第一篇:数据的波动程度教学设计
《数据的波动程度》教学设计
作者: 林州十中 申奎亮
一、内容解析
本节课是在学生学习了平均数、中位数、众数这类刻画数据集中趋势的量后,学习刻画数据波动(离散)程度的量,即方差.
当两组数据的平均数相等或相近时,为了更好的做出选择经常要去了解一组数据的波动程度,可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一个量来刻画,自然引入方差.方差是能够反映一组数据的波动大小的一个统计量,应用它能解决很多实际问题.
教科书根据农科院选择甜玉米种子的背景提出问题,从统计上看,这个问题是要计算两组数据的平均数和比较它们的波动情况.为了直观看出数据的波动情况,教科书画出了两个散点图,通过观察散点图,可以比较两组数据的波动情况.这两个散点图使学生对数据偏离平均数的情况有一个直观的认识.在此基础上,教科书引进了利用方差刻画数据离散程度的方法,介绍了方差的公式,并从方差公式的结构上分析了方差是如何刻画数据的波动的,既方差越大,数据的波动越大.
因此本节课的教学重点是:方差产生的必要性和应用方差公式解决实际问题.
二、目标和目标解析
(一)教学目标
1.理解方差概念的产生和形成的过程. 2.会用方差的计算公式来比较两组数据的波动大小.
(二)教学目标解析
1.学生能由实际问题中感知,当两组数据的“平均水平”相近时,而实际问题中的意义却不一样,需出现另一个量来刻画,分析数据的差异,即方差.
2.学生能根据已知条件计算方差,比较两组数据的波动大小.
三、教学问题诊断分析
由于这节课是方差的第一节课,用方差来刻画数据的离散程度,从方差公式的结构上分析了方差是如何刻画数据的波动的,这些学生理解起来有一定的难度,以致应用时常常出现计算的错误,教师要剖析公式中每一个元素的意义,以便学生理解和掌握.
本节课的教学难点为:理解方差的意义.
四、教学过程设计
(一)情景引入
问题1 教科书第124页根据这些数据估计,农科院应该选择哪种甜玉米种子呢?
师生活动:学生想到计算它们的平均数.教师把学生分成两组分别用计算器计算这两组数据的平均数.(请两名同学到黑板板书)
设计意图:让学生明确农科院应该选择哪种甜玉米种子?需关注平均产量. 追问:怎样估计这个地区这两种甜玉米的平均产量?这能说明甲、乙两种甜玉米一样好吗?
设计意图:让学生明确可以用样本平均数估计总体平均数,发现甲、乙两种甜玉米的平均产量相差不大,但需选择哪种甜玉米种子?仅仅知道平均数是不够的.
(二)探究新知
问题2 如何考察甜玉米产量的稳定性呢?请设计统计图直观地反映出甜玉米产量的分布情况.
师生活动:教师引导学生用折线图或散点图反映数据的分布情况,画出折线图或散点图后,小组讨论,得到甲种甜玉米的产量波动较大,乙种甜玉米的产量波动较小.
设计意图:让学生明白当两组数据的平均数相近时,为了更好的做出选择需要去了解数据的波动大小,画折线图或散点图是描述数据波动大小的一种方法,进而引出如何用数值表示一组数据的波动?
问题3 从图中看出的结果能否用一个量来刻画呢?
师生活动:教师直接给出方差公式,并作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小.教师说明,平方是为了在表示各数据与其平均数的偏离程度时,防止正偏差与负偏差的相互抵消.取各个数据与其平均数的差的绝对值也是一种衡量数据波动情况统计量,但方差应用更广泛.整体的波动大小可以通过对每个数据的波动大小求平均值得到.
设计意图:让学生明白方差是能够反映一组数据的波动大小的一个统计量,并从方差公式中得到方差越大,数据的波动越大;方差越小,数据的波动越小.
问题4 利用方差公式分析甲、乙两种甜玉米的波动程度. 师生活动:教师示范:
关注学生是否会代值到公式中,从结果中能否知道哪种玉米的波动较大. 设计意图:使学生深刻体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.
追问:农科院应该选择哪种甜玉米种子呢?
设计意图:让学生类比用样本的平均数估计总体的平均数一样,用样本的方差来估计总体的方差,但用样本的方差来估计总体的方差时,先要计算它们的平均数.
(三)运用新知
例1 在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参加表演的女演员的身高(单位:cm)分别是:
甲 163 164 164 165 165 166 166 167 乙 163 165 165 166 166 167 168 168 哪个芭蕾舞团女演员的身高更整齐?
师生活动:引导学生分析:(1)题目中“整齐”的含义是什么?学生通过思考可以回答出整齐即身高的波动小,所以要研究两组数据的波动大小,即求方差.(2)在求方差之前先要求哪个统计量?(平均数).(3)老师板书解题过程,学生和老师一起计算、判断、解决问题.
设计意图:使学生明确利用方差计算的步骤,以及方差反映数据波动大小的规律.
(四)巩固新知
练习1 计算下列各组数据的方差:
(1)6
6;
(2)5
7;
(3)3
9;
(4)3
9.师生活动:教师重点关注:学生能否正确运用方差计算公式计算方差. 设计意图:让学生更好的掌握方差的计算方法. 练习2 教科书126页第2题.
师生活动:(1)从折线图可以看出乙的成绩波动较小;(2)分别计算甲、乙的方差.
设计意图:用方差的计算公式解决问题.
(五)归纳小结
师生一起回顾本节课所学的主要内容,并请学生回答以下问题: 1.方差怎样计算? 2.方差的适用条件是? 3.你如何理解方差的意义?
(六)作业布置
第二篇:20.2 数据的波动程度 教学设计 教案
教学准备
1.教学目标
1、知识与技能:
理解方差的概念和意义,学会方差的计算公式和具体应用 进一步了解方差的求法。用方差对实际问题做出判断
2、过程与方法 :
根据描述一组数据离散程度的统计量:方差的大小对实际问题作出解释,培养学生解决问题能力。
3、情感态度与价值观 :
体会数形结合思想,并利用它解决问题,提高学生数学统计的素养,用数学的眼光看世界.
2.教学重点/难点
教学重点
方差的概念。方差的意义.从方差的计算结果对实际作出解释和决策。教学难点
方差的公式和应用.根据方差的计算结果对实际作出解释和决策。
3.教学用具
白板,课件、直尺 图标
4.标签
教学过程
一、提出问题,创设情境
农科院的烦恼?
农科院计划为某地选择合适的甜玉米种子,选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题。为了解甲、乙两种甜玉米的种子的相关情况,农科院各用10块自然条件相同的试验田进行试验,得到各试验田每公顷的产量(单位:t)如表下表所示。
(1)请分别计算两种甜玉米种子的每公顷的平均产量;
(2)请根据两种甜玉米种子的每公顷的平均产量画出折线统计图;(3)现要挑哪种甜玉米种子比较合适,你认为该怎样挑比较适宜?为什么?(1)解(2)
说明甲乙两种甜玉米的平均产量相差不大
由上图你有什么发现:甲玉米的产量波动较大,乙玉米产量波动较小,乙玉米的产量集中分布在平均产量附近。
从图中看出的结果能否用一个量来刻画呢?
二、导入新课
(1)、方差的概念:设一组数据平均数的差的平方分别是数,即
归纳:
(1)数据的方差都是非负数。
中,各数据与它们的,那么我们用它们的平均(2)当且仅当每个数据都相等时,方差为零,反过来,若
下面我们利用方差来分析甲、乙两种甜玉米的波动程序。两组数据的方差分别是:
即甲种甜玉米的波动较大,这与我们从图20.2-1和图20.2-2看动的结果一致。
1、方差的意义:用各数据与平均数偏差平方的平均数来衡量数据的稳定性----就是方差 根据
讨论下列问题:
(1)数据比较分散(即数据在平均数附近波动较大)时,方差值怎样?(2)数据比较集中(即数据在平均数附近波动较小)时,方差值怎样?(3)方差的大小与数据的波动性大小有怎样的关系? 学生小组讨论、归纳:
(1)方差用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).(2)方差越大,说明数据的波动越大,越不稳定;方差越小,说明数据的波动越小,越稳定。
2、方差的应用:
在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参加表演的女演员的身高(单位:cm)分别是
哪个芭蕾舞团女演员的身高更为整齐? 解:甲、乙两团演员的身高平均数是
方差分别是
归纳方差应用的过程:(1)
求每组数据的平均数。(2)
求方差。
(3)
比较方差的大小,确定稳定性。
三、巩固练习:
1、两台机床同时生产直径是40毫米的零件10件测量,结果如下(单位:毫米):
你认为甲、乙两机床性能哪个好?为什么?
分析:计算它们的平均数相等,但是它们的离散程度(波动大小)不同,所以两台机床的性能不同,只能用方差来衡量两台机床的性能好坏。
归纳:这反映出,对一组数据,除需要了解它们的平均水平以外,还常常需要了解它们的波动大小(即偏离平均数的大小也就是与其平均值离散程度的大小). 方差的概念、公式、意义、应用。
方差:各数据与它们的平均数的差的平方的平均数.方差用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).方差越大,说明数据的波动越大,越不稳定;方差越小,说明数据的波动越小,越稳定。2.数据为101,98,102,100,99平均数是(100),方差是(2).3.数据为1、2、3、4、5平均数是(3),方差是(2)
例
2、某快餐公司的香辣鸡腿很受消费者欢迎。为了保持公司信誉,进货时,公司严把鸡腿的质量。现有甲乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近,快餐公司决定通过检查鸡腿的重量来确定选购哪家的鸡腿。检查人员从两家的鸡腿中各抽取15个鸡腿,记录它们的质量(单位:克)如下:
根据上面的数据,你认为快餐公司应该选购哪家加工厂的鸡腿? 小组合作、完成本例题。并汇报本组的成果。
两家平均数相等,四、巩固练习2:
快餐店购甲加工厂生产的鸡腿好。
学校准备进一批新的课桌椅,现有两个厂家的课桌椅质量、价格均相同,按规定,中学生的课桌高度应为70cm,椅子应为40cm左右,学校分别从两个厂家随机选了5套桌椅,测得高度(单位:cm)如下: 甲厂课桌:72 69 70 70 69 甲厂椅子:39 40 40 40 41 乙厂课桌:68 71 72 70 69 乙厂椅子:42 41 38 40 39 你认为学校应该买哪家的课桌椅?
∵平均数相同 所以选择甲桌子整齐.甲乙椅子平均数相同, 由以上可得学校应选择甲厂进货好。
∴选择甲椅子整齐.五、总结提升:本节学习你有什么收获?
方差:方差用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).方差的意义:方差越大,说明数据的波动越大,越不稳定;方差越小,说明数据的波动越小,越稳定。
方差现实生活中的应用:实例讲解.六、布置作业:随堂练习
板书
第三篇:《数据的波动》的教学设计
教学目标:
1、经历数据离散程度的探索过程
2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。
教学重点:会计算某些数据的极差、标准差和方差。
教学难点:理解数据离散程度与三个差之间的关系。
教学过程:
一、创设情境
1、投影课本P170引例。
(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)
2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。
二、活动与探究
1.如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本171页图)
问题:
1、丙厂这20只鸡腿质量的平均数和极差是多少?
2.如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。
3.在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?
(在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。
三、讲解概念:
方差:各个数据与平均数之差的平方的平均数,记作s2,设有一组数据:x1, x2, x3,,xn,其平均数为 则s2= ,而s= 称为该数据的标准差(既方差的算术平方根)
从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。
四、做一做
你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?(通过对此问题的解决,使学生回顾了用计算器求平均数的步骤,并自由探索求方差的详细步骤)
五、巩固练习:课本随堂练习
六、课堂小结:
1、怎样刻画一组数据的离散程度?
2、怎样求方差和标准差?
七、布置作业:习题5.5第1、2题
第四篇:初中数学优质说课稿:《数据的波动》
导语:说课稿对老师的帮助非常大,教师们上课之前事先准备一份说课稿,会让自己的逻辑很清晰。下面是小编为你整理的初中数学优质说课稿:《数据的波动》,希望对你有帮助!
各位评委、各位老师大家好!今天我说课的课题是八年级下册第五章第4节《数据的波动》(第一课时)。现我就教材、教法、学法、教学流序、板书五个方面进行说明。(恳请在座的各位专家、同仁批评指正。)
一、说教材:
1、本节课的主要内容:
探究数据的离散程度及认识“极差”“方差”“标准差”三个量度及其实际意义。主要是运用具体的生活情境,让学生感受到当两组数据的“平均水平” 相近时,而实际问题中具体意义却千差万别,因而必须研究数据的波动状况,分析数据的差异,逐步抽象出刻画数据离散程度的“极差”“方差”“标准差”的三个量度,并掌握利用计算器求方差和标准差。
2、地位作用:
纵观本章的教材安排体系,以数据“收集—表示—处理—评判”的顺序展开。数据的波动是对一组数据变化的趋势进行评判,通过结果评判形成决策的教学,是数据处理解决现实情景问题必不可少的重要环节,是本章学习的最终目的和落脚点。通过本节的学习为处理各种较为复杂的现实情境的数据问题打下基础。
3、教学目标:
依据课标对本节知识的提出的“探索如何表示一组数据的离散程度,会计算极差和方差,并会用它们表示数据的离散程度”要求,确定以下目标:
(1)知识目标:
a、掌握刻画数据离散程度的“极差”“方差”“标准差”三个量度。
b、会动手和利用计算器计算“方差”“标准差”。
(2)过程与方法目标:
a、经历感受表示数据离散程度的三个量度的探索过程(“极差”“方差”“标准差)。
b、通过数据分析的学习,培养学生探索数学规律的能力(“平均数相同的两组数据,极差越小,波动越小,越稳定”;“一组数据方差越小,波动越小,越稳定”)
c、突出关键环节,判断两组数据稳定性就是抓住计算其方差进行比较。
d、在具体实例中体会样本估计总体的思想。
(3)情感目标:通过解决生活中的数学问题,培养学生认真参与、积极交流的主体意识,通过数据分析,培养学生善于用数学的眼光认识世界,进一步增强学生的数学素养。
4、重点与难点:重点:
理解刻画数据离散程度的三个量度——极差、标准差和方差,会计算方差的数值,并在具体问题情境中加以应用。
难点:理解极差、方差的含义及方差的计算公式,并准确运用其解决实际问题。
二、说教法
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这一原则和本节教学目标,我采用如下的教学方法:
1、引导发现法。数据分析的三个量度,是十分抽象的概念,要引出三个概念,必须借助学生熟悉的生活情景。我设计了一个连接奥运会中韩射箭运动员的场景,并用表格记录环数,让学生运用已有的知识进行评判,通过学习分析具体的生活实例来发现当两组数据的“平均水平”相近,无法用平均数来刻画时,引入一种新的量度,逐步抽象出“极差”“方差”“标准差”。以此,打开教学突出教学难点的缺口,充分激活学生思维,调动其主动性和积极性。
2、比较法。在极差和方差的应用中,让学生在比较中发现用已有的知识还是难以准确的刻画一组数据的离散程度,从而引入新的量度。
3、练习巩固法。通过练习,强化巩固概念,熟练计算器的操作。进一步理解本节知识对于实际问题的意义。这样更能突破重点、解决难点,在运算中深刻理解“极差”“方差”“标准差”的内涵。使学生的分析问题和解决问题的能力得到进一步的提高。
4、选用一个贴近学生生活实际的背景。通过一个实际问题情境的导入和比较,抓住重点,突破难点,让学生直观地估测甲、乙两名选手的成绩,回顾有关数据的另一个量度 “平均水平”,同时让学生初步体会“平均水平”相近,但两者的离散程度未必相同,仅有“平均水平”还难以准确地刻画一组数据,从而顺理成章地引入刻画数据离散程度的一个量度—极差;然后,设计了一个“做一做”,因承上面场景的情境,增加了一名选手丙,旨在通过丙与甲、乙的对比,发现有时平均水平相近,极差也相同,但数据的离散程度仍然存在差异,仅用极差还难以精确刻画一组数据的离散程度,从而引入刻画一组数据离散程度的另外两个量度—标准差和方差。指导学生动手计算平均数、极差、方差、标准差,并依次比较,让学生在比较中发现问题。
三、说学法:
教给学生方法比教给学生知识更重要。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我主要设计的学法指导是:
(1)引导观察分析法:链接运动员设计场景,引导学生观察把环(用眼),关注收集的数据,积极思考,分析两名运动员设计的稳定程度(动脑),指导学生动手计算(动手)。让学生学会观察问题,分析问题和解决问题。
(2)引导比较鉴别法:在教学过程中,每出现一个新概念或一个新公式,采取的方法是:一是引导学生读,二是解释关键词语,三是让学生动手计算、巩固知识,加深理解概念的内涵,四是回头看实际情形,认识数据的变化规律,在实际背景中比较形成正确的决策。
(3)引导练习巩固:注重“做一做”的练习中强化、观察、切入公式特点、计算、分析、判断的方法的巩固,通过强化加深学生对三个量度的理解和应用。让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容和知识。
(4)引导自学法:学生自学掌握计数器计算方差和标准差的操作功能。
四、说教学程序:
1、创设情境,导入新课:
<1>、展示情景(链接奥运会中韩运动员设计的情景)。
<2>、学生观察阅读分析(描述运动员射箭的平均水平)。
<3>、分析思考寻求解决方案(观察表格数据求平均数)。
<4>、通过对以上问题的分析发现在实际生活中除了关注数据的“平均水平”以外,还要关注数据的离散程度。(引出本课课题——数据的波动)
2、新课:
(由学生已经掌握的知识来引出课题,吸引学生的注意力和提高学习本节知识的兴趣)
<1>、概念介绍:
a、数据的离散程度(是相对于平均水平的偏离情况);
b、极差(极差是刻画数据的离散程度的一个统计量,是一组数据中最大数据与最小数据的差);
c、练习巩固计算极差;
<2>、展示丙运动员加入的情景,让学生在乙丙两人中挑选,计算中发现平均数极差相同,让学生产生新的困惑。引入本节的第二个知识点——方差和标准差。
<3>、引进概念
a、给出“标准差”的概念(方差的算术平方根)。
b、学生相互交流学习操作计算器计算方差和标准差。
<4>、引导学生理解一组数据的极差、方差、标准差越小,这组数据就越稳定的内涵(通过数据与图比较说明,使抽象概念具体化)。
<5>、计算引例中的方差和标准差。(作用:一是巩固“方差”的计算方法;二是用方差来刻画引例中的数据离散程度,加深学生对方差意义的理解。三是会用运“方差”来解决实际问题的方法)。
3、巩固练习:
<1>、样本4、7、5、2、3、8、5、6的平均数是______,众数是_____,极差是____,方差是________,标准差是______。(通过这组练习强化概念和计算方法的运用)
<2>、P—235随堂练习(1)(通过这道习题巩固运用所学知识分析解决实际问题的能力)
4、小结谈体会:教师引导回顾所学概念;让学生谈学习、运用的体会。
5、布置作业:P—199(1)(2)(3—选作题):
五、说板书设计
板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解和掌握,同时便于比较和记忆,有利于提高教学效果。
第五篇:计算数据教学设计
计算数据
【教材分析】
《计算数据》是山东省泰山版初中信息技术第一册(下)第四章第二节的内容。教材通过一个家庭收支账目表来让学生学会用excel计算数据,计算所需公式和函数都有各自的优点,其中所涉及的函数有sum(求和),average(求平均数),max(求最大值),min(求最小值)。
【学情分析】
初一(下)年级学生已经对word界面比较熟悉,对于excel也会很容易上手,公式的用法和数学是一样的,比较简单,只不过函数的用法需要学生用心学习。
【教学目标】
知识与技能
(1)能够自定义公式进行简单的数值计算。
(2)理解函数的意义,并能使用简单函数进行必要的数值计算。过程与方法
从自定义公式入手,由数学方法慢慢向excel的公式表达方式转化。然后再由公式过度到函数,通过实例让学生体验函数的便捷。
情感态度与价值观
通过案例体验公式和函数对数据计算所带来的方便,培养和提高学生对数据的加工能力。
【教学重点与难点】
重点是电子表格中利用公式进行数据计算。难点是函数的应用。
【教学策略】
采用任务驱动,微课教学,学生自主探究等方法,掌握公式和函数计算数据的方法并能解决实际问题。教师只是点拨和辅助,把课堂真正的交给学生,充分体现学生的主体作用。
【教学过程】
一、导入新课
大屏幕展示教师制作多媒体课件中《师傅被妖精抓走了》搞笑小视频,引出故事情节,小沙不满如来的封赏,在回家的路上伙同妖怪抓走了师傅,现在你变成了大侠,需要打怪升级和boss挑战才能救出师傅。
然后出示excel表格,说出任务,讲明用法,讲明加分细则。
(设计意图:通过有趣的故事,引出本课的教学内容。)
二、自主探究
任务一:打怪升级(基础知识)
参考导学案操作提示和微课程的操作演示完成任务一打怪升级。
学生活动:自学导学案任务一的内容,学生以小组为单位合作探究任务一的操作,完成后学生讲解计算的方法。小组长可以帮助组员完成,组员之间也可互相帮助。
师任务:引导学生解决任务一的问题,并且根据完成情况和回答问题情况给学生所在组加分。教师总结演示操作方法,然后布置没完成的同学继续完成,完成的学生尝试任务二。学生操作过程中可以适当放点音乐,创造一个轻松的气氛,也可以掌握时间。
(设计意图:通过有趣的任务,引导学生学会公式和函数计算数据。)
任务二:boss挑战(拓展提高)
参考导学案操作提示和微课程的操作演示完成任务二boss挑战。其中有四个boss:boss、大boss、超级大boss,终极boss。只有完成一关,才能进入下一关,这样学生必须做对才行。
学生活动:自学导学案任务二的内容,学生以小组为单位合作探究任务二的操作,完成后学生讲解计算的方法。小组长可以帮助组员完成,组员之间也可互相帮助。
师任务:引导学生解决任务二的问题,并且根据完成情况和回答问题情况给学生所在组加分,教师总结演示操作方法。
(设计意图:通过有难度的任务,引导学生学会用所学知识解决实际问题。)
三、总结归纳
总结本节课所有内容,根据得分选出优胜组。
作业是sheet3中的继续修行。
(设计意图:拓展延伸知识,教师总结本节课内容,系统的梳理知识点,强化操作技巧。通过作业再一次巩固本节课内容)【教学反思】
通过小故事的形式导入新课,从一开始就抓住了学生的兴趣所在,为下面的新课打下了坚实的基础。新课采用微课和导学案的方式,在兴趣的驱动下,学生自主学习,充分利用小组合作探究,充分体现学生的主体作用。课上学生积极性高,完成任务的效果很好。教师的作用从传道授业解惑变成了引导者,帮助学生养成了良好的学习习惯,提高自学能力,增强学习兴趣。