第一篇:42人教版小学数学五年级下册--约分--教学设计
《约分》教学设计
——韩雪
一.教学目标
1.通过教学,巩固学生对最简分数和约分的概念的理解,能熟练应用约分的方法,正确地约分。
2.培养学生灵活应用知识的解题能力和计算能力。
3.培养学生仔细计算的良好习惯。二.重点难点
正确、熟练地进行约分。三,教具准备
投影。四.教学过程
(一)导入:提问:什么叫最简分数?什么叫约分?怎样约分?
(二)教学实施
1.完成教材第86页练习十六的第1题。
学生观察图,口头回答蓝色部分和红色部分哪个多些?为什么?
提问:第2个图还可以化简为几分之几?
2.完成教材第86页练习十六的第2题。
学生直接填在教材上,集体订正。
提问:你是根据什么这样填写的?
3.完成教材第86页练习十六的第3题。
让学生根据最简分数的概念,判断哪些已经约成了最简分数,哪些还没有约成最简分数。然后把不是最简分数的继续约成最简分数。
提醒学生注意:像这样的分数,还可以用7去除。
4.完成教材第86页练习十六的第4题。
让学生写在教材上,先约分,再连线。在投影下订正。
5.完成教材第86页练习十六的第5题。
这三组分数,既不同分子,也不同分母,如何进行比较呢?
引导学生思考出先约分,再比较。
6.完成教材第87页练习十六的第6题。
学生先独立思考,在班上进行交流,得出结论:先把这几个分数约分化成最简分数,再比较哪些分数相等,可以用同一个点表示。然后填在教材上。
7.完成教材第87页练习十六的第7题。
提问:求进人决赛的队占所有参赛队的几分之几,是谁与谁比较?怎样计算?
8.完成教材第87页练习十六的第8题。
引导学生根据插图中的两个时钟,求出睡眠时间,再和全天24小时比较,写成分数并约分。
9.完成教材第87页第9题。
学生先独立思考,试着计算。然后集体交流计算方法和思考过程。小结:这道题需要逆向思考。用2约了两次,用3约了一次,说明原来的分数在约分过程中,分子和分母同除以2×2×3=12,才得到。要求原分数,就要把分子3和分母8同乘12。
五.巩固练习
1、找朋友:找出和18/54相等的分数。
9/27 1/3 1/2 6/18 3/4 2/9 2/6 3/9
你是怎样寻到的?说说自己的理由好么?
2、能用不同的分数表示下面各题的商吗
六.思维训练
1.一个分数约成最简分数是,原分数分子与分母之和是90,原分数是多少?
2.一个分数是,分子加上一个数,分母减去同一个数,化成带分数是2,求这个数。
3.分数的分子和分母都减去同一个数,得到的分数约分后是,求减去的数。
七.课堂小结
本节课我们复习了上节课学习的有关约分的知识。通过本节课的学习,我们要能熟练、正确进行约分,并能灵活运用有关约分的知识解题。
第二篇:人教新课标2014秋数学五年级下册《约分》教学设计
人教版五年级下册“约分”教学设计
教学目标:
1、经历知识的形成过程,使学生理解约分和最简分数的意义,探索约分的方法。
2、掌握约分的方法,能根据实际情况正确进行约分。
3、培养学生的观察、比较和归纳等思维能力。教学重点:掌握约分的方法
教学难点:很快看出分子、分母的公因数,并能准确地判断约分的结果是不是最简分数。教学过程:
一、情境导入,猜测验证
1、创设游泳情境,提出问题
师:让我们一起到游泳场看一场激烈的百米游泳比赛(播放游泳比赛录像,学生聚精会神地观看比赛过程)师:游在第一位的运动员已经游了75米。
师:一共100米,已经游了75米,看到这两个条件你能想到什么? 学生积极思考,各抒己见汇报自己的想法: 生1:还有25米没有游; 生2:已经游了全程的75/100; 生3:还剩全程的25/100没有游; 生4:已经游了全程的3/4; 生5:还有1/4没有游。
师:已经游了全程的 75/100和游了全程的3/4是一回事吗? 生1:不是 生2:是一回事
师:你能运用已经学过的知识验证你们的结论吗?
2、运用已经学过的知识进行验证 学生进行激烈的小组讨论并汇报
生: 我们组认为75/100=3/4,因为75÷100=0.75 3÷4=0.75 所以75/100=3/4 师:这是我们曾经学过的什么知识呢? 生:分数与除法的关系
师:你们运用分数与除法的关系找到它们是相等的,还有其他的验证方法吗?
生:我们运用分数的基本性质:75/100的分子和分母同时除以25,得到3/4。
师追问:为什么同时除以25? 生:25是75和100的最大公因数
师:你们组不仅运用了分数的基本性质,而且还找到了75和100的最大公因数25,从而验证出相等,能学以致用,多好啊!(板书:75/100=3/4)
3、根据验证过程引出最简分数的意义
师:通过刚才的验证我们知道75/100=3/4,还能说出一些和3/4相等的分数吗?
生:6/
8、12/
16、15/20、30/40------师:这些分数中哪个最简单,为什么?
生:3/4最简单,因为3/4的分子和分母是一对互质数。师:什么是互质数?
生:公因数只有1的两个数是互质数。师:其他同学听出来了吗,有个词用得很好? 生:是“只有”
师:对,我们就把分子和分母只有公因数1的这样的分数就叫做最简分数。
(板书:最简分数)
师:在黑板上你还能很快找出一个最简分数吗? 生:1/4 师:说说理由。
生:因为1/4的分子和分母只有公因数1,所以它是最简分数。师:那你现在知道1/4和25/100的关系了吗? 生:也是相等的。
师:很好,你们还能再举出一些最简分数的例子吗? 学生举例
教师总结:同学们通过刚才的观察、猜测、验证得出了最简分数的意义,大家表现的非常好,下面我们就来把一个分数化简称最简分数。
二、自主探索约分的方法
1、理解意义
出示例4 :把24/30化成最简分数 师:仔细读题,如何理解“化成最简分数”这句话。
生:就是把24/30变成和它大小相等,并且分子和分母的公因数只有1这样的分数。
师:同桌互相说一说该怎么做呢? 学生互说并汇报
生:24/30=24÷2/30÷2=12/15 12/15=12÷3/15÷3=4/5。师:说说你是怎么想的?
生:先用24和30的公因数2去除,发现12/15不是最简分数,还有公因数3,再用3去除,最后得到最简分数4/5。师:还有其他想法吗?
生:24/30=24÷6/30÷6=4/5,我是先找到24和30的最大公因数6,再用6去除分子和分母从而得到最简分数4/5。师:同学们对比一下这两种方法,哪种更好一些呢?
生:找最大公因数的方法能更快地把一个分数化简成最简分数。师小结:同学们运用分数的基本性质把24/30化简成最简分数,你们知道吗,刚才的这一过程叫做约分。(板书课题)
2、学生独立探究,尝试约分 学生看书P85,约分的一般方法
师:看完后,你能回答小精灵提出的问题“每一步中都是用分子、分母的哪个公因数去除的?" 学生边回答教师边演示约分的步骤及方法,并强调书写格式 师:在把一个分数化简成最简分数时,如果能很快找到分子和分母的最大公因数,就可以用最大公因数去约分,如果一下子找不到最大公因数,可以一步一步地用公因数去约分。下面请你仿照这一方法,把8/12进行约分。学生自己完成
三、综合练习
1、情境中折纸表示8/32 出示蛋糕图
师:用你们手中的圆片代表蛋糕,并很快表示它的8/32。
学生积极思考,有的认真观察分数,有的急于动手折8/32,最终出现两种折法。
生1:我是把圆片对折了5次,平均分成了32份,再表示出其中的8份。
师:你很认真的折出了这个蛋糕的8/32,就是时间长了些,为什么有些同学却折得很快呢? 生2:我只折了它的1/4。师:为什么?
生2:我发现8/32的分子和分母都有最大公因数8,约分后得到1/4。师:多好啊!通过你的认真观察,运用今天学的知识-----约分,很快地找到了这个蛋糕的“8/32”,真是个善于动脑筋的孩子。
师小结:学习约分不仅可以分蛋糕,还可以运用到生活中的很多地方,只要你是个善于观察善于思考的孩子,你一定能做得最好、用得更好。
2、下面哪些分数没有化成最简分数,请把它们化成最简分数。16/24=4/6 15/36=5
第三篇:人教版五年级数学《约分》教学设计
人教版五年级数学下《约分》教学设计
红寺堡东源小学
蔺小龙
教学内容:
人教版义务教育课程标准教科书五年级下册第65页例4 学情分析:
《约分》是在学生已经掌握了分数的基本性质和最大公因数的基础上进行教学的,约分作为分数基本性质的直接应用,它是化简分数的常用方法。学习约分,不但可以提高对分数基本性质的的认识,还为分数的四则运算打下基础。教学目标:
1、知识和技能目标:理解最简分数和约分的意义,掌握约分的方法,能够正确地进行约分,培养学生观察、比较和概括能力。
2、过程与方法目标:通过学生自主探索理解最简分数和约分的意义,经历探究约分方法的过程,渗透恒等变换思想。
3、情感态度和价值观目标:培养学生运用所学知识解决问题的能力,感受数学与生活的紧密联系。教学重难点:
重点:最简分数的意义和约分的方法;掌握约分的方法。难点:能准确的判断约分的结果是不是最简分数。教具、学具准备:
白板课件
教学过程
一、课前互动
1、给学生送礼物,激发学生的学习兴趣。课件出示一起回答
1、你能快速找出分子分母的最大公因数吗? 6/9
5/7
5/10
8/10
2、填空(说说为什么,什么是分数的基本性质)18/30=()/15= 3/()
18/30=6/()=()/5 过渡:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕。
二、探究新知。
(一)、猜测、验证和比较,理解最简分数的意义
1、课件出示例4.,让学生观察。、猜一猜: 75/100和3/4是一回事吗?
3、验证:让学生同桌讨论,把验证过程写在练习本上。
4、学生汇报结果,教师课件演示。
5、引导学生比较 75/100和3/4两个分数的异同,得出最简分数的概念。
相同点:分数的大小相等
不同点:75/100分子和分母较大,含有公因数1、5、25;3/4分子和分母较小,只含有公因数1。分数的意义,分数单位都不同
总结概念:分子和分母只含有公因数1,像这样的分数叫做最简分数。
活动:请学生例举最简分数的例子。
抓住关键:分子和分母只含有公因数1,看是否有公因数5、25
8、课件出示练习:指出下面哪些分数是最简分数?为什么? 7/13
6/11
9/15
10/15
4/18 指名回答,说明为什么。
抓住关键:分子和分母只含有公因数1
(二)、探究约分的意义和方法
过渡:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢?
1.判断24/30是不是最简分数(不是,除了1外,还有公因数2、3、6)
把24/30化简成最简分数 师提出思考问题:
(1)化简指什么? 使分子分母的数字变小
(2)化简后大小不能变,要运用什么性质? 等式的基本性质(3)等式的基本性质中同时乘或除以相同的数(0除外),化简时,是乘,还是除,用什么来除。
(4)化简到什么时候为止? 最简分数,分子分母只有公因数1 学生小组内讨论交流,明确题目要求,为探究约分方法做准备。
2、师:请同学们试着做一做,把24/30化简成最简分数。大小不能变。
完成后小组内交流。巡视,指导。交流探究结果。小组汇报结果。
(1)方法一:用分子和分母的公因数(1除外)依次去除。除到最简分数为止
24/30=24÷2/30÷2=12/15 12/15=12÷3/15÷3=4/5(2)方法二:直接用分子和分母的最大公因数去除。直接得到最简分数。
24/30=24÷6/30÷6=4/5 小结:教师用课件演示比较两种约分方法,并总结约分的意义。约分的概念:
三、巩固练习(课件演示)
过渡:刚才我们一起学习到了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗?
1、投篮游戏(击鼓传花)
10/15
10/20
12/18
6/9
7/14
3/9
9/18
四、课堂小结
1、这节课我们学习了什么内容?(板书课题:约分)
2、能力提升
把一个分数约分,用3约了1次,得5/6,这个分数原来是多少?
五、课后作业
课本64页第3、4题
六、板书设计
约 分
方法一:
24/30=24÷2/30÷2=12/15 12/15=12÷3/15÷3=4/5 方法二:
24/30=24÷6/30÷6=4/5 75/100 = 3/4 不同点 : 分子和分母较大 分子和分母较小,含有公因数2、3、6
只含有公因数1
第四篇:小学数学五年级下册 约分和通分练习题
日期:2016 年 10 月 30 日 用时: ____ 得分: ____
一、填空。
1.(和只有)的分数,叫做最简分数。
2.一个最简分数,它的分子和分母的积是24,这个分数是(()/()、()/()、()/())。(从小到大顺序填写)
3.分母是8的所有最简真分数的和是()/()。
4.一个最简分数,把它的分子扩大3倍,分母缩小2倍,是9/2,原分数是()/(),它的分数单位。
5.24/30的分子、分母的最大公约数是(),约成最简分数是()/()。
6.通分时选用的公分母一般是原来几个分母的()。
二、判断。(对的打√,错的打×)
1.分子、分母都是偶数的分数,一定不是最简分数。(√×)
2.分子、分母都是奇数的分数,一定是最简分数。(√×)
3.约分时,每个分数越约越小;通分时,每个分数的值越来越大。(√×)
4.异分母分数不容易直接比较大小,是因为它们的分母不同,分数单位不统一的缘故。(√×)
5.约分是每个分数单独进行的,通分是在几个分数中进行的。(√×)
三、选择题。
1.分子和分母都是合数的分数,()最简分数。
①一定是
②一定不是
③不一定是
2.分母是5的所有最简真分数的和是()。
①2 ②1/2 ③1 ④1/4 3.两个分数通分后的新分母是原来两个分母的乘积。原来的两个分母一定()。
①都是质数
③是相邻的自然数
③是互质数
4.小于7/11而大于7/13的分数()。
①有1个
②有2个
③有无数个
5.通分的作用在于使()。
②分母统一,分数单位相同,便于比较和计算
②分母统一,分数单位相同,便于比较和计算
③分子和分母有公约数,便于约分
6.分母分别是15和20,比较它们的最简真分数的个数的结果为()。
①分母是15的最简真分数的个数多
②分母是20的最简真分数的个数多
③它们的最简真分数的个数一样多
7.把化成分数部分是最简真分数的带分数的方法应该是()。
②先化成带分数再把分数部分约简
②先化成带分数再把分数部分约简
③都可以,结果一样
8.一个最简真分数,分子与分母的和是15,这样的分数一共有()。
①1个
②2个
③3个
④4个
交 卷
第五篇:五年级约分教学设计
五年级下册《约分》教学设计
第二小学 王春梅 教学目标:
1、使学生理解最简分数和约分的概念。
2、掌握约分的方法,并能正确地进行约分。
3、培养学生的观察、比较和归纳等思维能力。
教学重点:掌握约分的方法。
教学难点:训练学生很快看出分子、分母的最大公因数,并能够准确地判断约分的结果 是不是最简分数。
教具准备:多媒体电脑、预习单。
教学过程:
一、复习铺垫,引入新课。
1、说出下面每组数的公因数和最大公因数。18和24 12和30 9和27 11和7
2、指出下面哪两个数是互质数。
3和8
12和8 5和7和4
3、说一说什么是分数的基本性质?
4、这节课我们就用刚才复习的知识学习这一节课的内容。板书课题 约分
二、探究新知
1、小组交流预习问题一。
认真阅读课本65页,完成下面预习内容。预习问题一:
1、把 24/ 30 化成分子和分母比较小且分数大小不变的分数。
2、什么是约分?
3、我知道约分还有一种写法?
小组长组织学生进行讨论交流,选出代表展讲,老师参与学生的讨论,进行个别指导。
2、指名小组派代表汇报展讲。听讲的学生可以做补充或提出自己的疑问。设想:
学生的疑问可能有:24/30的分子分母为什么同时除以2或3还有6.约分的另一种写法学生会讲的不太清楚,老师做补充。
重点理解什么是约分?找出关键词。把一个分数化成和它相等,但分子 和分母都比较小的分数,叫约分。小结约分的方法:
方法一:用分子、分母的公因数,逐次去除分子和分母,最后得到最简分数。方法二:用分子、分母的最大公因数,分别去除分子和分母,得到最简分数。
3、小组讨论交流预习问题二。
什么是最简分数?你能举出几个最简分数吗?
4、指名小组派代表汇报展讲。听讲的学生可以做补充或提出自己的疑问。在举例中理解最简分数
分子和分母只有公因数1,这样的分数叫最简分数。
下列分数中哪些是最简分数?
15/16 10/21 17/30 31/91 4/18
5、下面我们利用刚才学习的知识,完成下面的练习。
三、巩固练习
1、指出下列分数分子和分母的最大公因数
30/45 15/21 8/12
2、分苹果。
3、猜灯谜,连谜底.四、全课小结 说一说这一节课的收获?
五、布置作业
完成课本66页3、4、5、8题。