第一篇:《比例尺的应用》教案
比例尺的应用
教学目标:
1.进一步认识比例尺,能熟练地求出比例尺,图上距离和实际距离,会用比例尺的知识解决一些简单的实际问题。
2.通过合作探究,运用方程解决比例尺一些实际问题,提高解决问题的能力。
3.体验数学在实际生活中的应用,体会学习数学的乐趣。教学重点:能够根据给定的比例尺解决生活中的实际问题。教学难点:能够根据比例尺绘制平面图。教学过程:
一、复习导入
1.复习提问
⑴什么是比例尺?关于比例尺你了解了哪些内容?(引导学生从对比例尺意义的认识,对数值比例尺和线段比例尺的认识等方面回答)
⑵说一说下列比例尺表示的具体意义。(引导学生说一说各种比例尺的实际意义)①比例尺1:250000 ②比例尺80:1 ③比例尺0∣__∣20∣__∣40km 2.导入新课
回顾完上节课的内容,接下来我们学习新的知识。老师板书课题:比例尺的应用。
二、新授
1.教学例2,根据比例尺求出实际距离或图上距离。
课件出示例2,读题后审题,找出已知条件和所求问题。思考交流,如何求从苹果园站至四惠东站的实际长度?(根据比例尺的意义,设实际距离为xcm,用解比例的方法求出实际距离是多少厘米;根据比例的意义,直接用图上距离7.8米乘比例尺中的400000,求出实际距离是多少厘米。)使学生明确:为什么设的实际长度要以“cm”为单位?(因为图上距离的单位是cm,只有图上距离的单位和实际距离的单位统一了,才能计算出正确的结果。)列比例尺的依据是什么?(图上距离/实际距离=比例尺)400000表示什么?(实际距离400000cm)。之后让学生独立用解比例的方法解决问题,再指名学生板演: 解:设从苹果园站至四惠东站的实际长度是xcm。7.8/x=1/400000 x=7.8×400000 x=3120000 3120000cm=31.2km 答:从苹果园站至四惠东站的实际长度大约是31.2千米。
巩固拓展:如果在比例尺为1:400000的规划图上,地铁1号线上的某两地之间的距离是1千米,那么这两地之间的图上距离是多少?
1千米=100000厘米
解:设这两地之间的图上距离是xcm。x/100000=1/400000 x=100000÷400000 x=0.25 答:这两地之间的图上距离为0.25cm。2.教学例3,根据比例尺画平面图。
出示例3,读题,你从题中知道了哪些信息?我们要解决哪些问题?怎样才能准确地画出平面图呢?(引导学生明确,若想画得准确,应按照题目中给定的比例尺求出三个同学家到学校的图上距离)分别求出三个同学家到学校的图上距离后,学生动手画图,老师巡视指导,之后反馈集体订正。
小结概括根据比例尺画图的一般方法:
⑴根据比例尺计算图上距离。⑵根据数据,画出图形。
三、巩固应用:
1.P55做一做,引导学生说一说绘制平面图前应做好哪些准备工作,绘图时应注意哪些问题,再完成本题。
2.P57 5.学生独立完成后,交流需要注意的地方 3.P57 8.填写后,说出求图上距离和实际距离的方法
4.P57 9.
四、小结:通过本节课的学习,你有什么收获?在应用比例尺解决问题时,你认为需要注意什么?
第二篇:比例尺的应用教案
比例尺的应用教案
教学内容:教科书第50页的例2,完成课本第54页练习八第5、6题。教学目标:
1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。
2、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。
教学重点、难点:能按给定的比例尺求相应的实际距离或图上距离;感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力。教学过程
一、复习导入。
1、(1)什么叫比例尺?你能说出比例尺的公式吗? 板书:[图上距离:实际距离=比例尺](2)数值比例尺的前后项的单位需要注意什么?通常都是用什么单位?【单位要相互统一,通常都是用 cm 作单位】
2、说一说,下列比例尺的意思: 1:200000
1:5000000 2:1 50000【图上1 cm ,相当于实际2 km 】
二、教学新课
1、教学例2。
(1)出示一段关于我国地铁发展简史的视频,激发学生学习兴趣。引申出南宁再见地铁建设工程。(南宁地铁1号线一期工程西起石埠,东至南宁东站。预计2016年年中建成通车。)
师:大家看这就是北京市早期的地铁规划图,你仔细的观察,说一说这幅规划图的比例尺是多少?【1:500000】 说一说这个比例尺的意义。
师:今天我还带来了一道要使用这个比例尺解决的问题,请同学们看。
(2)可见出示题目,并让学生读题。
例2:下面是北京市地图规划图。地铁1号线在图中的长度大约是10厘米,它的实际长度大约是多少?
(3)学生读题,让后进行分析,请学生先把关键词先写在草稿本上,在让学生回答问题。
师:题目让我们要求的是什么?那该把那个关键词圈起来? 师:题目中还告诉了我们那些已知条件,那我们也把它圈起来。 师:结合前面的比例尺,我们来看看这个这道题是否可以解答了?该怎样解答呢?
板书:图上距离:实际距离
:500000
10cm
: x cm(4)根据对1:500000的理解让学生交流算法,说说为什么这样算?尝试练习(重点引导学生理解和掌握用列比例式求实际距离的方法。引导学生思考:根据比例尺的含义,地铁一号线的图上距离与实际距离的比一定与哪个比相等?引导学生使用解比例的方法解答)。注意:解答的过程中要让学生注意到比例式的单位要统一,最后的单位要换算成“千米”作单位的数。
三、巩固练习。
1、完成课本54页第6题,学生读题,圈出关键词,列式解答。(让学生先独自圈出关键词,然后师生共同对证,学生们在独立完成此题)
师:想一想,我们该圈出那些关键词,把你圈好的关键词告诉大家?
2、出示南宁地铁规划图,地铁一号线中朝阳广场到琅东汽车站在图上的距离大约是12cm。求朝阳广场到琅东汽车站的实际距离是多少?
(此题设计的图上比例尺为线段比例尺,让学生灵活运用线段比例尺快速的口算出实际距离的大小)
3、完成课本54页第5题,学生读题,圈出关键词,对比第6题,想一想它有什么不同。
四、全课小结。通过本课的学习,你又掌握了什么新的本领? 拓展练习:学校要建设一个长为28m,宽15m。用1:500的比例尺画一个平面图,想一想这个平面图上的长和宽分别是多少?【想一想该怎样解答,请你说一说】
第三篇:《比例尺的应用》教案01
《比例尺的应用》教案
教学内容:
教科书第48~50页的例1~例2,练习八的第1题。
教学目的:
使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。
教学重点:
理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。
教学难点:
设未知数时长度单位的使用。
教具准备:
教师准备一些比例尺不同的地图或本校、本地的平面图。
教学过程:
一.复习
1.复习提问:长度单位:千米、米、分米、厘米、毫米之间的进率及化聚方法。
1米=()分米=()厘米=()毫米
1千米=()米=()厘米
2.什么叫做比? 3.化简下面各比。
:8
10厘米:100厘米
2米:140厘米
3米:15千米
16厘米:90千米 二.新课
教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。1.教学比例尺的意义。(1)教学例2。让学生读题。指名回答:
“这道题告诉我们什么?”(在平面图上用10厘米的距离表示地面上10米的距离。)“要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离 :实际距离 “图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下: 图上距离 :实际距离 10厘米 : 10米
“10厘米和10米的单位相同吗?能直接化简吗?”
教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米后实际距离仍是整数,计算起来比较方便,所以要把米化作厘米。)
“10米等于多少厘米?”学生回答后,教师把10米改写成1000厘米。
“现在单位统一了,是多少比多少,怎样化简?”教师边说边擦掉10和1000后面的单位“厘米”,并加上“ :”,板书成如下形式: 图上距离 :实际距离
: 1000 请一名同学到黑板前化简这个比,别的同学在练习本上做。集体订正后,教师写出这道题的“答:„”。
然后说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们就给它起一个名字叫做“比例尺”。(板书:图上距离 :实际距离=比例尺)有时图上距离和实际距离的比也可似写成分数形式。(板书:或
图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项是1的最简单整数比。
教师出示比例尺不同的地图和本地、本校的平面图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。最后教师指出:
①比例尺与一般的尺不同,这是一个比,不应带计量单位。
②求比例尺时,前、后项的长度单位一定要化成同级单位。如 1O厘米:1O米,要把后项的米化成厘米后再算出比例尺。
③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。(2)巩固练习。
让学生完成第51页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“ l”。2.教学根据比例尺求图上距离或实际距离。
教师:知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。(1)教学例2。在比例尺是1:6000000的地图上,量得南京到北京的距离是10厘米。南京到北京的实际距离大约是多少千米? 指名读题,并说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了南京到北京的图上距离,求南京到北京的实际距离。)
教师启发:因为图上距离:实际距离=比例尺,要求实际距离可以用解比例的方法来求。“这道题的图上距离是多少?”板书:10 “实际距离不知道,怎么办?”(用x表示。)在10的下面板书出x,并在它们中间画上分数线。
“因为图上距离和实际距离的单位要相同,所设的x应用什么单位?”(应用厘米。)板书:解:设南京到北京的实际距离为x厘米。
“比例尺是多少?写成什么形式?”(写成分数形式。)最后板书成下面的形式:
指定一名学生到前面求X的值,其他学生在练习本上做。订正后,回答:
“现在求出的实际距离是多少厘米,题目要求的实际距离是多少千米。应该怎么办?”板书:50000000厘米=500千米,并写出这道题的答。之后,再回忆一下解答过程。(2)巩固练习。
做第 52页上的“做一做”。先让学生说出图中的比例尺是多少,表示什么意思,再用直尺量出图中河西村与汽车站间的距离,然后计算出实际距离。集体订正时,要注意检查学生是否把实际距离化成了千米。(3)教学例6。
出示例3:一个长方形操场,长80米,宽60米,把它画在比例尺是的图纸上,长和宽各应画多少厘米?
指名读题并说出题目告诉了什么,求什么。(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。)
教师:我们先来求长的图上距离。长的图上距离不知道,应设为x。(板书:解:设长应画x厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎么办?比例尺是多少?
然后让学生求x的值,并说出求解过程,教师板书出来。
“这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示、”板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。三.练习
1.比例尺=()
实际距离=()
图上距离=()2.2.5米=()厘米
0.00006千米=()厘米
0.032米=()厘米
350000厘米=(3.5千米=(课后反思:)千米)厘米
第四篇:比例尺教案
《比例尺》的 教 学 设 计
九江市永修县吴城中心小学
杨金妹
【教学内容】
新课标版教材六年级下册课时。
【教学目标】
1、让学生在实践活动中体验生活中需要比例尺。
2、通过观察、操作与交流,体会比例尺的实际意义,了解比例尺的含义。
3、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
4、学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。
【教学重点】正确理解比例尺的含义。
【教学难点】运用比例尺的有关知识,通过观察、操作与交流,体会比例尺的实际意义,解决生活中的一些实际问题
【教学过程】
一、创设情境、引入新知
1、北京到上海的距离大约1200千米,一只小蚂蚁说,它从北京到上海只用了3秒钟。同学们,你们猜一猜可能吗?(多媒体演示过程)
2、画线段图
师:同学们,现在我们来画线段比赛,看一看哪些同学画得又快又好。请同学们翻开课堂练习本,拿出尺子。听老师报数字。
① 请在本子上画出一条长5厘米的线段。
② 请在本子上画出一条长10厘米的线段。
③ 请大家在本纸上画一条长1米的线段。(生面有难色)
师:怎么不画了?有什么疑问吗?(本子没有1米长)那该怎么办呢?
(把1米长的线段缩短后,画在本子上)(生画)
2、引入新知 师:说一说,你是怎么画的?(生:10厘米、5厘米、或1厘米长的表示(板书)
师:看来同学们的表示方法各不相同,像2厘米、5厘米、10厘米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。
师:但是如果把黑板上的数据1米擦去,只把本子上的2厘米、5厘米线段图给别人看,别人能知道你表示的实际距离是1米吗?(不知道)那么今天,我就向大家介绍一位新朋友,它就是《比例尺》!(板书)
二、自主探究,理解比例尺的意义
(一)理解比例尺意义
1、请同学自学课本第48页的第一和二自然段的内容。(1分钟)
2、你认为什么叫比例尺?
生答:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。(多媒体展示)师板书:图上距离:实际距离=比例尺(同时电脑出示)质疑:你有什么不理解地方和你认为比较关键有几点? 自已尝试写几个比例尺?(点名回答)
3、深入理解比例尺。
实际上比例尺就是一个比(不能理解为一把尺子),像1:500、1:200、1:100就是不同数值比例尺,谁能说说数值比例尺1:100表示什么意思?
师:对,图上的1厘米,表示实际的100厘米;也就是实际距离是图上距离的100倍;图上距离是实际距离的1/100。(生读一读)
4、生活中的比例尺
师:生活中,你在哪些地方有见过比例尺?(指名回答)(1分钟)昨天,老师布置同学们收集一些地图,搜集的什么地图?(指名回答)
5、小结和介绍数值比例尺 师:把刚才自己写的比例尺向同桌说一说它表示的意思?(生汇报。2分钟)老师也收集了一些,请同学们看一看(出示48页图1,分别让学生读出图中的比例尺并说出它们表示的意义)
同学们,你们发现比例尺有什么特点吗?(比的前项都是1.)为什么不写成其它的数叫呢?(为了方便,同时像这样比例尺的前项都是1比例尺叫做数值比例尺。所以在求比例尺的时候通常把比的前项写成1的形式。)
(二)认识线段比例尺
1、有时候地图上还有一种比例尺,(多媒体出示48页图2)叫线段比例尺。你能说说它表示的意思吗?
生答: 就是表示地图上1厘米的距离相当地面上50千米实际距离。
2、教学例1(课件演示)师:同学们,请你们尝试把线段比例尺改为数值比例尺。(小组合作完成)图上距离:实际距离
=1cm:50km = = 学生自己完成,教师提示我们应该注意什么?(注意要先统一单位名称,但比例尺不带单位。)。
3、完成教材49页做一做和课本上53页第1题。
4、比较数值比例尺与线段比例尺的异同:表示的意义相同,只是形式不同。
5、总结比例尺的特点:
师:我们现在初步的认识了比例尺,你有没有发现比例尺有什么样的特点?(生说)总结:是一个比;图上距离和实际距离的单位是统一的;比例尺的前项一般为1。
教师强调:(1)比例尺与一般的尺不同,它是一个比,不应带有计量单位.
(2)求比例尺时,前、后项的长度单位一定要化成同级单位.
(3)比例尺的前项,一般应化简成“1”.如果写成分数的形式,分子也应化简成“1”.
(三)认识放大的比例尺
1、介绍生活一些细小机器零件(多媒体出示)。
2、再生产中,有时由于机器零件比较小,需要把距离扩大一定的倍数以后,再画在图纸上。(多媒体出示教材49页)
3、你知道2:1表示什么吗?
4、小结:比例尺前项比后项大时,表示放大比例尺。
5、比较缩小比例尺与放大比例尺共同点:为了计算方便,通常把比例尺写成前项或后项是1的比。
三、运用知识,尝试解决问题。
1、设计一座厂房,在平面图上用10厘米的距离表示地面上10米的距离。求图上距离和实际距离的比。
2、填空:
1).()和()的比叫做这幅图的比例尺。2).通常把比例尺写成前项或后项为()的比。
3).比例尺分()比例尺和()比例尺两种。
4).比例尺
0
120km 表示图上1cm的距离代表实际距离
()km,转化成数值比例尺是()。
3、判断题(略)
4、课本53页至54页第2、3题。(或者课后作业)四:全课总结
师:通过前面的学习,你能谈谈自己的收获
五、板书设计:
图上距离
:实际距离
= 比例尺
六、附教学反思:
比例尺是在学生已经掌握了化简比以及比例的知识的基础上进行教学的,这一部分内容对学生来说比较陌生、抽象,难以理解,且与实际生活较远,不易让学生直观理解。因此在教学过程中,本人突出以下几方面特点:
1、在学生身边挖掘素材,引导学生发现问题,通过观察,小蚂蚁从北京到上海爬行5秒的路程和上海到北京大约1200千米的路程,认识图上距离和实际距离。再通过画10米线段,让学生亲身体验感受图上距离和实际距离,进而理解比例尺的作用。
2、注重培养学生的自学能力,对于比例尺的意义,书本上讲解比较清晰,况且高年级的学生已经具备一定的自学能力,因此48页上面的内容,自学后组织学生汇报,教师及时点拨。
3、通过创设各种学生比较熟悉地图情景图,使学生始终处于动手操作、动脑思考的状态,在获得知识的同时,培养了学生的思维能力。通过学习数值比例尺和线段比例尺之间的转换,让学明白地图上比例尺的多种表现形式。另外,通过教学发现学生在日常生活中见到的多为缩小的比例尺,生活经验具有一定的局限性,可以多收集一些实际生活中的放大比例尺,拓展学生的认知视野。
在教学中本人也感觉到了许多不足之处:
1、学生对图上距离和实际距离的区别不是很明显,特别是中下生很难快速判断出来。另外对于比例尺的意义掌握得不是很得心应手,为解决生活中问题留下了瘾范。
2、在计算比例尺化简时,很多学生容易混淆单位,没有统一直接化简。
3、部分学生比较喜欢做缩小比例尺的题目,对放大比例尺的图上距离和实际距离的判断比较容易出错。
第五篇:比例尺教案
比例尺教案
教学目标:
知识与技能:让学生在实践活动中体验生活中需要比例尺,运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
过程与方法:通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。
情感态度与价值观:学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。
教学重点:正确理解比例尺的含义。
教学难点:运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
教学准备 多媒体
教学过程:
一、复习导入
1.填空(课件出示)
1千米=()米 1米=()厘米 1千米=()厘米
4千米=()厘米
5千米=()厘米
200千米=()厘米 1000厘米=()米
3000000厘米=()千米
60000000厘米=()千米
2、用格尺在练习本上划线段
1厘米
10厘米
1米(有学生会发出质疑)哪有那么大的本子?不够画怎么办? 学生交流汇报后导入新课:人们在绘制地图和平面图时,往往因为纸的大小有限,不可能按实际的大小画在图纸上,经常需要把实际距离缩小一定的倍数以后再画成图。这就需要涉及到一种新的知识。今天我们一起来研究这一问题。
二、新授
教师:请同学们再在自己纸上画出长9米,宽6米的教室地面来。
学生1:(有学生会发出质疑)哪有那么大的本子?不够画怎么办? 学生2:可以利用前面所学的知识----图形的放缩,把教室的长和宽都缩小一定的倍数在纸上表示出来。
教师:大家画的图是长9米,宽6米吗?(不是)谁来说说是怎么画的?
(学生的答案可能有:长方形长9厘米,宽6厘米。或者是长3厘米,宽2厘米。)
教师:你的想法很对,跟老师的想法一样(用课件出示教室的平面图),在这幅图上你们发现了什么新
问题? 学生:在图的右下方有“比例尺1:300”
教师:观察真仔细!比例尺1:300是什么意思? 1学生讨论。
2学生汇报: 学生1:图上1厘米长的线段表示实际300厘米。
学生3:图上距离是实际距离的1/300。
学生2:表示实际距离是图上距离的300倍。
3揭示比例尺的意义。
教师:说得真不错,比例尺是表示图上距离与实际距离的比,这就是今天要学习的新知识——比例尺(板书课题)
三、课件展示
1、教师补充板书:图上距离:实际距离=比例尺
或者:图上距离/实际距离=比例尺
2、教师:你们在什么地方看到过比例尺? 学生1:在中国地图上。
学生:在世界地图上。
学生:在房屋设计图上。
……
3、出示各种比例尺,认识比例尺特征:(1)课件出示各种比例尺……
说说他们表示图上距离1厘米相当于实际距离()米或()千米。(2)再次课件出示这些比例尺……
教师:通过观察,你们发现比例尺有什么特点?
学生:比例尺是一个比;比例尺的前项和后项的单位相同;比例尺的前项一般是1。
四、运用知识,尝试解决问题: 同学们理解的真好,你们能解决实际生活中的问题吗?(打开书先帮笑笑解决一下问题)教师:图中比例尺1:100还表示什么意思?(注重意思的多样化)学生交流(略)教师:现在请大家量一量平面图中笑笑卧室的长是()厘米,宽是()厘米。
算一算笑笑卧室实际的长是()米,宽是()米,面积是()平方米。
(1)学生独立完成。
(2)汇报算法
学生1:先量出卧室的长5厘米,实际长=5厘米×100=500厘米=5米
学生2:量出卧室的长4厘米,实际宽=4厘米×100=400厘米=4米
学生3:卧室的实际面积是5×4=20平方米
五、总结
这节课的学习大家有哪些收获?