第一篇:高二物理《楞次定律的应用》教案
江苏省苏州市蓝缨学校高二物理《楞次定律的应用》教案
●教学目标
一、知识目标
1.熟练运用楞次定律判断感应电流的方向.2.理解楞次定律与能的转化和守恒定律的一致性.3.掌握右手定则,并理解右手定则实际上为楞次定律的一种具体表现形式.二、能力目标
通过应用楞次定律判断感应电流的方向,培养学生应用物理规律解决实际问题的能力.●教学重点
1.应用楞次定律判断感应电流的方向.2.利用右手定则判断导体切割磁感线时感应电流的方向.应用楞次定律判断感应电流方向的基本步骤:(1)明确原磁场的方向.(2)明确穿过闭合电路的磁通量是增加还是减少.(3)根据楞次定律确定感应电流的磁场方向.(4)利用安培定则确定感应电流的方向.[例2]一可控通电螺线管A,外套一个闭合螺线管B(如图),当闭合电键或减小电阻的阻值,使螺线管A中的电流增大时,B中的感应电流方向如何?电键断开或增大电阻的阻值时,B中的感应电流方向又如何?
[师]当A中电流增加时,如何判断B中感应电流方向?
[例3]如图所示,光滑金属导轨的一部分处在匀强磁场中,当导体棒ab向右匀速运动切割磁感线时,判断ab中感应电流方向.[师]当ab棒向右切割磁感线时,感应电流方向如何?、板书设计
本节优化训练设计 1.下列说法中正确的是
A.导体相对磁场运动,导体内一定会产生感应电流 B.导体做切割磁感线的运动,导体内一定产生感应电流
C.闭合电路在磁场中做切割磁感线运动,电路中一定会产生感应电流 D.穿过闭合电路的磁通量发生变化,电路中一定会产生感应电流
2.恒定的匀强磁场中有一圆形闭合导体线圈平面垂直于磁场方向,当线圈在此磁场中做下列哪种运动时,线圈中能产生感应电流
A.线圈沿自身所在的平面做匀速运动 B.线圈沿自身所在的平面做加速运动 C.线圈绕任意一条直径做匀速转动 D.线圈绕任意一条直径做变速转动
3.如图所示,开始时矩形线圈与磁场垂直,且一半在匀强磁场内,一半在匀强磁场外,若要使线圈产生感应电流,下列说法中可行的是
A.将线圈向左平移小段距离 B.将线圈向下平移小段距离 C.以ab为轴转动(小于90°)D.以ad为轴转动(小于90°)4.闭合铜环与闭合金属框相接触放在匀强磁场中,如图所示,当铜环向右移动时(金属框不动),下列说法中正确的是
A.铜环内没有感应电流产生,因为磁通量没有发生变化 B.金属框内没有感应电流产生,因为磁通量没有发生变化
第二篇:高二物理楞次定律及其应用教案
高二物理楞次定律及其应用教案
教学目标
知识目标
理解楞次定律的内容,初步掌握利用楞次定律判断感应电流方向的方法;
能力及情感目标
1、通过学生实验,培养学生的动手实验能力、分析归纳能力;
2、通过对科学家的介绍,培养学生严肃认真,不怕艰苦的学习态度.3、从楞次定律的因果关系,培养学生的逻辑思维能力.4、从楞次定律的不同的表述形式,培养学生多角度认识问题的能力和高度概括的能力.教学建议
教材分析
楞次定律是高中物理中的重点内容,由于此定律所牵涉的物理量和物理规律较多,只有对原磁场方向、原磁通量变化情况、感应电流的磁场方向、以及安培定则和右手螺旋定则进行正确的判定和使用,才能得到正确的感应电流的方向.所以这部分内容也是电学部分的一个难点.为了突破此难点,可以通过教学软件,用计算机进行形象化演示,将变化过程逐步分解,通过设疑突破疑点理解深化,由浅入深的进行教学.教法建议
在复习部分,先让学生明确闭合电路的磁通量发生变化可以产生感应电流,用计算机动态模拟导体切割情景,让学生顺利地用右手定则判断出感应电流的方向,马上在原题的基础上变切割为磁场增强,在此设疑:用这种方法改变磁通量所产生的感应电流,还能用右手定则判断吗?如果不能,我们应该用什么方法判断呢?使学生带着疑问进入新课教学中去.在新课教学部分,充分运用学生实验和媒体资源分析相结合的教学方法,帮助学生自己发现规律,了解规律,所设计的软件紧密联系实验过程,将动态演示和定格演示相结合,做到动中有静,静中有动,以达到传统教学方法所不能达到的效果.另外,在得到规律之后,为了突破难点,首先利用软件演示和教师讲解相结合的方法帮助学生理解阻碍和变化的含义,然后重现刚才学生实验的动态过程,让学生自己总结出利用楞次定律判断感应电流方向的步骤,并提供典型例题,通过形成性练习,使学生会应用新知识解决问题.在对定律的深化部分,将演示实验、学生讨论、软件演示有机的结合起来,使学生从力学和能量守恒的角度加深对楞次定律的理解.建议本节课的教学方法为现代化教学手段---计算机与传统的教学方法进行有机的结合,以实现教学过程和效果的优化为宗旨,采用计算机模拟动态演示、学生实验讨论、教师讲解的方式达到预定的教学目标.设计的软件紧扣教学目标,为完成教学任务服务,充分突出现代化教学手段的优势.楞次定律的教学设计方案
一、教学目标
1、理解楞次定律的内容
2、理解楞次定律和能量守恒相符合
3、会用楞次定律解答有关问题
4、通过实验的探索,培养学生的实验操作、观察能力和分析、归纳、总结的逻辑思维能力.二、教学重点:对楞次定律的理解.三、教学难点:对楞次定律中的阻碍和变化的理解.四、教学媒体:
1、计算机、电视机(或大屏幕投影);
2.、线圈、条形磁铁、导线、干电池、蹄形磁铁、灵敏电流计、楞次定律演示器.五、课堂教学结构模式:探究式教学
第三篇:示范教案(楞次定律的应用)
第四节
楞次定律的应用
●本节教材分析
教材一开始就清楚说明了应用楞次定律的四个基本步骤.我们不要让学生死记这些步骤,而应该在分析楞次定律内容的基础上自然地得出这些步骤,要让学生体会到这些步骤是定律本身的要求.应该让学生理解,像应用其他规律一样首先应明确楞次定律的应用对象是哪一个闭合电路.应用对象含混是同学们容易犯的一个错误,在这里要注意纠正.可启发学生体会,在确定闭合电路的前提下,定律应用的四个基本步骤的顺序与定律内容文字表述的顺序相反.可向学生说明,四个步骤中分析原磁场方向和磁通量变化情况的第一、第二步骤是应用定律的基础,第三步骤是应用楞次定律,第四步骤是应用安培定则.第三、四步骤容易掌握,困难的是第一、二步骤.在一些问题中,确定闭合电路包围区域中磁场方向和磁通量变化是困难的.应该指出:当对楞次定律的应用步骤熟练到一定程度,对楞次定律的理解足够深刻时,还会发现灵活应用楞次定律的其他方法.但是,在初始阶段应严格按照楞次定律应用的基本步骤去做.●教学目标
一、知识目标
1.熟练运用楞次定律判断感应电流的方向.2.理解楞次定律与能的转化和守恒定律的一致性.3.掌握右手定则,并理解右手定则实际上为楞次定律的一种具体表现形式.二、能力目标
通过应用楞次定律判断感应电流的方向,培养学生应用物理规律解决实际问题的能力.三、德育目标
能量守恒和辩证法渗透在教学中,对学生进行辩证唯物主义思想教育.●教学重点
1.应用楞次定律判断感应电流的方向.2.利用右手定则判断导体切割磁感线时感应电流的方向.●教学难点
确定原磁场的方向和磁通量的变化.●教学方法
讲练结合的方法.●教学用具
线圈、灵敏电流表、磁铁、投影片、投影仪.●课时安排 1课时
●教学过程
一、引入新课
[师]上节课我们学习了楞次定律,其内容是什么? [生]感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化,这就是楞次定律.[师]这节课我们将学习应用楞次定律判断感应电流方向的方法.二、新课教学
[投影]应用楞次定律判断感应电流方向的基本步骤:(1)明确原磁场的方向.(2)明确穿过闭合电路的磁通量是增加还是减少.(3)根据楞次定律确定感应电流的磁场方向.(4)利用安培定则确定感应电流的方向.[师]下面让我们通过几个例题的分析,熟悉应用楞次定律判断感应电流方向的基本步骤,同时加深对楞次定律的理解.[投影]
[例1]确定磁铁的S极移近螺线管时(或离开螺线管时)感应电流的方向.[师]当磁铁的S极移近螺线管时,螺线管内原磁场的方向如何? [生]螺线管内原磁场的方向向上.[师]穿过螺线管的磁通量如何变化? [生]穿过螺线管的磁通量增加.[师]感应电流的磁场方向如何?为什么?
[生]感应电流的磁场方向向下.因为根据楞次定律可知,感应电流的磁场要阻碍磁通量的增加,则感应电流的磁场与原磁场反向.[师]感应电流的方向如何?判断依据是什么? [生]根据安培定则确定感应电流的方向如图所示.[师]当磁铁的S极离开螺线管时,情况又如何呢? [生1]螺线管内原磁场的方向仍然向上.[生2]穿过螺线管的磁通量减少.[生3]感应电流的磁场方向向上.因为根据楞次定律,感应电流的磁场要阻碍磁通量的减少,则感应电流的磁场与原磁场同向.[生4]根据安培定则确定感应电流的方向如图所示.(师生共同活动)
[师]通过例题1的分析,同学们受到哪些启示:
[生1]当通过回路的磁通量增加时,感应电流的磁场与原磁场反向;当通过回路的磁通量减小时,感应电流的磁场与原磁场同向.[生2]磁通量变化过程,对应克服磁场力做功过程,伴随其他形式能转化为电能.说明楞次定律是能的转化和守恒定律的表现形式.[生3]感应电流的磁场对原磁场的作用:“阻碍”相对运动.[投影]
[例2]一可控通电螺线管A,外套一个闭合螺线管B(如图),当闭合电键或减小电阻的阻值,使螺线管A中的电流增大时,B中的感应电流方向如何?电键断开或增大电阻的阻值时,B中的感应电流方向又如何?
[师]当A中电流增加时,如何判断B中感应电流方向? [生1]螺线管A中产生的原磁场方向向下.[生2]穿过螺线管B的磁通量增加.[生3]螺线管B中感应电流的磁场方向向上.[生4]螺线管B中感应电流的方向为逆时针方向(俯视).[师]当A中电流减小时,如何判断B中感应电流方向? [生1]螺线管A产生的原磁场方向仍然向下.[生2]穿过螺线管B的磁通量减少.[生3]螺线管B中感应电流的磁场方向向下.[生4]螺线管B中感应电流的方向为顺时针方向(俯视).[师]通过例2的分析,同学们受到哪些启示?
[生]只要穿过闭合回路的磁通量发生变化,就会产生感应电流,且感应电流的方向一定遵循楞次定律.[投影]
[例3]如图所示,光滑金属导轨的一部分处在匀强磁场中,当导体棒ab向右匀速运动切割磁感线时,判断ab中感应电流方向.[师]当ab棒向右切割磁感线时,感应电流方向如何? [生1]回路中原磁场方向垂直纸面向里.[生2]通过回路的磁通量在减小.[生3]感应电流的磁场与原磁场方向相同,为垂直纸面向里.[生4] ab中感应电流的方向为向上.[师]如果磁通量的变化是由导体切割磁感线引起的,感应电流的方向可以由右手定则来判断.[投影]右手定则的内容: 伸开右手让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向.[师]请同学们用右手定则重做例3,看结果是否一样? [生]一样.[师]右手定则实际上是楞次定律的一种具体表现形式,它们在本质上是一致的.只不过导体切割磁感线时,用右手定则判断感应电流方向更方便.三、小结
通过本节课的学习,主要学习了以下几个问题: 1.应用楞次定律判断感应电流方向的方法.2.右手定则.3.加深了对楞次定律的理解.当通过回路的磁通量增加时,感应电流的磁场与原磁场反向;当通过回路的磁通量减少时,感应电流的磁场与原磁场同向.四、作业
1.阅读203页“寻找磁单极” 2.练习三写在作业本上
五、板书设计
第四篇:高二物理内能教案
教案示例 ——物体的内能
一、教学目标
1.知道分子热运动的动能跟温度有关,知道温度是分子热运动平均动能的标志.
2.知道什么是分子的势能;知道改变分子间的距离必须克服分子力做功,因而分子势能发生变化;知道分子势能跟物体体积有关.
二、重点难点
重点:物体的内能和决定物体内能的因素.
难点:分子间做功跟分子势能变化的关系.
三、教与学
教学过程:
在自然界中能量的存在形式是多种多样的,每种的运动形式对应着相应的能.在机械运动中,由于物体的运动而使物体具有动能,由于物体与地球之间存在相对作用,并由它们的相对位置决定了重力势能,那么我们会自然地想到由于组成物体的大量分子都在永不停息地做无规则运动,分子间存在相互作用力,(分子力只与相对位置有关)也应存在与此相对应的能量.
(一)分子的动能
温度
1.分子动能:组成物体的分子由于热运动而具有的能叫做分子动能.
(1)大量分子的运动速率不尽相同,以中等速率者占多数.
在研究热现象时,有意义的不是一个分子的动能,而是大量分子动能的平均值.
(2)平均动能:物体里所有分子动能的平均值叫做分子热运动的平均动能.
2.温度
(1)宏观含义:温度是表示物体的冷热程度.
(2)微观含义(即从分子动理论的观点来看):温度是物体分子热运动的平均动能的标志,温度越高,物体分子热运动的平均动能越大.
【注意】
(1)同一温度下,不同物质分子的平均动能都相同.但由于不同物质的分子质量不一定相同.所以分子热运动的平均速率也不一定相同.
(2)温度反映的是大量分子平均动能的大小,不能反映个别分子的动能大小,同一温度下,各个分子的动能不尽相同.
(二)分子势能
1.分子势能:由于分子间存在相互作用力,并由它们的相对位置决定的能叫做分子势能.
2.分子力做功跟分子势能变化的关系(类同于重力做功与重力势能变化的关系)
分子力做正功时,分子势能减少,分子力做负功时,分子势能增加.
3.决定分子势能的因素
(1)从宏观上看:分子势能跟物体的体积有关.
(2)从微观上看:分子势能跟分子间距离r有关.
①一般选取两分子间距离很大()时,分子势能为零.
②在 的条件下,分子力为引力,当两分子逐渐靠近至 过程中,分子力做正功,分子势能减小.
在 的条件下,分子力为斥力,当两分子间距离增大至 过程中,分子力也做正功,分子势能也减小.
结论:当两分子间距离
(三)物体的内能
1.物体的内能:物体中所有分子做热运动的动能和分子势能的总和叫做物体的内能.也叫做物体的热力学能.
2.任何物体都具有内能.因为一切物体都是由不停地做无规则热运动并且相互作用着的分子所组成.
3.决定物体内能的因素
时,分子势能最小(且为负值).
(1)从宏观上看:物体内能的大小由物体的摩尔数、温度和体积三个因素决定.
(2)从微观上看:物体内能的大小由组成物体的分子总数,分子热运动的平均动能和分子间的距离三个因素决定.
(四)物体的内能跟机械能的区别
1.能量的形式不同.物体的内能和物体的机械能分别跟两种不同的运动形式相对应,内能是由于组成物体的大量分子的热运动及分子间的相对位置而使物体具有的能.而机械能是由于整个物体的机械运动及其与它物体间相对位置而使物体具有的能.
2.决定能量的因素不同.内能只与(给定)物体的温度和体积有关,而与整个物体的运动速度路物体的相对位置无关.机械能只与物体的运动速度和跟其他物体的相对位置有关,与物体的温度体积无关.
3.一个具有机械能的物体,同时也具有内能;一个具有内能的物体不一定具有机械能.
[例1]有两个分子,用r表示它们之间的距离,当力和引力相等,使两分子从相距很远处((时,两分子间的斥)逐渐靠近,直至不能靠近为止).在整个过程中两分子间相互作用的势能()
A.一直增加
B.一直减小
C.先增加后减小
D.先减小后增加
【解析】根据动和能的关系,分子势能的变化是和分子力和功相联系的.分子力对分子做正功,分子势能减小;分子克服分子力做功,分子势能增加.当时,分子间引力和斥力相等,表现分子力等于零;当表现出的分子力为引力;当两分子从 处靠近,直至
时,分子引力大于斥力,时分子引力小于斥力,表现出分子力为斥力,在 为止的整个过程中,当
时分子力做正功,使分子势能减少,当当
时,则分子克服分子力做功,分子势能增加,不难看出,时分子势能最小。
正确选项为D.
[例2]若已知分子势能增大,则在这个过程中()
A.一定克服分子力做功
B.分子力一定减小
C.分子间距离的变化情况无法确定
D.以上说法都不正确
【解析】分子势能增大,说明分子力一定做负功,或者说一定克服分子力做功,所以选项A正确.我们知道,当减小;当
时,分子势能增大说明r增大,分子力 时,分子势能增大说明r减小,分子力增大,因题目未说明初始状态分子间的距离r是大于、小于或等于,所以对分子力和分子距离的变化情况无法确定,选项C正确,B和D错误.
[例3]有甲、乙两种气体,如果甲气体内分子平均速率比乙气体内平均速率大,则()
A.甲气体温度,一定高于乙气体的温度
B.甲气体温度,一定低于乙气体的温度
C.甲气体的温度可能高于也可能低于乙气体的温度
D.甲气体的每个分子运动都比乙气体每个分子运动的快
[解析]正确答案是C.A认为气体分子平均速率大,温度就高,这是对气体温度的微观本质的错误认识,气体温度是气体分子平均动能的标志,而分子的平均动能不仅与分子的平均速率有关,还与分子的质量有关.本题涉及两种不同气体(即分子质量不同),它们的分子质量无法比较.因而无法比较两种气体温度的高低.故A、B错,C正确,速率的平均值大,并不一定每个分子速率都大,故D错.
[例4]用力拉着铁块在水平面上运动,铁块内能和机械能有没有变化?
【解析】当地面光滑时,铁块由受到外力后将做加速运动,速度越来越大,但势能保持不变,所以铁块的机械能增加,增加的机械能等于外力对它所做的功.由于运动过程中,铁块所含的分子数,分子无规则运动的平均动能和分子势能都不变化,因而铁块内能不变.
当地面不光滑时,铁块运动中时刻受摩擦力的作用,若所受外力等于地面摩擦力,铁块将匀速运动,机械能不变.若所受外力大于地面的摩擦力,铁块做加速运动,克服摩擦做功将机械能转变为内能,其中一部分使铁块温度升高,分子的平均动能增大,铁块的机械能和内能都增加.
【小结】物体的内能是组成物体的所有分子做热运动的动能和分子势能的总和.温度是物体分子热运动平均动能的标志.
教案点评:
本节重点物体的内能和决定物体内能的因素.教案围绕这些重点,对分子的动能、温度、平均动能、分子势能及其关系等知识点进行讲解,同时结合例题分析,由浅入深,思路明确,合理使用此教案可以达到较好的教学效果.
第五篇:高二物理万有引力定律教案
高二物理万有引力定律教案
【摘要】查字典物理网小编编辑整理了高二物理教案:万有引力定律,供广大同学们在暑假期间,复习本门课程,希望能帮助同学们加深记忆,巩固学过的知识!
教学目标
知识与技能
1.了解万有引力定律得出的思路和过程,知道地球上的重物下落与天体运动的统一性。
2.知道万有引力是一种存在于所有物体之间的吸引力,知道万有引力定律的适用范围。
3.会用万有引力定律解决简单的引力计算问题,知道万有引力定律公式中r的物理意义,了解引力常量G的测定在科学历史上的重大意义。
4.了解万有引力定律发现的意义。
过程与方法
1.通过演绎牛顿当年发现万有引力定律的过程,体会在科学规律发现过程中猜想与求证 的重要性。
2.体会推导过程中的数量关系.情感、态度与价值观
1.感受自然界任何物体间引力的关系,从而体会大自然的奥秘.2.通过演绎牛顿当年发现万有引力定律的过程和卡文迪许测定万有引力常量的实验,让
学生体会科学家们勇于探索、永不知足的精神和发现真理的曲折与艰辛。
教学重点、难点
1.万有引力定律的推导过程,既是本节课的重点,又是学生理解的难点。
2.由于一般物体间的万有引力极小,学生对此缺乏感性认识。
教学方法
探究、讲授、讨论、练习
教 学 活 动
(一)引入新课
复习回顾上节课的内容
如果行星的运动轨道是圆,则行星将作匀速圆周运动。根据匀速圆周运动的条件可知,行星必然要受到一个引力。牛顿认为这是太阳对行星的引力,那么,太阳对行星的引力F提供行星作匀速圆周运动所需的向心力。
学生活动: 推导得
将V=2r/T代入上式得
利用开普勒第三定律 代入上式
得到:
师生总结:由上式可得出结论:太阳对行星的引力跟行星的质量成正比,跟行星到太阳的距离的二次方成反比。即:F
教师:牛顿根据其第三定律:太阳吸引行星的力与行星吸引太阳的力是同性质的作用力,且大小相等。于是提出大胆的设想:既然这个引力与行星的质量成正比,也应跟太阳的质量M成正比。即:F
写成等式就是F=G(其中G为比例常数)
(二)进行新课
教师:牛顿得到这个规律以后是不是就停止思考了呢?假如你是牛顿,你又会想到什么呢? 学生回答基础上教师总结:
猜想一:既然行星与太阳之间的力遵从这个规律,那么其他天体之间的力是否也遵从这个规律呢?(比如说月球与地球之间)
师生: 因为其他天体的运动规律与之类似,根据前面的推导所以月球与地球之间的力,其他行星的卫星和该行星之间的力,都满足上面的规律,而且都是同一种性质的力。
教师:但是牛顿的思考还是没有停止。假如你是牛顿,你又会想到什么呢?
学生回答基础上教师总结:
猜想二:地球与月球之间的力,和地球与其周围物体之间的力是否遵从相同的规律?
教师:地球对月球的引力提供向心力,即F= =ma
地球对其周围物体的力,就是物体受到的重力,即F=mg 从以上推导可知:地球对月球的引力遵从以上规律,即F=G
那么,地球对其周围物体的力是否也满足以上规律呢?即F=G
此等式是否成立呢?
已知:地球半径R=6.37106m , 月球绕地球的轨道半径r=3.8108 m ,月球绕地球的公转周期T=27.3天, 重力加速度g=9.8
(以上数据在当时都已经能够精确测量)
提问:同学们能否通过提供的数据验证关系式F=G 是否成立?
学生回答基础上教师总结:
假设此关系式成立,即F=G
可得: =ma=G F=mg=G
两式相比得: a/g=R2 / r2
但此等式是在以上假设成立的基础上得到的,反过来若能通过其他途径证明此等式成立,也就证明了前面的假设是成立的。代人数据计算:
a/g1/3600
R2 / r21/3600
即a/g=R2 / r2 成立,从而证明以上假设是成立的,说明地球与其周围物体之间的力也遵从相同的规律,即F=G
这就是牛顿当年所做的著名的月-地检验,结果证明他的猜想是正确的。从而验证了地面上的重力与地球吸引月球、太阳吸引行星的力是同一性质的力,遵守同样的规律。
教师:不过牛顿的思考还是没有停止,假如你是牛顿,此时你又会想到什么呢? 学生回答基础上教师总结:
猜想三:自然界中任何两个物体间的作用力是否都遵从相同的规律?
牛顿在研究了这许多不同物体间的作用力都遵循上述引力规律之后。于是他大胆地把这一规律推广到自然界中任意两个物体间,于1687年正式发表了具有划时代意义的万有引力定律。
万有引力定律
①内容
自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比。
②公式
如果用m1和m2表示两个物体的质量,用r表示它们的距离,那么万有引力定律可以用下面的公式来表示(其中G为引力常量)
说明:1.G为引力常量,在SI制中,G=6.6710-11Nm2/kg2.2.万有引力定律中的物体是指质点而言,不能随意应用于一般物体。
a.对于相距很远因而可以看作质点的物体,公式中的r 就是指两个质点间的距离;
b.对均匀的球体,可以看成是质量集中于球心上的质点,这是一种等效的简化处理方法。
教师:牛顿虽然得到了万有引力定律,但并没有很大的实际应用,因为当时他没有办法测定引力常量G的数值。直到一百多年后英国的另一位物理学家卡文迪许才用实验测定了G的数值。
利用多媒体演示说明卡文迪许的扭秤装置及其原理。
扭秤的主要部分是这样一个T字形轻而结实的框架,把这个T形架倒挂在一根石英丝下。若在T形架的两端施加两个大小相等、方向相反的力,石英丝就会扭转一个角度。力越大,扭转的角度也越大。反过来,如果测出T形架转过的角度,也就可以测出T形架两端所受力的大小。现在在T形架的两端各固定一个小球,再在每个小球的附近各放一个大球,大小两个球间的距离是可以较容易测定的。根据万有引力定律,大球会对小球产生引力,T形架会随之扭转,只要测出其扭转的角度,就可以测出引力的大小。当然由于引力很小,这个扭转的角度会很小。怎样才能把这个角度测出来呢?卡文迪许在T形架上装了一面小镜子,用一束光射向镜子,经镜子反射后的光射向远处的刻度尺,当镜子与T形架一起发生一个很小的转动时,刻度尺上的光斑会发生较大的移动。这样,就起到一个化小为大的效果,通过测定光斑的移动,测定了T形架在放置大球前后扭转的角度,从而测定了此时大球对小球的引力。卡文迪许用此扭秤验证了牛顿万有引力定律,并测定出万有引力恒量G的数值。这个数值与近代用更加科学的方法测定的数值是非常接近的。
卡文迪许测定的G值为6.75410-11 Nm2/kg2,现在公认的G值为6.6710-11 Nm2/kg2。由于万有引力恒量的数值非常小,所以一般质量的物体之间的万有引力是很小的,我们可以估算一下,两个质量50kg的同学相距0.5m时之间的万有引力有多大(可由学生回答:约6.6710-7N),这么小的力我们是根本感觉不到的。只有质量很大的物体对一般物体的引力我们才能感觉到,如地球对我们的引力大致就是我们的重力,月球对海洋的引力导致了潮汐现象。而天体之间的引力由于星球的质量很大,又是非常惊人的:如太阳对地球的引力达3.561022N。
教师:万有引力定律建立的重要意义