第一篇:人教版初中数学平行线的性质教案
2.3平行线的性质
一、教材分析:
本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章 第3节平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是‚空间与图形‛的重要组成部分。
二、教学目标:
1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
2.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
3.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。
三、教学重、难点: 重点:平行线的性质 难点:‚性质1‛的探究过程
四、教学方法:
‚引导发现法‛与‚动像探索法‛
五、教具、学具: 教具:多媒体课件 学具:三角板、量角器。
六、教学媒体:大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思:
1.播放一组幻灯片。内容:①火车行驶在铁轨上;②游泳池;③横格纸。
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗? 学生活动:
思考回答。①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;
教师:首先肯定学生的回答,然后提出问题。
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?
引出课题——平行线的性质。
(二)数形结合,探究性质 1.画图探究,归纳猜想
任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图)。
问题一:指出图中的同位角,并度量这些角,把结果填入下表:
第一组 第二组
第三组
第四组 同位角
∠1 ∠5 角的度数 数量关系
学生活动:画图——度量——填表——猜想 结论: 两直线平行,同位角相等。
问题二:再画出一条截线d,看你的猜想结论是否仍然成立? 学生:探究、讨论,最后得出结论:仍然成立。2.教师用《几何画板》课件验证猜想
3.性质1.两条直线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
(三)引申思考,培养创新
问题三:请判断内错角、同旁内角各有什么关系? 学生活动:独立探究——小组讨论——成果展示。教师活动:评价,引导学生说理。因为a‖b 因为a‖b 所以∠1=∠2 所以∠1=∠2 又 ∠1=∠3 又 ∠1+∠4=180° 所以∠2=∠3 所以∠2+∠4=180° 语言叙述:
性质2 两条直线被第三条直线所截,内错角相等。(两直线平行,内错角相等)
性质3 两条直线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)
(四)实际应用,优势互补 1.(抢答)
(1)如图,平行线AB、CD被直线AE所截
①若∠1 = 110°,则∠2 = °。理由:。②若∠1 = 110°,则∠3 = °。理由:。③若∠1 = 110°,则∠4 = °。理由:。(2)如图,由AB‖CD,可得()
(A)∠1=∠2(B)∠2=∠3(C)∠1=∠4(D)∠3=∠4(3)如图,AB‖CD‖EF,那么∠BAC+∠ACE+∠CEF=((A)180°(B)270°(C)360°(D)540°(4)谁问谁答:如图,直线a‖b,如:∠1=54°时,∠2=.学生提问,并找出回答问题的同学。2.(讨论解答)
如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,求)梯形另外两角分别是多少度?
(五)概括存储(小结)1.平行线的性质1、2、3;
2.用‚运动‛的观点观察数学问题; 3.用数形结合的方法来解决问题。
(六)作业 第69页 2、4、7.八、教学反思:
①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣。
②学的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。
③课堂氛围的转变:整节课以‚流畅、开放、合作、‘隐’导‛为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以‚对话‛、‚讨论‛为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
第二篇:平行线的性质学教稿
七年级数学(上)学教稿
课题平行线的性质
制作人:高润平审核人:时间:2013.12 教师寄语;不为失败找借口,只为成功找方法。学习目标:(知道学什么!)
(1)掌握平行线的三个性质,能够进行简单的推理.(2)能区分平行线的性质和判定.温馨提示:(知道怎么学!)
从平行线的判定我们知道,想判定两条线是否平行,只要清楚“同位角、内错角、同旁内角”是否存在相等或互补,就可以准确得出结果。如果知道两直线平行,那么“同位角、内错角、同旁内角” 是否存在相等或互补?同学们大家动手量一量,算一算,结果和你想的一样吗?
课前热身:(温故而知新,大家都知道吧。加油!)
回顾平行线的判断,结合图形说明。即图形语言、符号语言、文字语言之间的相互转化。
课堂探究:(我自信,我参与,我快乐)
一. 自主学习
聚焦目标一
猜想:如果两条直线平行,那么这两条平行线被第三条直线所截而成的同位角有什么数量关系?
聚焦目标二
猜想:如图: 已知:a// b,那么2与3有什么关系?
聚焦目标三
猜想:如图:已知a//b,那么4与 3有什么关系呢?
合作探究:(组长组织组员对自主学习解决不了的问题展开讨论)
二. 展示讲解:(组内解决不了的,由已经掌握的学生展示,学生都不会的教师讲)
三. 分层训练:(一份耕耘,一份收获,仔细梳理,收获一
定不小)
巩固提升:(这里是你展示成果的舞台!)
必做题:(比一比,赛一赛,看看谁最棒)
1.找出图中的同位角,内错角,同旁内角
2.如图,直线a∥b,∠1=54°∠2, ∠3, ∠4各是多少度
?
4.如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?
3.∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2 的大小关系是()
A.∠1=∠2B.∠1>∠2;
C.∠1<∠2D.无法确定
选做题:(拼一拼,你一定赢)
1.若两个角的两边互相平行, 那么这两个角的关系是().
A.相等B.互补C.相等且互补D.相等或互补
2.如图,D是AB上一点,E是AC上一点.∠ADE=60 °∠B=60 °
∠AED=40°
(1)DE和BC平行吗?为什么?
(2)∠C是多少度,为什么?
B
学后记:(学习也需要不断反思哦!)
第三篇:平行线性质教案
平行线的性质教案2 教学目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.重点、难点
重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.教学过程
一、引导学生逆向思维
现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补, 判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来: 如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?
二、实践探究
1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1).2.学生测量这些角的度数,把结果填入表内.角 ∠1 ∠2 ∠3 ∠4 ∠5 ∠6 ∠7 ∠8
度数
3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系? 图中哪些角是内错角?它们具有怎样的数量关系? 图中哪些角是同旁内角?它们具有怎样的数量关系? 在详尽分析后,让学生写出猜想.4.学生验证猜测.学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗? 5.师生归纳平行线的性质,教师板书.平行线具有性质: 性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错相等.性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁内角互补.教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定.平行线的性质平行线的判定
因为a∥b, 因为∠1=∠2,所以∠1=∠2 所以a∥b.因为a∥b, 因为∠2=∠3,所以∠2=∠3, 所以a∥b.因为a∥b, 因为∠2+∠4=180°,所以∠2+∠4=180°, 所以a∥b.6.教师引导学生理清平行线的性质与平行线判定的区别.学生交流后,师生归纳:两者的条件和结论正好相反: 由角的数量关系(指同位角相等,内错角相等,同旁内角互补), 得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等, 同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论.7.进一步研究平行线三条性质之间的关系.教师:大家能根据性质1,推出性质2成立的道理吗? 结合上图,教师启发分析:考察性质
1、性质2的结论发生了什么变化? 学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程.因为a∥b,所以∠1=∠2(两直线平行,同位角相等);又∠3=∠1(对顶角相等),所以∠2=∠3.教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由.学生仿照以下说理,说出如何根据性质1得到性质3的道理.8.平行线性质应用.例(课本P23)如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°, 梯形另外两个角分别是多少度?
教师把学生情况,可启发提问:①梯形这条件如何使用?②∠A与∠D、∠B 与∠C的位置关系如何,数量关系呢?为什么? 讲解按课本.三、巩固练习
2.补充:如图,BCD是一条直线,∠A=75°,∠1=53°,∠2=75°,求∠B的度数.本题综合应用平行线的判定和性质,教师要引导学生观察图形,考察已知角的数量关系,确定解题的思路.一、判断题.1.两条直线被第三条直线所截,则同旁内角互补.()2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.()3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.()
二、填空题.1.如图(1),若AD∥BC,则∠______=∠_______,∠_______=∠_______,∠ABC+∠_______=180°;若DC∥AB,则∠______=∠_______,∠________=∠__________,∠ABC+∠_________=180°.(1)(2)(3)
平行线的性质教案2 2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.3.因为AB∥CD,EF∥CD,所以______∥______,理由是________.4.如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下: 因为∠ECD=∠E,所以CD∥EF()又AB∥EF,所以CD∥AB().三、选择题.1.∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2 的大小关系是()A.∠1=∠2 B.∠1>∠2;C.∠1<∠2 D.无法确定
2.一个人驱车前进时,两次拐弯后,按原来的相反方向前进, 这两次拐弯的角度是()A.向右拐85°,再向右拐95°;B.向右拐85°,再向左拐85°
C.向右拐85°,再向右拐85°;D.向右拐85°,再向左拐95°
四、解答题
1.如图,已知:∠1=110°,∠2=110°,∠3=70°,求∠4的度数.2.如图,已知:DE∥CB,∠1=∠2,求证:CD平分∠ECB.答案:
一、1.× 2.∨ 3.×
二、1.∠1,∠5,∠8,∠4,∠BAD;∠2,∠6,∠3,∠7,∠BCD 2.北偏东56°,两直线平行,内错角相等 3.AB、EF,两条直线都与第三条直线平行,这两条直线也互相平行 4.内错角相等,两直线平行, 两条直线都与第三条直线平行,这两条直线也互相平行
三、1.D 2.A
四、1.70° 2.因为DE∥CB,所以∠1=DCB(两直线平行,内错角相等)又∠1=∠2 所以∠2=∠DCB 即CD平分∠ECB.5.3平行线的性质(第2课时)平行线的性质(二)教学目标
1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题.重点、难点 重点:平行线性质和判定综合应用,两条平行的距离,命题等概念.难点:平行线性质和判定灵活运用.教学过程
一、复习引入
1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE是AB的延长线,AD∥BC,AB∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a⊥b,c⊥b,那么a与c的位置关系如何?为什么?
二、进行新课
1.例1 已知:如上图,a∥c,a⊥b,直线b与c垂直吗?为什么? 学生容易判断出直线b与c垂直.鉴于这一点,教师应引导学生思考:(1)要说明b⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗? 让学生写出说理过程,师生共同评价三种不同的说理.2.实践与探究
(1)下列各图中,已知AB∥EF,点C任意选取(在AB、EF之间,又在BF的左侧).请测量各图中∠B、∠C、∠F的度数并填入表格.∠B ∠F ∠C ∠B与∠F度数之和
图(1)图(2)通过上述实践,试猜想∠B、∠F、∠C之间的关系,写出这种关系,试加以说明.(1)(2)教师投影题目: 学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导: ①虽然AB∥EF,但是∠B与∠F不是同位角,也不是内错角或同旁内角.不能确定它们之间关系.②∠B与∠C是直线AB、CF被直线BC所截而成的内错角,但是AB与CF不平行.能不能创造条件,应用平行线性质,学生自然想到过点C作CD∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD与EF平行,你能做到这一点吗? 以上分析后,学生先推理说明, 师生交流,教师给出说理过程.作CD∥AB,因为AB∥EF,CD∥AB,所以CD∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF.(2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B1C1,B2C2……B5C5都与两条平行线的横线A1B5和A2C5垂直吗?它们的长度相等吗? ②学生实践操作,得出结论:线段B1C1,B2C2……,B5C5同时垂直于两条平行直线A1B5和A2C5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B1C1的特征:第一点线段B1C1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B1C1同时垂直这两条平行线.教师板书定义:(像线段B1C1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.教师画AB∥CD,在CD上任取一点E,作EF⊥AB,垂足为F.学生思考:EF是否垂直直线CD?垂线段EF的长度d是平行线AB、CD的距离吗? 这两个
问题学生不难回答,教师归纳: 两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变.3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行;②等式两边都加同一个数,结果仍是等式;③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断.(2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句.(3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式.师生共同分析上述四个命题的题设和结论,重点分析第②、③语句.第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。
第③命题中,“两个角是对顶角”是题设,“这两角相等”是结论。
三、巩固练习
1.“等式两边乘同一个数,结果仍是等式”是命题吗?它们题设和结论分别是什么? 2.命题“两条平行线被第三第直线所截,内错角相等”是正确的?命题“如果两个角互补,那么它们是邻补角”是正确吗?再举出一些命题的例子,判断它们是否正确.解答:1.是命题,题设是“等式两边乘同一个数”,结论是“结果仍是等式”.2.第一个命题正确,第二个命题错误。可举出例子说明,如两条直线平行,同旁内角互补,但这两个同旁内角不是邻补角。对于学生所举的错误命题,教师应给归纳一下,有两类:第一类是命题题设不足于确定命题结正确,如“同位角相等”,这里条件不够;第二类命题是在命题的题设下,结论不正确。
一、填空题.1.用式子表示下列句子:用∠1与∠2互为余角,又∠2与∠3互为余角,根据“同角的余角相等”,所以∠1和∠3相等_________________.2.把命题“直角都相等”改写成“如果……,那么……”形式___________.3.命题“邻补角的平分线互相垂直”的题设是_____________, 结论是____________.4.两条平行线被第三条直线所截,同旁内角的度数的比为2:7, 则这两个角分别是____________度.二、选择题.1.设a、b、c为同一平面内的三条直线,下列判断不正确的是()A.设a⊥c,b⊥c,则a⊥b B.若a∥c,b∥c,则a∥b
C.若a∥b,b⊥c,则a⊥c D.若a⊥b,b⊥c,则a⊥c
2.若两条平行线被第三条直线所截,则互补的角但非邻补角的对数有()A.6对 B.8对 C.10对 D.12对
3.如图,已知AB∥DE,∠A=135°,∠C=105°,则∠D的度数为()A.60° B.80° C.100° D.120°
4.两条直线被第三条直线所截,则一组同位角的平分线的位置关系是()A.互相平行 B.互相垂直;C.相交但不垂直 D.平行或相交
三、解答题.1.已知,如图1,∠AOB纸片沿CD折叠,若O′C∥BD,那么O′D与AC平行吗?请说明理由.2.如图,已知B、E分别是AC、DF上的点,∠1=∠2,∠C=∠D.(1)∠ABD与∠C相等吗?为什么.(2)∠A与∠F相等吗?请说明理由.3.如图,已知EAB是直线,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.4.如(图4),DE∥AB,DF∥AC,∠EDF=85°,∠BDF=63°.(1)∠A的度数;(2)∠A+∠B+∠C的度数.答案:
一、1.因为∠2+∠1=90° 又∠2+∠3=90°,所以∠1=∠3(同角的余角相等)
2.如果两个角是直角,那么这两个角相等
3.两个角是邻补角,这两个角的平分线互相垂直 4.40°,140°
二、1.D 2.B 3.D 4.D
三、1.平行
因为O′C∥BD
所以∠2=∠3(两直线平行,内错角相等)
又∠1=∠2,∠3=∠4
所以∠1=∠4
所以AC∥O′D(内错角相等,两直线平行)
2.(1)相等.因为∠1=∠2,所以BD∥CE(内错角相等,两直线平行)
所以∠ABD=∠C(两直线平行,同位角相等)
(2)相等 因为∠ABD= ∠C 又∠D=∠C
所以∠D=∠ABD
所以DF∥AC(内错角相等,两直线平行)
所以∠A=∠F(两直线平行,内错角相等)
3.∠B=∠C 因为AD∥BC
所以∠B=∠EAD(两直线平行, 同位角相等), ∠C=∠CAD(两直线平行,内错角相等)
又∠EAD=∠CAD(角平分线定义)所以∠B=∠
第四篇:平行线性质
平行线性质
平行线的性质
1.两直线平行,同位角相等。
2.两直线平行,内错角相等。
3.两直线平行,同旁内角互补。
4.在同一平面内的两线平行并且不在一条直线上的直线。
有关平行线:
1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
如:AB平行于CD,写作AB∥CD
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
3.平行公理的推论(平行的传递性):
平行同一直线的两直线平行。
∵a∥c,c∥b
∴a∥b
平行线的判定:
1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
2.两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3.两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
平行线的性质:1.两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。
2.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。
3.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。
两个角的数量关系两直线的位置关系:
垂直于同一直线的两条直线互相平行。
平行线间的距离,处处相等。
如果两个角的两边分别平行,那么这两个角相等或互补。
基本规律
1.平行线的性质和判定中的条件和结论恰好相反。
2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。
3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。
平行线的性质
1.两直线平行,同位角相等。
2.两直线平行,内错角相等。
3.两直线平行,同旁内角互补。
4.在同一平面内的两线平行并且不在一条直线上的直线。
有关平行线:
1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
如:AB平行于CD,写作AB∥CD
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
3.平行公理的推论(平行的传递性):
平行同一直线的两直线平行。
∵a∥c,c∥b
∴a∥b
平行线的判定:
1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
2.两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3.两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
平行线的性质:1.两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。
2.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。
3.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。
两个角的数量关系两直线的位置关系:
垂直于同一直线的两条直线互相平行。
平行线间的距离,处处相等。
如果两个角的两边分别平行,那么这两个角相等或互补。
基本规律
1.平行线的性质和判定中的条件和结论恰好相反。
2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。
3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。
第五篇:平行线性质
《平行线的性质》教学设计
作者: 来源: 时间:2009-5-18 10:19:16 阅读47次 【大 中 小】
一、教学目标
1、知识与技能目标:经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
2、能力目标:经历探索平行线性质的过程,掌握平行线的性质,并能解决一些实际问题。
3、情感态度目标:在自己独立思考的基础上,积极参与小组活动对平行线的性质的讨论,敢于发表自己的看法,并从中获益。
4、品质素养目标:培养学生勤于思考、勇于探索、钻研的品质。
为实现以上教学目标,突出重点,解决难点,充分发挥现代教育技术的作用,我制作了多媒体课件,运用多媒体辅助教学,变静为动,融声、形、色为一体为学生提供生动、形象、直观的观察材料,激发学生学习的积极性和主动性。
二、教学重点和难点
重点:平行线的三个性质以及综合运用平行线性质、判定等知识解题。
难点:区分性质和判定以及怎样综合运用同位角、内错角、同旁内角的关系解题。
三、教材分析
平行线是最简单、最基本的几何图形,在生活中随处可见,它不仅是研究其他图形的基础,而且在实际中也有着广泛的应用。因此,探索和掌握好它的有关知识,对学生更好的认识世界、发展空间观念和推理能力都是非常重要的。
教材设置了一个通过探索平行线性质的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。为学生今后的学习打下了基础。
因此,无论在知识技能上,还是在学生能力的培养及感情教育等方面,这节课都起着十分重要的作用。
四、学生情况分析
考虑本校处在城乡结合部,大部分学生的基础比较差,缺乏自学能力,动手能力比较差,所以,这个学期应该重视学生学习兴趣和态度的培养、重视学生的自主探索和合作交流以及新意识的培养。利用七年级学生都有好胜、好强的特点,扭转学数学难、数学枯燥的这种局面。形成一种勤动手、勤动脑,勤探索和肯合作交流的良好气氛
五、课前准备
课前准备:多媒体课件、三角尺、直尺。
六、教学过程
问题与情境
师生互动
设计意图
活动1 你身边的问题
问题: 如图,工人在修一条高速公路时在前方遇到一座高山,为了降低施工难度,工程师决定绕过这座山,如果第一个弯是左拐300,那么第二个弯应朝什么方向。才能不改变原来的方向。
学生观察,小组讨论,交流问题并发表见解, 教师进一步引导学生分析,引导学生将这个问题如何转化成数学问题。
本次活动应关注的问题是:
1、不改变方向,在数学中理解应是什么,2、在这个问题中包含了什么问题
3、如何将它转化为数学问题。
通过实例,让学生从具体的实例中发现数学问题,进而寻求解决问题的方法,使学生懂得数学来源于现实,服务于现实生活,同时也调动了学生的积极性,提高了学生的兴起, 活动2: 探究平行线的性质
问题:
1、上节课学习了用一把直尺和一块三角板可以画两条平行线,想一想在这个过程中三角尺取到什么作用,你能不能用两把直尺画出两条平行线,如果不能,为什么?
2、自己阅读课本的21页“探究”部分,并把空填好。
用电脑展示在画平行线时三角尺在其中取到的作用。
学生通过学习测量比较得到这些角中上下两个角的关系, 关注的问题是:
1、注意性质具有一般性。不能简单从几个特殊的例子,就断定它就具有某种性质,而需要一个从特殊到一般的推导过程。
2、理清两条直线平行,同位角相等,内错角也相等,同旁内角互补之间的关系。
通过动手测量提高学生的动手操作能力,并培养学生从特殊需要到一般的推理能力,使其从感性上升到理性认识。
活动3: 运用与推理
问题: 你能根据性质1,说出性质2,性质3成立的理由吗?如图, 因为a∥b.所以∠1=∠2(_______)又∠3=∠_____,(对顶角相等)所以∠2=∠3, 类似地,对于性质3,你能说出道理吗? 想一想:这节课开始的那个问题应该如何解决? 学生回答,再由同学补充。老师纠正。
教师引导学生观察因为所以之间的关系。
能过学生做和说,培养学生的一定的表达能力和逻辑推理能力。
活动4 巩固与提高
问题1:如图直线a,b被直线c所截 ,1、如果a∥b ,∠1=60?那么∠2,∠3,∠4为多少度。为什么?
2、如果∠1=60?∠3=120?直线a、b有什么关系?为什么? 问题2:∠1=100?∠5=100?∠2=60?那么∠
4、∠3为多少度? 解:因为∠1=100?∠5=100?BR> 所以∠1=∠____()所以 _____∥_______(), 又因为 ∠2 =60?()所以 ∠4=∠______=______()又因为 ∠4与∠3________()所以 ∠3=180?_____=______?BR> 问题3:填一填
如图,已知:∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC ∠BCD=180?(1)因为∠1=∠ABC, 所以 AD∥_____()(2)因为 ∠3=∠5 所以 AB∥_____()(3)因为∠2=∠4 所以 ______∥______()(4)因为∠1=∠ADC 所以______∥______()(5)因为∠ABC ∠BCD=180 所以 _______∥______()问题4,学与用: 某市为建设社会主义新农村,村村通煤气,市政工作人员已经在道路的两侧铺设了两条平行的燃气管道,如果公路一侧铺设的角度为100?为了便于连接,那么另一侧应以什么角度铺设?为什么? 小结: 布置作业
课本25页的第1、2、3题
由学生独立完成,老师指导,引导学生注意这些之间的关系。
应关注的问题是:
1、平行线的性质和判定的不同。
2、几何推理证明的要领。
3、正确分清推理中因为和所以所表达的意义
通过具体问题,使学生更进一步理解和认识平行线的性质和判定的区别和联系。进一步认识角与角之间的关系,进一步锻炼学生几何证明题的逻辑推理能力