第一篇:第一课时 简单的重叠问题
第一课时
简单的重叠问题 教学内容:
义务教育课程标准实验教科书三年级数学下册第九单元《数学广角》第108页。
学习目标:
知识与技能方面:使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言表述。
过程与方法方面:使学生感知集合图的产生过程,初步培养学生的建模意识和能力,渗透多种方法解决问题的意识。
情感态度价值观方面:培养学生初步养成善于观察、善于思考的学习习惯。
教学重难点:
使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言进行描述。
教学流程:
一、激趣导入明确主题
1、我想试试同学们反映快不快,请大家猜个脑筋急转弯。
两个爸爸和两个儿子去动物园,可是他们只买了三张票,便顺利地进了动物园,这是为什么?【板书:爷爷、爸爸、儿子】
2、两个爸爸【板书:2】,两个儿子【板书:2】,却只买了三张票【板书:3】。这2+2怎么会等于3?这里谁的身份最特殊?为什么?【爸爸的身份最特殊,有两个身份,既是爷爷的儿子又是儿子的爸爸。板书:既……又……】【爸爸有两个身份,重复算了一次,板书:2+2-1=3】
3、今天,我们要研究的就是与这有关的一类问题。【板书:数学广角】窍门满街跑,看你找不找。这节课看谁找的窍门最多?谁表现得最好?
二、引导探究发现规律
1、了解运动爱好
同学们平时喜欢体育运动吗?体育运动各种各样,你喜欢什么样的运动?
2、假如学校里要组织活动,一项跑步,一项跳绳,请你选择的话,你喜欢什么运动?
我们举举手看,喜欢跑步的有哪些同学?喜欢跳绳的有哪些同学?都很多,有没有两样都比较喜欢的?
3、老师想进一步了解你们,请允许我对你们其中的一个小组进行调查,好吗?看看哪个小组今天的精神面貌最好!
4、老师在讲台的两边分别画了两个圈:左边蓝色的圈表示喜欢跑步的,右边红色的圈表示喜欢跳绳的。
5、【指定小组】现在请喜欢跑步的同学到左边蓝色的圈内集合【有6人,板书:6】;请喜欢跳绳的同学到右边红色的圈内集合【有4人,板书:4】。
6、为了让大家看得更清楚,老师在黑板上画一个表格:“第?小组喜欢跑步、跳绳学生名单”,请第?小组的同学分别在“跑步”和“跳绳”后面签上名字,两者都喜欢,两边都签。
第?小组喜欢跑步、跳绳学生名单
【故作惊讶】喜欢跑步的有6人,喜欢跳绳的有4人,这个小组没有10人呀?问题出在哪儿呢?
【有两个同学既喜欢跑步又喜欢跳绳】 小组讨论发现:统计过程中有同学既喜欢跑步又喜欢跳绳,是重复的,在计算人数时只能计算一次。
7、看来表格不方便我们统计总人数!
之前,在老师左边蓝色的圈表示的是什么?在老师右边红色的圈表示的是什么?现在,老师让第?小组的同学一起上来,我们看看他们怎么站。
请大家拿出纸和笔,在纸上写一写、画一画,看怎样能使别人一看就知道喜欢跑步的有哪些同学,喜欢跳绳的有哪些同学,两样都喜欢的有哪些同学?同时还方便我们数人数?
8、谁愿意展示下你的想法?根据老师所掌握的,在100多年前的英国,有一个名叫韦恩的逻辑学家,用一个图很方便的解决了我们今天遇到的这个问题。让老师来展示给大家看。
蓝色的圈圈住的是什么?【喜欢跑步的同学】红色的圈圈住的是什么?【喜欢跳绳的同学】中间两个圈相交的部分呢?【既喜欢跑步又喜欢跳绳的同学】一共是多少个同学?【8人】
因为是韦恩最早发明的,所以就以他的名字命名这种图,叫韦恩图。老师发现不少同学的想法和韦恩的一样,看来如果我们生的比他早,那就是用你的名字来命名了。
9、现在我们知道了可以用韦恩图,既能表示重复的部分,又能方便统计总数。接下来,假如要用算式表示喜欢跑步和跳远的一共有多少人,又该是怎样的呢?
①算法1:6+4-2=8人
你是怎么想的?【先把喜欢跑步的和喜欢跳绳的分别加起来。算式是6+4=10,然后再用10减去两个重复的,10-2=8】 ②算法2:4+2+2=8人
请你解释一下。【4是只喜欢跑步的,2是只喜欢跳绳的,2是既喜欢跑步又喜欢跳绳的,即重复的】
③算法3:6+2=8人
【喜欢跑步的4人,加上只喜欢跳绳的2人】 ④算法4:4+4=8人
【喜欢跳绳的4人,加上只喜欢跑步的4人】
10、刚才同学们想了很多算法,你觉得哪种比较容易理解。吧你比较容易理解的那种算法,说给你的同桌听一下,是什么意思?
三、回归生活,实际运用
1、现在就去大自然看看,它们是谁呀?在这些动物当中有会飞的,会游泳的。找找哪些是会飞的,哪些是会游泳的,你能把它们的序号填到图中合适的位置上吗?【练习二十四,第1题】
只会飞的有哪些?【②④⑦⑧⑩】 只会游泳的有哪些?【①⑤⑥⑨】
③天鹅放哪儿?【放中间】为什么放中间?【它既会飞又会游泳】同意吗? 如果又来了一只小狗,应该把它放在哪呢? 【因为它既不会飞也不会游泳】
所以不能放在圈里,只能把它放在哪里?【圈外】 同学们真了不起,没有被这样的问题迷惑住!
2、看图,文具店昨天进了5种货,今天进了5种货,两天一共进了多少种货?【练习二十四,第2题】
四、拓展延伸,升华主题
1、三年级有20个同学参加兴趣小组,其中参加数学小组的有15人,参加语文小组的有13人。
(1)既参加数学小组又参加语文小组的有几人?(2)只参加数学小组的有几人?(3)只参加语文小组的有几人?
2、水果店昨天进了4种水果,今天进了4种水果,两天可能一共进了几种水果?
通过这节课的学习,你有什么收获?
今天我们遇到的数学问题都有什么共同特征?【有重复的】都通过了什么方法帮助我们解决的?【画韦恩图、列算式计算时减去重复的一次】
教学设计:
喜欢跑步有:6人 喜欢跳绳有:4人 两者都喜欢的有:2人 喜欢这两种一共有多少人? 列式:6+4-2=8人 第二课时
等量代换
教学内容:
义务教育课程标准实验教科书三年级数学下册第九单元《数学广角》第109页。
学习目标:
知识与技能方面:初步体会等量代换的数学思想方法;初步运用其思想方法解决一些简单的实际问题或数学问题。
过程与方法方面:通过观察、猜测、操作、计算、验证等活动,亲历学习过程,从而体验学习的愉悦。
情感态度价值观方面:培养学生有序、全面地思考问题的意识和合作学习的习惯。
教学重难点:
利用天平或跷跷板的原理,使学生在解决实际问题的过程中初步体会等量代换的思想,为以后学习简单的代数知识做准备。
教学流程:
一、激趣导入 明确主题
1、同学们都听说过“曹冲称象”的故事吧!曹冲是怎么称出大象的重量的呢?让我们一起来回顾这一过程。
2、曹冲是把大象的重量转换成了什么的重量呢?【他是把大象的重量转换成了与它重量相等的石头的重量】因为当时没有那么大的称能直接称出大象的重量,所以曹冲就用石头的重量代换了大象的重量,称出了石头的重量也就知道了大象的重量。
3、同学们,你们大概还不知道吧,曹冲确实非常了不起,他运用了一种重要的数学思考方法——等量代换。【板书:数学广角——等量代换】这节课我们就来学习如何用“等量代换”的方法解决问题。
二、引导探究发现规律
1、今天这节课,老师给同学们带来了神秘的礼物。猜猜,什么样的孩子能够得到它们?全班?个大组,哪组的成员在参与过程中积极主动,认真动脑思考,遵章守纪,老师就奖励这个组一个青苹果,三个青苹果可以换一个红苹果,两个红苹果可以换取一份神秘的礼物。看看哪个组能得到礼物。
有信心吗?老师相信你们是最棒的。
2、大家请看这是什么?【出示天平、砝码】 它有什么作用?【天平可以称出物体的重量】
我们来体会一下,用天平量物体的轻重时,天平不同的状态会告诉我们哪些信息?这是砝码,砝码都是有重量的,所以用它可以测量出物体有多重。
看看,现在天平是什么样的状态?【向右边倾斜】天平向右边倾斜,在告诉我们什么呢?【右边重些】
现在天平是什么样的状态?【向左边倾斜】向左边倾斜,这是天平在悄悄的告诉我们什么?【左边重些】
现在呢?【天平平衡】天平平衡的时候,我们可以知道两边物体的重量有什么关系呢?你能完成这个结论吗?【当天平处于平衡状态的时候,左右两边的物体的重量“相等”】
两个重量相等的物体,我们可以用一个词来概括。谁知道? 看来这个问题,得需要老师来帮忙了。可得认真听啊,一般人我不告诉他。【等量】
2、认识了天平,又理解了等量这个词,让我们带着发现的眼睛,到市场看一看。请同学们仔细观察这幅图,看看,从图中你知道了什么?【板书:一个西瓜的重量= 4千克,四个苹果的重量=1千克】
请同学们想一想:一个西瓜的重量=?个苹果的重量。
请同学们小组合作,共同解决这个问题,大家可以动用手中的学具摆一摆!我要请同学到前面来讲述自己的思考过程,看谁能把自己的想法清楚明白的表达出来。
【一个西瓜4千克(等于4个砝码),1千克(1个砝码)等于4个苹果,我们用替换的方法,把一个1千克(1个砝码)换成4个苹果。西瓜重4千克(4个砝码),总共要换4次,因此是16个】
【一个西瓜和4千克砝码同样重,所以4千克砝码就有4个4,所以有4×4=16个】
【依学生的回答,一边摆学具,利用直观的方式帮助学生理解,板书:1个西瓜的重量=16个苹果的重量】
3、小结:当两个物体的重量都等于同一个物体时,他们的重量也是相等的,可以进行互相替换。
4、在很久以前,早到货币都没有的时候,那时人们要想得到自己需要的东西,常常采用以物换物的方法。
我们来看看,他们是怎样换取家畜的。【出示图片】
说一说,你从图上看到了哪些信息?【2只绵羊的重量=1头猪的重量;4头猪的重量=1头牛的重量】 有一位农夫想用自家的两头牛到集市上换绵羊,能换回几只绵羊? 大家能解决这个问题吗?4人小组内讨论,解决问题。
根据2头绵羊的重量=1头猪的重量可以求出4头猪的重量=8头绵羊的重量,再根据4头猪的重量=1头牛的重量可以求出8头猪的重量=2头牛的重量,所以16只绵羊的重量=2头牛的重量。【要求2头牛和多少头羊同样重,首先要知道2头牛和多少头猪同样重,再利用猪和羊的关系进行替换(计算),最后求出结果。】
【可以让学生从多方面去考虑不同的方法,板书】
同学们想一想,古人在生活中想到了用等量代换的方法换去自己需要的物品,在我们现代生活中还有哪些事情用到了等量代换的知识?【花钱买东西、促销集卡换礼品】
三、回归生活,实际运用
1、讲了这么多,老师的肚子都有些饿了,我们去吃麦当劳好吗?
麦当劳叔叔告诉我们:1个汉堡可以换2个鸡翅,1个鸡翅可以换3个冰淇凌,那么1个汉堡可以换几个冰淇凌?
【1×2×3=6个】
【1个汉堡和6个冰淇淋都可以换2个鸡翅,所以1个汉堡可以换2个冰淇淋】
2、这时,麦当劳叔叔又送来了可乐。你们看,麦当劳叔叔又带来了什么信息呢?1瓶大可乐可以换2瓶中可乐,1瓶中可乐可以倒满3杯。1瓶大可乐可以倒满几杯呢,你是怎么想的? 【1瓶大可乐和6杯可乐都可以换2瓶中可乐,所以1瓶大可乐可以换6杯可乐】
3、在麦当劳里喝了大半天,同学们手中有了不少可乐瓶了吧。这些可乐瓶怎么处理呢?
好消息:回收可乐瓶,每5只空可乐瓶可以换1瓶可乐。
现在咱们班废品回收袋里有50个空可乐瓶,如果拿这些空瓶去换可乐,请你算一算,只换一次可以换到多少瓶可乐?
【可以换50÷5×1=10瓶】
四、拓展延伸,升华主题
1、我们看看小兔子在做什么?小白兔和小灰兔正在换萝卜呢!他们换了好几次,总也没换对,你们能帮助他吗?
6根胡萝卜换2个大萝卜,9个大萝卜换3棵大白菜。6棵大白菜换多少根胡萝卜?【练习二十四,第3题】
【6棵大白菜可以换18个大萝卜,18个大萝卜可以换54根胡萝卜】 引导学生读题、分析关系,并尝试抽象地推导(计算)一下。如果学生抽象地想象有困难,可以让学生先用学具摆一摆。
2、看!小鸡、小鸭、小鹅也在玩跷跷板,你们知道谁重一些吗?【练习二十四,第4题】
提示:直接比较1只鸡和1只鸭谁重一些比较困难,可以转化为2只鸡和2只鸭,或4只鸡和4只鸭的比较。
【1只鹅相当于2只鸭,两只鹅比4只鸭重,说明1只鹅比2只鸡重;2只鸭比2只鸡重,1只鸭比1只鸡重】
3、【练习二十四第5题】
4、这节课我们学习了如何用等量代换的方法解决数学问题,现在我们一起来看看比赛的结果,到了最激动人心的时刻了,3个青苹果换一个红苹果,2个红苹果换取神秘礼物。算算你们组能得到神秘礼物吗?【发奖品】
教学设计:
2头绵羊的重量=1头猪的重量 4头猪的重量=8只绵羊的重量
个人工作总结
一个学期以来,我能认真地做好自己的本职工作,积极投入新一轮课程改革试验中,将提高教学水平与思想理论水平结合起来,从而不断的完善自己,同时,热爱学生,努力为学生的发展提供契机。在教书育人中,从各方面严格要求自己,使教学工作有计划,有组织,有步骤地开展。现对本学期教学工作进行回顾与思考,以促进今后的工作更上一层楼。
首先在思想方面,我忠诚党的领导,热爱党的教育事业,发扬奉献精神,严格执行教育方针,尽职尽责,教书育人;同时面向全体学生,热爱、尊重、了解和严格要求学生,不歧视、挖苦他们,循循善诱,诲人不倦;要求学生做到的,自己首先做到,以身作则,为人师表。同时处处以《教师职业道德规范》来约束自己的言行,认真的参加政治学习,不断的提高自身的政治素质。加强学习,不断更新教学理念.。作为新课程试验的教师,我深知学习的重要性。所以,在实践中,我努力学习《课程标准》等教学理论,从而丰富更新自己的头脑。紧紧围绕学习新课程,构建新课程,尝试新教法的目标,不断更新教学观念。注重把学习新课程标准与构件新理念有机的结合起来。将理论联系到实际教学工作中,解放思想,更新观念.。确立了“一切为了人的发展”的教学理念。树立“以人为本,育人为本”的思想。
其次,本人能够严格执行学校的作息时间,不早退,不迟到,做到了早出晚归,按时上下班,从不因为个人问题耽误上课,给学生做了极好的表率。
第三,在教育教学工作中,本人积极认真学习新大纲、新教材,将教材、教法、学法进可能完美的结合,积极、认真备好每一个教案,上好每一节课,充分发挥课堂45分钟的作用,尽可能减轻学生的课业负担,同时积极学习钻研名师、专家的教育、教学理论,探索适合班级的教育方法、教育模式。与此同时,向身边的有经验的教师学习,积极参加听课、评课活动,努力提高自己的教育理论水平;同时在业务上精益求精,积极探索多媒体、网络教学,拓宽教学新思路;与此同时,采用灵活多变的方法,例如演讲朗诵会、读书活动等活动,调动学生学习积极性,提高学生的学习成绩。具体做法如下:
1、深入钻研教材,备好每一堂课。能根据教材内容及学生的实际,拟定教学方法,创造性地使用教材,编写比较实用性的教案,教案中体现学法的指导。
2、努力改变教学方式,提高教学质量。在课堂上,大胆改革传统的教学方法,把自主学习、合作学习引入课堂,注意调动学生的积极性,加强师生互动,充分体现学生的主动性,让学生学得容易,学得轻松,学得愉快。同时,在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。
3、精心设计练习,认真批改作业。力求每一次练习都有针对性,有层次性。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题做出分类总结,进行讲评,并针对有关情况及时改进教学方法,做到有的放矢。
4、做好学科培优转差工作,全面提高教学质量。对于学习能力相对好的学生注重他们在更深层次上的学习和探究;对于学习能力相对困难的学生,从基础知识方面着手对其进行再一次针对性的教育教学,促使他们可以逐渐跟上其他同学的脚步。
在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。通过一学期的不懈努力,本班的优生在在探究问题、预习、解决问题等方面有了较大的提高,在数学竞赛中赵畅、蔡少男等同学获得一等奖;后进生学习积极性也有所提高,能自觉完成作业,考试不及格的人数也逐渐减少。
5、认真做好教学反思工作,不断提高自身的业务素养。授课后及时记载本课教学的成功和失误,能够比较真实地从教法的选择、教师的备课、教学目标的要求与学生的认知水平及教材的编写等方面加以分析,寻找问题出在哪里,并能提出今后的改革措施。从而不断总结经验,吸取教训,改进教法,提高自身的业务素养。
6、积极参加教研活动,努力提高自己的理论水平。在备课组教研中积极发言,在教学目标,教材处理,规划教学流程,创设问题情境,化解教学疑问,促进学生心智发展上,善于提出自己的意见与建议。在学校的教研中,敢于提出自己不同的见解和发表自己的意见。
第四、教研方面:自己除了能一如既往地认真学习、深入钻研外,积极参加各种教科研活动,制定教研计划,并按计划进行学习、交流、研讨、反思,积极上好汇报课、公开课,撰写教学反思、教学案例、教学论文,为科研课题收集数据、资料。一句话,用科学的方法、严谨的态度、务实的作风搞好校本教研,搞好教学科研。
第五、存在的问题和努力的方向:
新一轮课程改革带给我们新的挑战,同时也给教师的成长带来了机遇。回顾一学期的工作,发现也存在一些问题与困惑。如,班级的学困生还比较多;平时的学习还不够,自身的教学理论还比较缺乏;在教学经验论文的撰写方面比较少动笔;课题的实验上摸不着边;备课有时尚抓不准等等问题。还如,课堂上:
1、教师在课堂中如何处理好放与收的关系?
2、如何处理好个性发展与全面提高的关系?如何做到既尊重学生又达到数学教学优化的问题?
3、教师对课堂教学中如何做到关注三个维度目标、如何有效进行整合?这些有待于,在今后的工作努力进。
今后努力方向:
1、树立先进、正确的教育观。要树立现代学生观,学会以发展的眼光看待每一个学生。相信学生的巨大潜能,并努力去探索发掘;在教育教学活动中发扬学生的主体精神,促进学生的主体发展,努力做到因材施教。
2、加强学习,主动地进行知识的更新和“充电”,自觉拓宽知识领域,了解所教学科的发展动态和各学科之间的相互联系,将最新的、最实用的知识和技能传授给学生。同时主动掌握、使用和开发以计算机多媒体为代表的现代教育技术的知识和技能,为使用校园网,发展现代远程职业教育奠定基础。
3、加强对课堂教学的研究,争取形成自己的教学风格。努力将新课程理念落实到课堂上,以“引导学生学会预习、学会交流、学会合作”课题实验为依托,从转变学生的学习方式为课题入手,不断探索现代课程改革的路子。
4、善于学习,勤于动笔。每学年学习一本教育教学专著并做好学习体会,平时认真阅读有关教学理论刊物,结合自己的教学研究每学期撰写一篇比较有价值的教育教学论文,从而不断提高自身的教学理论水平和科研能力。
一分耕耘一分收获。然而,成绩代表过去,未来还须努力。在今后的工作与事业中,自己将再接再励,以饱满的热情、旺盛的精力迎接全新的挑战。
第二篇:重叠问题
重叠问题
一、教学目标:
1、使学生借助直观图,利用集合的思想方法解决简单的实际问题。
2、使学生在解决实际问题的过程中体会集合的思想。
3、培养学生善于观察、善于思考的良好习惯。
二、教学重点:利用集合思想解决简单实际问题
三、说教学过程:
(一)、课前渗透 猜一个脑筋急转弯题:
两个爸爸,两个儿子去理发,明明有四个人,为什么理发师只收了3个人的钱? 【紧紧围绕本课教学内容,让学生猜一个有重叠问题的脑筋急转弯(智力题)为交流内容,为下面的教学打下基础。】
(二)、探究新知
1、现场调查。(课前让每个学生准备两张用卡纸剪成的水果图,背面贴好双面胶,正面用粗笔工整地写上自己的名字)师:课前老师了解到我们班的小朋友有很多的兴趣爱好,有的喜欢运动,有的喜欢看书……也有的喜欢不只一样,特别是每个星期进行的文体2+1活动,大家都非常积极参与。今天我想来一个现场调查,了解大家对文体2+1活动呼啦圈、跳绳的喜欢情况。【师板书:喜欢呼啦圈、喜欢跳绳】
喜欢呼啦圈 喜欢跳绳
师:如果你喜欢呼啦圈,就把名字卡片贴到喜欢呼啦圈的下面;喜欢跳绳的,就贴到跳绳的下面,如果两个都喜欢,那么你就各贴一张;如果两样都不太喜欢,那么你就把你的名字贴到最右边这个角落,大家明白了吗?
这样吧,全部同学都上来,人太多了,请允许我先对一个小组进行调查,其余的等一下再来,可以吗?……
师选择其中一组学生上来贴名字,如下:
喜欢呼啦圈 喜欢跳绳 □□□ □□□ □□□ □□□ …… ……
【备选】若这一小组学生喜欢呼啦圈,跳绳的情况,没有出现交集情况,教师将再调查第二组学生的喜欢情况,以及教师自身也准备了两张名字一起参加这一组的调查。
【根据学生的实际情况,在教材处理上,我选择更贴近学生生活实际的题材——现场调查学生喜欢呼啦圈、跳绳的情况,这样处理使学生感受到数学问题来源自己身边,而且让三年级学生把自己的名字贴到黑板上应该说大大激发学生的参与兴趣。】
2、收集数据
师:现在根据他们选择的情况,我们可以了解到哪些数学信息? 生1:喜欢呼啦圈的有X人。【板书:X人】 生2:喜欢跳绳子的有X人。【板书:X人】
生3:两样都不喜欢的有X人。【板书:X人】(此项一般为0,如果这样,到时可省去这一句)
师:(指板书)那你们说喜欢呼啦圈和跳绳的一共有多少人呢?有这么多人吗?到底多少人?
【学生是学习的主体。在学习过程中我们要给学生一个自主探索、尝试、创新的机会,体现学生个性化的思维。给学生充足的自主观察、尝试、独立思考、互助交流的时间和空间,并适时引导和变换方式,让学生经历用自己喜欢的方式进行表示的过程。】
3、激发冲突。(重点,也是本课的精彩之处)
师:(指板书)那你们说喜欢呼啦圈和跳绳的一共有多少人呢?(要多让几位学生充分说,特别是要强调:还有不同的意见吗?要把学生认识上的冲突充分展示出来以激发矛盾)有些同学认为喜欢呼啦圈和跳绳的是X人,有些同学又认为是Y人,究竟谁的意见才是对的呢?老师也有点弄不明白了(装傻),(折中地)这样吧,我们请刚才这个小组的同学再辛苦一下,老师这里准备了两个大呼拉圈,请喜欢呼啦圈的同学站进左边这个呼拉圈里来,为了让大家都能看清楚,请你们把呼拉圈抬在手上好吗?请喜欢跳绳的同学站在右边这个呼拉圈里来,跟刚才的同学一样,把呼拉圈拿好。(这时要将可能出现的情况都列出来:情况1:一选者进了呼拉圈,个别或全部二选者在呼拉圈外。处理:老师可采访呼拉圈外的学生:你喜欢的是什么,你为什么不站到呼拉圈里去啊?那你有什么办法既站进了呼拉圈,又符合了要求?让学生做到将两个呼拉圈拉近,一只脚站在左边,一只脚站在右边,这时老师就可以协助他站在交集之处(如二选者太多,交集处站不下,可用口说出意思即可)。情况2:一选二选者全部先进了左边圈,右边只剩下另一种一选者,可采访站在圈内的二选者,让他们认识到自己的站法不够准确,自己想办法(同前)做到二选。其它情况处理类似,不再一一举例。)【能根据直观图灵活解决简单的实际问题,体验解决问题策略的多样性。获得成功的体验。】
4、图示集合。
适时评价后师:现在你能一眼就看出一共是多少人了吗?看来刚才这种(指黑板上板书)表示方法不够科学,不能清楚地把这三种情况都表示出来。这种表示方法更好。那你能按这种样子(指学生演示的结果)在黑板上表示出来吗?谁上来试试(如果上来的学生还不是很清楚,师可协助学生一边摆放名字一边引导说出想的过程,包括要把重叠的名字拿去一个,特别是用韦恩图法画椭圆表示要着重强调。
【和学生设计的作品相比较,让学生体会图的作用──更简便、清楚。感到图示更直观、更清楚。】
5、理解各部分的意义。
师:在这个圈里这些同学表示什么?在这个圈里这些同学呢? 师:中间部分表示什么?【师板书:既喜欢,又喜欢】 一共有X人
喜欢呼啦圈X人 喜欢跳绳子X人 都不喜欢X人(可省)
□ □ □ □ □ □ □ □
□…… □ □ □ …… ……
□
…… 既喜欢呼啦圈,又喜欢跳绳子
6、掌握算法。师:那你能列式计算出这一小组的人数吗?
生列式计算(这里要突出算法多样化,每种算式都要说清怎样想的)
【能根据直观图灵活解决简单的实际问题,体验解决问题策略的多样性。获得成功的体验。】
7、变式练习。
师:刚才,我们对第X组的同学进行了调查,下面,老师当当记者,采访其它组的几个同学。你喜欢什么?你的名字应该在图上的哪个位置?该怎么计算? 【通过变式,进一步了解各部分意义,以及解题方法的优化】
8、归纳揭题
师:同学们,今天我们研究的就是数学广角中的一个问题,因为这个问题当中有一部分是重叠的,所以我们把它叫做重叠问题【师板书:数学广角重叠问题】,遇到这种情况时,我们就可以应用今天学习的方法,通过画一画这样的重叠圈来帮助理解,明白了吗?好,那我来考考大家究竟是真明白还是假明白。
(三)、巩固练习
(1)你能把动物的序号填入下面合适的位置吗?(课后练习题)
在陆地生活 在水中生活
表示什么?
(2)小明排队做操,从前往后数排第4,从后往前数也排4,这个队伍一共有几个同学?
(3)拓展练习:三(1)班一个小组参加语文、数学课外小组各4人,猜猜看,这个小组参加语文、数学课外小组的总人数可能是多少人?为什么?这个小组参加语文、数学课外小组总人数最多可能有几人?最少可能有几人?
【设计意图:拓展练习的设计,既能进一步感知重叠问题在生活中的现象,同时对学生进行可能性的思想渗透以及解决问题时思维的有序性。设计时我只提供了数学信息,让学生根据自己的理解提出相应的问题,充分调动学生的学习主动性,体现我是学习小主人的地位,进一步解决生活中的实际问题。】
第三篇:重叠问题
十一、重叠问题
1.某班学生在一次共出了三道题的数学测验中,结果做对第一题的有38人,做对第二题的有41人,做对第三题的有27人,同时做对第一、二题的有32人,做对一、三两题的有21人,做对第二、三两题的有20人,全对的有17人,没有全错的。求全班人数是多少人?
2.五年级有58人参加三项课外活动,每人至少参加一项,有32人参加科技组,27人参加书法组,20人参加体育组,其中参加科技又参加体育的有10人,而参加科技又参加书法的有14人,既参加体育又参加书法的有4人,问三项都参加的有几人?
3.有一个四位数,十位与个位上的数字的积是42,千位与百位上的数字的积是40,这四位数减去1818所得的差是原四位数的反序数(数码相同次序相反的两个自然数如3275与5723,称反序数),求原四位数。
4.盛夏,有10个同学去冷饮店,向服务员交出需要的冷饮数统计表:有6个人要可可,有5个人要咖啡,有5个人要果汁,有3人既要可可又要咖啡;有2人既要咖啡又要果汁;有一人三样都要,问几人没有吃冷饮?
第四篇:《重叠问题》说课稿
《重叠问题》说课稿
吕河镇中心学校 曹文丽
一、设计理念:
《数学课程标准》指出:数学课程要使得人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。《纲要》也提出:要促进每个学生主动地、生动活泼地发展,尊重教育规律和学生身心发展规律,为每个学生提供适合的教育。”基于以上两点,在本节课的教学设计过程中,我主要针对三年级学生的认知特点,从学生的生活经验和知识基础出发,创设学生感兴趣的问题情境,选择生活中容易理解的素材,让学生通过观察、操作、推理、交流等活动寻找解决问题的方法,初步体会集合思想。
二、教材分析:
“重叠问题”是教材专门安排来向学生介绍一种重要的数学思想方法,即“集合”。教材例1通过统计表的方式列出参加语文小组和数学小组的学生名单,而总人数并不是这两个小组的人数之和,从而引发学生的认知冲突。这时,教材利用直观图(即维恩图)把这两个课外小组的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材的落脚点不是掌握与集合有关的概念,也不是熟练掌握计算方法,而是让学生经历探究的过程,在解决问题的过程中理解集合思想,并获得有价值的数学活动经验,为后继学习打下必要的基础。
三、学情分析:
集合思想是数学中最基本的思想。从学生一开始学习数学,其实就已经在运用集合的思想了。例如,学生在学习数数时,就常常把1个人、2朵花、3枝铅笔等用一条封闭的曲线圈起来表示,在学习认识三角形等图形时,也常常把各种不同的三角形用一个圈圈起来表示。又如,学生学习过的分类思想和方法实际上就是集合理论的基础。但是,这些都只是单独的一个个集合图,而本节课所要用到的含有重复部分的集合图,学生并没有接触过。基于此,我把知识的原点定位于两个独立的集合圈,没有采用教材例1统计表的呈现方式,从两个并列的集合圈引发学生的探究,更符合学生的学情。
四、教学目标:
知识与技能:使学生学会借助维恩图,运用集合的思想方法解决较简单的重叠问题。
过程与方法:让学生经历集合图的产生过程,理解集合图的意义,初步培养学生的建模意识和用多种方法解决问题的意识。
情感态度价值观:培养学生善于观察、善于思考的学习习惯,感受到数学在现实生活中的广泛应用,并在学习过程中获得积极的情感体验。
教学重点:
经历集合图的产生过程,理解集合图的意义,学生会借助维恩图,运用集合的思想方法解决简单的实际问题。
教学难点:经历集合图的产生过程,理解集合图的意义。
五、教法、学法:
教无定法,贵在得法。根据本课教学内容的特点和学生的思维特点,我主要采用的教学方法有:情境教学法、操作发现法、直观演示法。
为使学生能够有效地学习,主动的构建知识,学生的学习方法主要有:实践操作法、自主探究法和合作交流法。
六、教学过程:
(一)投石激趣,导入新课
1、脑筋急转弯:两位妈妈和两位女儿一同去看电影(每人都得买一张票),可是她们只买了3张票,便顺利地进了电影院。这是为什么?(妈妈的身份重叠了,所以她们只有3人,能顺利的进入电影院。)
2、引出课题并板书。
(设计意图:通过孩子们喜欢的脑筋急转弯引入,一是激发了学生的学习兴趣,鼓励猜想,引发多元思维,蕴含重复的缄默;二是从学生原有的知识点出发,初步感知重叠问题,为后面的学习做好铺垫。)
(二)深度体验,理解新知
1、做游戏。①听音乐游戏;②猜拳游戏。
2、根据以上两个信息,你能提出什么数学问题?
(设计意图:从学生身边感兴趣的游戏入手,让学生在游戏中收集信息,提出问题,在解决问题的过程中引发认知冲突,这样既让学生感觉到数学就在我的身边,解决的是我们自己遇到的实际问题,也更容易激发学生的探究欲望和学习的内动力,为下一步的自主探究做好准备。)
3、直观演示。
4、你能用画图的方法来表示一下你所看到的情形吗?
5、展示,并说明图中每一部分表示什么。
6、引出维恩图。
(设计意图:利用生活中熟悉的物品——呼啦圈,引导学生创造性思考,纠正经验偏差,让学生亲身经历维恩图的产生过程,根据自己的体验来理解维恩图的意义,感受集合思想,在形象与现实中完成数学化的过程,形成抽象的数学认识。)
(三)联系生活,反馈练习大显身手:(闯关游戏)
1、书本第105页第一题.2、(不重叠问题)小雨一家去采摘。爷爷、爸爸、外公、姨妈、小雨、叔叔6人采摘了圣女果,姑姑、舅舅、外婆3人采摘了小黄瓜。采摘圣女果的和采摘小黄瓜的一共有多少人?
(重叠问题)小雨一家去采摘。爷爷、爸爸、外公、姨妈、小雨、叔叔6人采摘了圣女果,奶奶、妈妈、爸爸、爷爷、小雨5人采摘了草莓。采摘圣女果的和采摘草莓的的一共有多少人?
3、拓展:第一盒中有4种奖品,第二盒中有3种奖品,猜一猜:两盒中一共有几种奖品?
(设计意图:应用练习从简单到复杂,从正向到逆向,练习一主要巩固学生对韦恩图的认识,练习二主要通过不重叠和重叠问题的正反向思维,来进一步加深对重复的理解,防止学生出现思维固化,巩固理解,合理运用。第三个拓展练习主要训练学生多元化、多角度考虑和解决问题的能力。这样有梯度的练习目的在于:让大部分孩子“吃好”,让学有余力的学生 “吃饱”,从而达到不同的人在本节课上都能得到不同的发展。)
(四)回顾课堂,分享收获 说说这节课你有什么收获?
(设计意图:通过小结,帮助学生梳理这一节课的知识点,并不要求学生一定要讲出学到什么知识,只要学生对今天的课有所体会,无论是有关知识点的,还是情感体验的,只要学生有所收获,不同的人在数学上得到了不同的发展这就够了。)
(五)总结延伸
(设计意图:学生带着问号进入课堂展开学习,又将带着问号走出课堂继续学习,这样的数学教学不只给学生的今天带来知识与方法,还为学生的明天撒播了智慧与希望的种子!)
七、板书设计:
板 书 设 计 重 叠 问 题
听音乐的
4人
猜拳的 5人
维恩图
一共有几人参加游戏? ①4+5-2=7(人)
(设计意图:力求体现知识性和简洁性,使学生一目了然。)
第五篇:重叠问题教案
数学广角——重叠的问题
教学内容: 人教新课标版三年级下册108页例1及相关练习。
教学目标:
1、使学生借助直观图,利用集合的思想方法解决简单的实际问题。
2、让学生感知集合图的产生过程,培养学生用不同的方法解决问题的意识。
3、培养学生善于观察、善于思考,养成良好的学习习惯。
4、使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。
教学准备:PPT课件
教学过程:
一、激趣引入(谈话)
师:同学们,你们喜欢体育运动吗?(喜欢)
如果马上就要开运动会你们都想参加哪些项目?(学生回答)
师:同学们可真积极,今天老师就先给想参加跑步和跳绳的同学报个名。
板书:跑步
跳绳
师:每人至少报一项,如果两项都喜欢也可两项都报名。
师:我们先来统计这组的同学的报名情况。要报名跑步的举手,报名跳绳的举手。
板书:跑步A人?
跳绳B人
师:跑步A人,跳绳B人,那这组人数一共是A+B=C人是吗?
板书:A+B=C?
生;不是,只有14人。
师:两项加起来的总人数和实际的总人数怎么会不一样了? 生:有的同学两项都报名了。
师:那也就是说有人重复报名了。
今天我们一起来学习数学广角里的重叠问题。
板书:重叠问题
二、自主探究学习新知
师:为了让大家看地更清楚,请这组同学来做个小游戏,老师这里有两个圈,报名跑步的站这个圈里,报名跳远的站这个圈,站圈里之前把自己的名字贴在你要报名的项目下面.问:咦,这个同学,你为什么还不站好?(生1:我两项都想参加)
(生2:我也想参加两项)
问:请大家帮他们想想办法,他们想同时参加两项,该怎么站比较好?
生:站中间。(请下面的同学指导怎么站,问:为什么这么站)
师:请大家仔细观察,这圈表示什么?这圈又表示什么?
生:这圈表示报名参加跑步的,这圈表示报名参加跳绳的.师:左边的几个,中间的,右边的又表示什么?
生:左边的表示报名参加跑步的。
师:报名参加跑步的几人?只有这几人报名参加跑步吗,应该怎么说?
生:只报名参加跑步的。
师:这个同学用各一个很好的字,(只)对,是只报名参加跑步的.说的真棒!
中间这部分名字表示什么?
生:两项都报名参加了。(能不能也用一个很好地关联词来说)师:也就是说既报名参加了跑步,也报名参加了跳绳。
师:右边这部分呢?
生:表示只报名参加跳绳的。(几人?)
师:说得太好了,打家把掌声送给他。
师:你们看明白了吗?谁能你看到的画下来,让大家一眼就可以看出来。谁只报名跑步,谁只报名跳绳,谁既报名了跑步又报名了跳远。同桌讨论一下该怎么画?
(学生讨论,画图)
(演示学生作品,请他回答为什么这么画,各部分表示什么)
生:左边表示只报名跑步的。(几人?)中间表示既报名跑步,又报名跳绳的。(几人)
师:那报名参加跑步的几人?(A人)怎么算的?也就是左边的加中间的。
师:右边这部分表示?(只报名跳绳的。)
师:报名的跳绳的一共有多少人啊?(B人)怎么计算的?也就是中间的加右边的。
师:现在请一个同学帮助老师把黑板的图补充完整.(学生来画,用两种颜色圈出来,并说说各部分表示什么意思?)
很多年前,英国的数学学家韦恩在计算物体重叠问题的时候发明了这个图,从此以后人们计算重叠问题的时候就方便了很多,后来人们就把这图叫做韦恩图.板书:韦恩图
师:如果你们比韦恩早出生,发明这个图那这个图会以谁的名字命名?
生:我的名字.师:你们都将是数学家。
问:你们能根据着个图来列式,计算出一共有多少人? 生1:……(说说你是怎么想的,各数字表示什么?在图上指出来各数字的愿意)
生2:……
(教学把重复的减掉)
2,教学例1
1、三(1)班参加语文、数学课外小组学生名单
语文
杨明
李芳
刘红
陈
东
王爱华
张伟
丁旭
赵军
数学
杨明
李芳
刘红
王志明
曾
丽
周晓
陶伟
卢强
朱小东
师:从刚才的回答问题中,我发现我们班的同学既聪明,又能干。
三(1)的同学们要报名参加语文课外小组和数学课外小组,大家来观察这幅图,你们能得到什么信息?
生:参加语文课外小组的有8人,参加数课外小组的有9人.师:你还有发现了什么?
生:杨明,李芳,刘红都参加了两个兴趣小组,他们的名字重复出现了两次。
师:他们的名字重复出现了两次。发现了吗?要求一共又多少人该怎么办?该怎么办?
生:把重复的减掉
师:现在请同学列式计算一共有多少人?说出自己的想法。
生:8+9-3=14把两个小组的人都加起来减掉数重复的3人。
生:5+3+6=14只参加语文兴趣小组的加两个都参加的再加之参加数学兴趣小组的。
生:……
师:说的真好,当我们计算物体的个数时,如果出现重复数了两次,这样,个数就会多了,应该减去一次。
师:小朋友们真聪明,靠自己的能力解决了又解决了一个数学问题。
三、效果测评。
师:其实,在日常生活中,只要大家认真的观察,这样的例子还有很多。我们继续看。
1、张明排队做早操,从前往后数他排在第4个,从后往前数也是第4个,这队
一共有多少人?(能直接计算的直接计算,也可以画图帮助计算)
3+1+3=7(人)
4+4-1=7(人)
4+3=7(人)
3+4=7(人)
随机问题
2、三年级有20个同学参加竞赛,其中参加数学竞赛的有15人,参加作文竞赛的有11人。
(1)既参加数学竞赛又参加作文竞赛的有几人?
15+11-20=6(人)
(2)只参加数学竞赛的有几人?
15-6=9(人)
(3)只参加作文竞赛的有几人?
11-6=5(人)
3、重叠问题还在生活中有很广泛的应用,比如我们为了节省空间,我们会把纸杯或碗套在一起,如果每只碗高5厘米,重叠部分是4厘米,如果把2只碗套在一起有几厘米长?3只呢?
5+5-4=6(厘米)
5+5+5-4-4=7(厘米)
我们生活中还有很多利用物体的重叠来减少空间的的大小,如雨伞的伞柄,门窗。
四、总结
师:今天这节课,你学到了什么?
生:……
师:今天我们学习了重叠问题,数物体的个数时,有一部分重复了,我们应该减去重复的部分,相反,当要一定物体个数变多时,我们就尽可能的让物体多重复。