》评课稿
六年级数学《比例基本性质》评课稿
今天听了冯老师执教的《比的基本性质》,冯老师课堂上快节奏的教学,学生精神饱满的学习,给我留下了深刻的印象,教师作为课堂的引领者,冯老师做到了引导者的驾驭,掌控课堂,带领学生在快节奏,高效率的氛围中有效学习,收获颇丰。
1、《比例的基本性质》作为一节认识比例后的概念教学课,冯老师能够抓住概念教学的特点,扎实有效的开展教学,整节课思路清晰,环环相扣,师生互动性良好,突出数学概念的形成过程,重视学生获取知识的思维过程。
2、数学语言的严谨性、严密性是数学特有的,在课堂中,冯老师自己的语言的语简洁有力,不罗嗦,而对于学生的语言更是强调到位,让全体学生认真倾听,纠正数学语言中不足、不准的地方,集体强调,如对于一个分数形式的比的读法,比如对于两个比判断过程中的表述问题,冯老师都强调到位,一语中的`。
3、课堂练习设计有针对性,有梯度,层层深入,教师能够吃透教材,把握考试的重点,将考试的知识要点在课堂上贯穿,这体现在教师设计的小组竞赛题上,体现在教学新课后的运用上,教师在让学生回答问题时,能够对学生的表现及时给与指正,反馈及时。练习的效果、练习的质量都非常高。
4、利用积分评价,调动了学生的积极性,特别是后面的抽取分值的方法,点燃了学生的学习热情,更将本节课的学习知识得到了延续,在教学中,冯老师还注重了对学生激励性评价,使得学生学习气氛很好。
5、课堂环节设计的题目吸引学生的眼球,有种数学中有语文,学科不分家的感觉,这些颇有新意的设计,“众人拾柴火焰高”,“试手气,展才气”等,既温馨,又很好的激发了学生学习的兴趣。
第三篇:六年级数学 比例的基本性质教学设计
《比例的基本性质》教学设计
(人教版)六年级数学下册
大岗镇大钟小学 石来枝
【教学内容】《义务教育课程标准实验教科书》(人教版)六年级下册第41页比例的基本性质。
【教材分析】
这部分内容是在学生学习了比例的意义基础上进行教学的,是对比例的意义的深化和发展,是后面学习解比例知识的基础。它起着承前启后的作用,是小学阶段学习比例初步知识的一项重要内容。
【教学目标】
1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
【教学重点】探索并掌握比例的基本性质。
【教学难点】会根据比例的基本性质正确判断两个比能否组成比例。【设计理念】
数学课程标准指出:数学课堂教学要从学生已有的知识经验出发,创设有助于学生自主学习、合作交流的情境,让学生经历观察、操作、归纳、类比、猜想、反思等数学活动,获得基本的数学知识与技能,进一步激发学生的兴趣,发展学生的思维能力。本节课的教学紧紧围绕这一理念,先让学生学习比例的各部分名称,再探究比例的基本性质,最后通过简炼的分层练习,深化比例的基本性质,体验比例基本性质的应用价值,渗透假设、验证、优化等解决问题的策略和方法,感受“一一对应”和“变与不变”的思想。
【教学预设】
一、认识比例各部分的名称
1、呈现:2:80和5:200 80:2和200:5(1)认识吗?叫什么?
(2)正确吗?为什么?(2:80=0.025,5:200=0.025,所以2:80=5:200)(3)求比值,判断两个比能否组成比例。
2、介绍比例各部分的名称
2.4:1.6=60:40 中,组成比例的四个数“2.4、1.6、60、40”叫做这个比例的项。两端的两项“2.4和40”叫做比例的外项。中间的两项“1.6和60”叫做比例的內项。
3、你能说出下面比例的内项和外项各是多少吗? 1)4.5:2.7=10:6 2)6:10=9:15 3)1/2:1/3=6:4 4)0.6:0.2=3/4:1/4 【设计意图:简洁的情境,简单的问答,准确定位教学的起点,沟通比例各部分的名称,嫁接新知探究的支点。】
二、探究比例的基本性质
1、猜一猜 想一想
在比例里2.4:1.6=60:40把两个外项相乘,也把两个内项相乘,看看它们的积会怎样?
2、猜想
仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积;两个內项的位置可以交换„„)
3、验证
(1)是不是所有的比例都有这样的规律呢,有什么好办法?(举例验证)(2)你觉得应该怎样举例呢?
示范:①任意写一个简单的比;②求出比值;③根据比值写出另一个比的一项,求出另一项;④组成比例;⑤算出外项的积和內项的积。
(3)合作要求
1)前后4个同学为一个小组;
2)每个同学写出一个比例,小组内交换验证。3)通过举例验证,你们能得出什么结论?
4、归纳
(1)老师这里也有一个比例3:5=4:6,为什么两个外项的积不等于两个內项的积?
(2)其实我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。(板书:比例的基本性质)
【设计意图:不完整的比例激发学生根据比例的意义猜数的兴趣,教师举例示范,为学生小组合作举例验证比例的基本性质搭建支点,意在让学生经历“猜数——猜想——验证——归纳——完善”的知识探究过程,激发学生的探究欲望,让学会学习的方法,提高学习能力。】
三、巩固练习,应用比例的基本性质
1、判断下面哪组中的两个比可以组成比例。
示范:(1)6:3和8:5(2)0.2:2.5=4:50(3):和:(4)1.2:3/4和4/5:5 〖学法指导:假设两个比能组成比例,根据比例的基本性质,分别算出两个外项和两个內项的积,再肯定两个比能否组成比例。〗
(1)先让学生尝试判断,再交流,明确思考方法。
(2)还可以用什么方法来判断?用求比值的方法判断1.2: 组成比例可以吗?
(3)这两种方法,你更喜欢哪种?为什么?
和:5能否
2、在比例中,两个外项的积等于两个內项的积,如果知道两个外项的积和两个內项的积,你会写比例吗?
【设计意图:通过分层练习,巩固对比例基本性质的掌握,体验比例基本性质的应用价值,促进所有学生都能在动静结合的练习过程中获得发展,不同学生获得不同程度的发展。同时渗透假设、验证、有序思考的解题策略和方法,体验解决问题方法的多样性和优化策略,感受“一一对应”和“变与不变”的数学思想。】
四、分享收获 畅谈感想
这节课,我们学习了什么?我们是怎样探究比例的基本性质的?
第四篇:人教版 六年级数学比例的基本性质教学反思
《比例的基本性质》教学反思
上周四上了《比例的意义》和《比例的基本性质》一课,自以为准备比较充分,于是把本应分为两课时的内容在一节课内完成了。最直接的后果是没有充分地进行比例的基本性质的运用练习。
一方面,由于课堂是时间比较紧迫,另一方面,我选择了教材练习6中的一些习题让学生做,大部分学生都能比较顺利地完成。因此我也没有发觉有多大的问题。
但是,等到周五上完解比例,课堂作业本交上来的时候,我却发现了很多问题。比如习题2是“根据比例的基本性质,把下列各比例改写成乘法等式。”有不少学生把“3.2:4=4:5”改写成“3.2×=4×”,显然是把除法转换成了乘法,而不是根据题目要求运用比例的基本性质:外项之积等于内项之积。其余几小题也如法炮制。这样做的学生还不在少数,没有看清题目要求是原因之一,更为主要的是对比例的基本性质不熟悉。最后责任还是在教师,课堂上没有足够的时间供学生通过练习来理解、掌握比例的基本性质。由于比例的基本性质这一课没有过关,自然也影响到了后面的解比例。本来学生对解含有分数的方程就比较容易混淆,什么时候该乘,什么时候该除,一部分学生也没有十足的把握。现在再加上很多学生将比例与从比例转化得到的乘法算式混淆,以及内项、外项如何相乘的问题也容易混淆,所以更加增加了解比例的难度。
要解决问题,还得抓住根本。这节课上,我先是对比例的一些基本概念结合具体数据作了复习,再出示比例20:5=16:4,让学生根1514据比例的基本性质将它转化成乘法算式。对于比例的基本性质的基本运用,学生还是没有问题的。当然很容易就把它改写成了20×4=5×16。我又请学生将这个乘法算式改写成比例,说说除了刚才的20:5=16:4之外,还可以怎么改?有什么规律?开始有学生因为受到概念“外项之积等于内项之积”的影响,只能说出20:16=5:4,有些学生心里有不同的想法,却也不敢表达。我于是鼓励学生将20×4=5×16改成5×16=20×4,看等式是否仍成立,又是否能形成新的比例。经我这么一提醒,大多数学生都说出了还可以写成5:4=20:16,5:20=4:16,16:20=4:5等。并且发现只要乘法中的同一边的因数在转化成比例后必须同时是内项或者同时是外项,至于谁在左,谁在右,不影响比例的成立。因此,这也就使等式能转化成多组比例了。在此基础上,我增加了一点难度,将比例的其中一项固定,根据比例的意义或者比例的基本性质写出另外几项。学生根据刚才的发现,认为还有一个外项可以先确定,而乘法算式中和4相乘的是20,那么4已经作为外项,20也只能做外项了,剩下两个数16和5作为内项,放在等号的左边还是右边,比例都成立。我有让学生用比例的意义,即通过求两个比的比值又验算了一遍。
这样,学生对比例的基本性质就有了进一步的理解和掌握,同时也发现解决问题的方法不止一种,在已知比例的一项或几项,要求写出剩余的几项,可用到的方法除了运用比例的基本性质之外,也可以用比例的意义,甚至还可以把比例转化成分数的写法,根据分数的基本性质来解决问题。
沙岭中学北郑学校
路璐
《比例的基本性质》教学反思
第五篇:六年级数学下册 比例的基本性质导学教案
比例的基本性质导学提纲
展示目标:
1、知道组成比例的四个数的名称
2、理解并掌握比例的基本性质
3、能利用比例的基本性质判断两个比是否能组成比例
3、:=:
4、2:3.5=6:10
6411111
均分评价
自主学习:
1、什么叫项?什么叫内项?什么叫外项?
举例说明:2.4:1.6=60:402、计算两个外项的积
3、把上述比例改写成分数形式
1、分子分母分别交叉相乘观察所得的积有什么关系?
合作探究:总结比例的基本性质
训练提升:应用比例的基本性质,判断下列那组中的两个比可以组成比
例?
1、6:3和8:
52、1.2:3
4=5
:
5一、应用比例的基本性质,判断下列面那组中的两个比可以组成比例?
1、6:9和9:122、1.4:2和28:403、1
:1和5 1
258:44、7.5:1.3和5.7:3.1
二、把下面的等式改写成比例。(提示:把3和40分别看成内项、外项,共有8个)
反馈巩固: