第一篇:初中数学平行线公开课教案
公
开 课
教
案
南华中心校东方明2010年5
平行线
一、教学目标
1理解平行线的意义,了解同一平面内两条直线的位置关系 2理解并掌握平行公理及其推论的内容
3会根据几何语句画图,会用直尺和三角板画平行线
4了解“三线八角”并能在具体图形中找出同位角、内错角和同旁内角
二、教学重点和难点 1教学重点:
平行线的概念和平行公理 2教学难点 对平行公理的理解
三、教学过程
一、复习提问
相交线是如何定义的?
二、新课引入
平面内两条直线除相交外还有哪些位置关系?
制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念
三、平面内两条直线的位置关系
1平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a与b平行,记作a∥b
2.同一平面内两条直线的位置关系有两种:相交和平行 3对平行线概念的理解
两个关键:一是“在同一平面内”;二是“不相交” 一个前提:对两条直线而言 4平行线的画法
平行线的画法是几何画图的基本技巧之一,在以后学习中会经常遇到画平行线的问题。方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺一点三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线)。
四、平行公理
1利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”
2.平行公理:经过直线外一点,有且只有一条直线与已知直线平行 提问垂线的性质,并进行比较
3平行公理的推论:如果两条直线与
由前面的教具演示引出:
如图,直线a,b被直线c所截,形成8个角中,其中同位角4对,内错角2对,同旁内角2对
六、课堂练习
1在同一平面内,两条直线可能的位置关系是 2在同一平面内,三条直线交点的个数可能是 3下列说法正确的是()
A经过一点有且只有一条直线与已知直线平行 B经过一点有无数条直线与已知直线平行 C经过一点有一点与已知直线平行
D经过直线外一点有且只有一条直线与已知直线平行
七、小结
让学生独立总结本节内容,叙述本节的概念和结论
八、布置作业
P254 2(3)(4)3(1)(2)
第二篇:初中数学公开课教案:
初中数学公开课教案:
1.1 正数和负数(2)
授课人: 时间:2008.9.9 地点:多媒体教室
1.1 正数和负数(2)
教学目标:
知识与能力
能把给出的有理数按要求分类,了解0在有理数的分类中的作用。
过程与方法
培养学生对数进行分类讨论的意识和正确进行分类的能力。
情感、态度与价值观
通过正、负数的学习,渗透对立统一的辨证思想。
教学重点
有理数的分类。
教学难点:
对分数的理解。
教学过程:
一、知识回顾与深化
问题1:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?分别是什么?
把下列各数填入相应的大括号内。
2221+1,-3.8,-6.2,-4,0,-6,12,3.14 732正数集合:{ „ } 负数集合:{ „ } 2.若下降5m记作-5m,那么上升8m记作,不升不降记作。学生回答后追问学生0是正数还是负数?使学生进一步理解正数、负数的概念及0的特殊意义。
二、分析问题、解决问题
师:在小学大家学过1,2,3,4„„这是什么数呢? 生:自然数。
师:在这些自然数前面加上负号,如-1,-2,-3,-4„„这些是什么数呢?
生:负数。
师:具体叫什么负数呢?
师:今天我们要把大家学过的数分类命名,然后给一个统一的名称。1.分类数的名称
1,2,3,4„„叫做正整数; -1,-2,-3,-4„„叫做负整数。0叫做零。
811252,3,5.2(即5)„„叫做正分数; 61133)„„叫做负分数; 2,7,3.5(即4正整数、负整数和零统称为整数。正分数和负分数统称为分数。整数和分数统称有理数。即
整数
有理数
分数
2.我们知道正数和负数可以表示相反意义的量,你认为有理数还可以怎样分类?请与同伴交流。
正整数 0
负整数 正分数 负分数
三、巩固练习:
(1)0是整数吗?是正数吗?是有理数吗?(2)-5是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?
四、阅读思考:
13下列有理数-7,10.1,-,89,0,-0.67,1中,哪些是整数,哪些是分数,65哪些是负数?
学生思考,然后找学生回答,其他同学补充或纠正。
五、小结与作业:
1、课堂小结:今天我们学习了哪些内容,你有哪些收获?有哪些地方不太明白吗?和同学交流一下。
2、本课作业(1)、必做题:教科书第7页习题1.1第3,6,7,8题
(2)、选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课主要目的是加深对正负数概念的理解和有理数的两种不同的分类。2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后。除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.
3,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.
第三篇:人教版初中数学平行线的性质教案
2.3平行线的性质
一、教材分析:
本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章 第3节平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是‚空间与图形‛的重要组成部分。
二、教学目标:
1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
2.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
3.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。
三、教学重、难点: 重点:平行线的性质 难点:‚性质1‛的探究过程
四、教学方法:
‚引导发现法‛与‚动像探索法‛
五、教具、学具: 教具:多媒体课件 学具:三角板、量角器。
六、教学媒体:大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思:
1.播放一组幻灯片。内容:①火车行驶在铁轨上;②游泳池;③横格纸。
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗? 学生活动:
思考回答。①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;
教师:首先肯定学生的回答,然后提出问题。
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?
引出课题——平行线的性质。
(二)数形结合,探究性质 1.画图探究,归纳猜想
任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图)。
问题一:指出图中的同位角,并度量这些角,把结果填入下表:
第一组 第二组
第三组
第四组 同位角
∠1 ∠5 角的度数 数量关系
学生活动:画图——度量——填表——猜想 结论: 两直线平行,同位角相等。
问题二:再画出一条截线d,看你的猜想结论是否仍然成立? 学生:探究、讨论,最后得出结论:仍然成立。2.教师用《几何画板》课件验证猜想
3.性质1.两条直线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
(三)引申思考,培养创新
问题三:请判断内错角、同旁内角各有什么关系? 学生活动:独立探究——小组讨论——成果展示。教师活动:评价,引导学生说理。因为a‖b 因为a‖b 所以∠1=∠2 所以∠1=∠2 又 ∠1=∠3 又 ∠1+∠4=180° 所以∠2=∠3 所以∠2+∠4=180° 语言叙述:
性质2 两条直线被第三条直线所截,内错角相等。(两直线平行,内错角相等)
性质3 两条直线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)
(四)实际应用,优势互补 1.(抢答)
(1)如图,平行线AB、CD被直线AE所截
①若∠1 = 110°,则∠2 = °。理由:。②若∠1 = 110°,则∠3 = °。理由:。③若∠1 = 110°,则∠4 = °。理由:。(2)如图,由AB‖CD,可得()
(A)∠1=∠2(B)∠2=∠3(C)∠1=∠4(D)∠3=∠4(3)如图,AB‖CD‖EF,那么∠BAC+∠ACE+∠CEF=((A)180°(B)270°(C)360°(D)540°(4)谁问谁答:如图,直线a‖b,如:∠1=54°时,∠2=.学生提问,并找出回答问题的同学。2.(讨论解答)
如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,求)梯形另外两角分别是多少度?
(五)概括存储(小结)1.平行线的性质1、2、3;
2.用‚运动‛的观点观察数学问题; 3.用数形结合的方法来解决问题。
(六)作业 第69页 2、4、7.八、教学反思:
①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣。
②学的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。
③课堂氛围的转变:整节课以‚流畅、开放、合作、‘隐’导‛为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以‚对话‛、‚讨论‛为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
第四篇:初中数学平行线知识点
一个人的知识面是一个圆圈,知识储备越多,圆圈越大,接触到的面积便越广阔,便能掌握和窥视更多的机会。下面小编给大家分享一些初中数学平行线知识,希望能够帮助大家,欢迎阅读!
初中数学平行线知识1
相交线
1、两条直线相交,有且只有一个交点。(反之,若两条直线只有一个交点,则这两条直线相交。)
两条直线相交,产生邻补角和对顶角的概念:
邻补角:两角共一边,另一边互为反向延长线。邻补角互补。要注意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。例如:
判断对错: 因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。()
相等的两个角互为对顶角。()
2、垂直是两直线相交的特殊情况。注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a。
垂足:两条互相垂直的直线的交点叫垂足。垂直时,一定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。(注:这一点可以在已知直线上,也可以在已知直线外)
3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。(或说直角三角形中,斜边大于直角边。)
点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。注:距离指的是垂线段的长度,而不是这条垂线段的本身。所以,如果在判断时,若没有“长度”两字,则是错误的。
4、同位角、内错角、同旁内角
三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。注意:要熟练地认识并找出这三种角:① 根据三种角的概念来区分 ② 借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。
特别注意:
① 三角形的三个内角均互为同旁内角;
②同位角、内错角、同旁内角的称呼并不一定要建立在两条平行的直线被第三条直线所截的前提上才有的,这两条直线也可以不平行,也同样的有同位角、内错角、同旁内角。
5、几何计数:
①平面内n条直线两两相交,共有n(n – 1)组对顶角。(或写成 n^2 – n 组)
②平面内n条直线两两相交,最多有n(n–1)/2个交点。(或写成(n^2–n)/2个)
③平面内n条直线两两相交,最多把平面分割成[n(n+1)/2]+1个面。
④ 当平面内n个点中任意三点均不共线时,一共可以作n(n–1)/2 条直线。
回顾:
ⅰ、一条直线上n个点之间,一共有n(n–1)/2 条线段;
ⅱ、若从一个点引出n条射线,则一共有n(n–1)/2 个角。
初中数学平行线知识2
平行线
同一平面内,两条直线若没有公共点(即交点),那么这两条直线平行。注:平行线永不相交。
1、平行公理:过直线外一点,有且只有一条直线与已知直线平行。(注:这一点是在直线外)
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。(或叫平行线的传递性)
2、平行线的画法:借助三角板和直尺。具体略。(此基本作图方法一定要掌握,多练习。)
3、平行线的判定:
① 同位角相等,两直线平行;
② 内错角相等,两直线平行;
③ 同旁内角互补,两直线平行。
注意:是先看角如何,再判断两直线是否平行,前提是“角相等/ 互补”。
一个重要结论:同一平面内,垂直于同一直线的两条直线互相平行。
4、平行线的性质:
① 两直线平行,同位角相等;
② 两直线平行,内错角相等;
③ 两直线平行,同旁内角互补。
注意:是先有两直线平行,才有以上的性质,前提是“线平行”。
一个结论:平行线间的距离处处相等。例如:应用于说明矩形(包括长方形、正方形)的对边相等,还有梯形的对角线把梯形分成分别以上底为底的两等面积的三角形,或以下底为底的两等面积的三角形。(因为梯形的上底与下底平行,平行线间的高相等,所以,就有等底等高的三角形。)
※此章难度最大就在如何利用平行线的判定或性质来进行解析几何的初步推理,要在熟练掌握好基本知识点的基础上,学会逻辑推理,既要条理清晰,又要简洁明了。
5、命题
判断一件事情的语句叫命题。命题包括“题设”和“结论”两部分,可写成“如果……那么……”的形式。
例如:“明天可能下雨。”这句语句______命题,而“今天很热,明天可能下雨。”这句语句_____命题。(填“是”或“不是”)
① 命题分为真命题 与假命题,真命题指题设成立,结论也成立的命题(或说正确的命题)。假命题指题设成立,但结论不一定或根本不成立的命题(或说错误的命题)。
② 逆命题:将一个命题的题设与结论互换位置之后,形成新的命题,就叫原命题的逆命题。
注:原命题是真命题,其逆命题不一定仍为真命题,同理,原命题为假命题,其逆命题也不一定为假命题。
初中数学平行线知识3
平移
1、概念:把图形的整体沿着某一方向移动一定的距离,得到一个新的图形,这种图形的移动,叫平移。
确定平移,关键是要弄清平移的方向(并不一定是水平移动或垂直移动哦)与平移的距离。如果是斜着平移的,则需把由起始位置至最终位置拆分为先水平移动,再上下移动,或拆分为先上下移动,再水平移动。当然,如果是在格点图内平移,则可利用已知点的平移距离是某一矩形的对角线这一特点来对应完成其它顶点的平移。
2、特征:
① 发生平移时,新图形与原图形的形状、大小完全相同(即:对应线段、对应角均相等);
② 对应点之间的线段互相平行(或在同一直线上)且相等,均等于平移距离。
3、画法:掌握平移方向与平移距离,利用对应点(一般指图形的顶点)之间连线段平行、连线段相等性质描出原图形顶点的对应点,再依次连接,就形成平移后的新图形。
初中数学平行线知识点
第五篇:初中数学公开课听后感
初中数学公开课听后感
高辛二中杨志国
这两节课都能让学生通过他们熟悉的、具体的简单事例入手,在学生自主探索、合作交流中,发现数学知识不仅从生活中处处可见,在学习应用中还有很大的学问。教学时借助合作、探讨、找规律,加深了对数学知识的理解,进一步激发了学生的学习热情。
这两节课突出了以下几个特点:
1、教学设计新颖别致。
能充分利用学生比较喜欢的语言创造一定的环境导入,这样不仅能提高学生的学习兴趣,还能吸引学生对学习数学的兴趣。
2、充分利用小黑板辅助教学。
通过创设情境、模拟商场购物等,让学生感受生活中数学问题,引出探究的内容,提高了学生的学习兴趣。
3、体现解决问题的策略。
教学流程生动、流畅、层次感强,活动扎实有效。通过活动将知识赋予其中,突出了学生解决问题这一新的理念,给学生充分交流和研讨的时间和空间。积极思考的主动权也完全掌握在学生手中。在师生、生生之间的信息交流和活动交往中,当学生面对实际问题时,能引导学生尝试着从数学的角度运用所学知识和方法寻找解决问题的策略,促进了知识的互补互联,使学生学会倾听,学会了异位思考,学会了在多种方案中寻找最优方案的意识,提高了学生解决问题的能力,最大限度地发挥了他们的聪明才智。
4、体现了数学来源于生活,又服务于生活的教学理念。第二节课整个教学内容的编排,生活气息浓,都是采用学生身边熟悉的事例,及时引导学生在生活中,遇到事情要善于思考,讲究策略,使学生感受到数学在日常生活中的广泛应用,尝试用数学方法解决生活中的简单问题。
教学中的几点不足:
有个别学生的活动积极性不够,老师对学生活动的参与程度不够,应该让学生自主探究,归纳总结,更进一步挖掘学生潜能。让每一位学生真正成为探究问题的成功参与者,让学生产生乐于继续探究数学问题的积极性。