第一篇:高一化学必修二3-2乙烯教案
第二节 来自石油和煤的两种基本化工原料
第一课时
乙烯(教案)
【课标要求】 知识与技能:
1.了解烯烃的概念,了解乙烯的物理性质。
2.探究乙烯分子的组成和结构式;掌握乙烯的化学性质。3.掌握加成反应的概念。
4.强化学生对“结构─性质”关系的认识,培养学生的比较思维能力。过程与方法
1.实践活动(水果或蔬菜的催熟实验)、探究实验(石蜡油的分解); 2.通过乙烯性质的科学探究学习,提高学生分析问题的能力。3.由乙烯的双键启发学生分析乙烯和烷烃的化学性质的异同。情感态度与价值观:
通过催熟水果等实践活动,了解乙烯在自然的作用;乙烯是重要的化工原料,是衡量一个国家石油化工水平的标志,又是一种很重要的植物生长调节剂,教学中从生活实际出发,引导学生了解其重要作用,以培养学生热爱化学知识的情感。【教学重点】
本课时的重点是乙烯的化学性质,难点是加成反应原理的理解。【教学过程设计】
[新课引入]:趣味故事。
[质疑]该是什么气体,能加快水果的成熟? [讲述]该气体是乙烯,乙烯是一种重要的化工原料。[展示]乙烯的相关产品及用途。
[质疑]乙烯如此重要,那么工业上如何获得乙烯呢?
[讲述]主要来自石油。乙烯的产量用来衡量一个国家石油化工的发展水平。那么,乙烯有哪些性质呢?结构决定性质,我们先来认识一下乙烯的结构。[新课] [学与问] [展示]乙烯分子的模型,学生练习写乙烯的结构式、电子式、结构简式(参见投影):
[讲述]实验表明,乙烯分子里的两个碳原子和四个氢原子都处于同一平面。双键里其中一个键容易断裂,能跟其它原子或原子团结合。
[实验]乙烯与溴水及酸性高锰酸钾反应:
[现象]溴水及酸性高锰酸钾颜色褪去。[实验]乙烯在空气中燃烧,观察现象: [现象]:火焰明亮,有黑烟生成。[板书]
1、乙烯的氧化反应(1)燃烧
(2)乙烯被酸性高锰酸钾氧化,而使高锰酸钾褪色。
2、乙烯的加成反应
[讲解]乙烯分子在溴的攻击下,C=C双键里的其中一个键容易断裂,同样溴分子在乙烯的作用下,Br—Br键也会逐渐断裂,两个溴原子分别与两个不饱和的碳原子结合,生成无色的1,2一二溴乙烷。
[板书]
师生共同小结给出定义:有机化合物分子中双键(或三键)两端的碳原子与其他原子或原子团直接结合生成新的化合物分子的反应叫做加成反应。
[板书] 加成反应:有机物分子中双键(或三键)两端的碳原子跟其它原子或原子团直接结合生成新的化合物的反应。常见的加成试剂有:H2、HCl、H2O等等。
[分析]加成反应的特点(断键、成键的位置)。[思考、练习]
1、完成方程式:
CH2=CH2+H2 CH2=CH2+HCl
CH2=CH2+H2O 1 [答案]见幻灯展示
[思考、练习]
2、如何鉴别乙烷与乙烯?
[小结]乙烯的加成反应的特点:碳碳双键中的一个键容易断裂,断键两端的碳原子能够分别与其它的原子或原子团结合成新的共价键。(即“原子只上不下”)
[练习]完成对比归纳乙烷和乙烯(见学案)
[课堂小结]由于乙烯分子里的碳碳双键里的一个键容易断裂,能跟其它原子或原子团直接结合,因此,乙烯的化学性质比乙烷活泼,能发生加成、氧化反应,另外从乙烯的活泼性和还原性也充分说明乙烯是含有双键的不饱和烃。
[板书设计]
第二节 来自石油和煤的两种基本化工原料 第一课时
乙烯
一、乙烯的结构
二、乙烯的化学性质
1、乙烯的氧化反应
①燃烧
②乙烯使高锰酸钾溶液褪色。
2、乙烯的加成反应
加成反应:(定义)
三、乙烯的用途
[作 业]学案巩固练习
[课后反思]
第二篇:高一化学必修二总结
原子序数=核电荷数=质子数=核外电子数
电子层数相同的元素排成一个横行周期
最外层电子数相同的元素按电子层数递增的顺序纵行族
周期序数=电子层数;主族序数=最外层电子数
元素金属性强弱的判断依据:单质跟水或酸起反应置换出氢的难易;
元素最高价氧化物的水化物氢氧化物的碱性强弱; 置换反应。
元素非金属性强弱的判断依据:单质与氢气生成气态氢化物的难易及气态氢化物的稳定性;最高价氧化物对应的水化物的酸性强弱; 置换反应。
核素:具有一定数目的质子和一定数目的中子的一种原子。
质量数=质子数+中子数:A == Z + N
同位素质子数相同而中子数不同的同一元素的不同原子,互称同位素。(同一元
素的各种同位素物理性质不同,化学性质相同)
电子层数:电子层数越多,原子半径越大(最主要因素)核电荷数:核电荷数增
多,吸引力增大,使原子半径有减小的趋向(次要因素)核外电子数:电子数增
多,增加了相互排斥,使原子半径有增大的倾向;元素的化合价与最外层电子数的关系:最高正价等于最外层电子数(氟氧元素无正价)负化合价数 = 8—最外
层电子数(金属元素无负化合价)
同主族:从上到下,随电子层数的递增,原子半径增大,核对外层电子吸引能力
减弱,失电子能力增强,还原性(金属性)逐渐增强,其离子的氧化性减弱。
同周期:核电荷数增多,最外层电子数增多;原子半径减小,得电子能力增强,失电子能力减弱;氧化性增强,还原性减弱,气态氢化物稳定性增强最高价氧化
物对应水化物酸性增强,碱性减弱
含有离子键的化合物就是离子化合物;只含有共价键的化合物才是共价化合物。
NaOH共价键与离子键,NH4Cl共价键与离子键,Na2O2共价键与离子键放热反应燃烧 缓慢氧化。酸碱中和反应。金属与酸、水反应制氢气。大多数化
合反应(特殊:C+CO2 2CO是吸热反应)。
吸热反应:①以C、H2、CO为还原剂的氧化还原反应如②铵盐和碱的反应如
③大多数分解反应如KClO3、KMnO4、CaCO3的分解等。
原电池 负极:较活泼的金属氧化反应,根据内电路离子的迁移方向:阳离子流
向原电池正极,阴离子流向原电池负极。
化学反应平衡 总物质的量或总体积或总压强或平均相对分子质量不变
第三篇:高一化学必修二有机物复习教案
高一化学必修二有机物复习教案.txt31岩石下的小草教我们坚强,峭壁上的野百合教我们执著,山顶上的松树教我们拼搏风雨,严寒中的腊梅教我们笑迎冰雪。高一<<化学必修二>>有机物复习教案
一、有机物的物理性质
1、状态:
固态:饱和高级脂肪酸、脂肪、葡萄糖、果糖、蔗糖、麦芽糖、淀粉、、醋酸(16.6℃以下); 气态:C4以下的烷、烯、炔烃、甲醛、一氯甲烷、新戊烷; 其余为液体
2、气味:
无味:甲烷、乙炔(常因混有PH3、H2S和AsH3而带有臭味); 稍有气味:乙烯;
特殊气味:甲醛、乙醛、甲酸和乙酸; 香味:乙醇、低级酯;
3、密度:
比水轻:苯、液态烃、一氯代烃、乙醇、乙醛、低级酯、汽油; 比水重:溴苯、乙二醇、丙三醇、CCl4 硝基苯。
4、水溶性:
不溶: 烃.卤代烃...高级脂肪酸、高级醇醇醛 酯、烃 易溶:低级醇.醛.酸葡萄糖、果糖、蔗糖、麦芽糖 与水混溶:乙醇、乙醛、甲酸、丙三醇。
二、常见的各类有机物的官能团,结构特点及主要化学性质
(1)烷烃
A)官能团:无 ;通式:CnH2n+2;代表物:CH4 B)结构特点:键角为109°28′,空间正四面体分子。烷烃分子中的每个C原子的四个价键也都如此。
C)化学性质:
①取代反应(与卤素单质、在光照条件下)
,......。
②燃烧
③热裂解
(2)烯烃:
A)官能团: ;通式:CnH2n(n≥2);代表物:H2C=CH2 B)结构特点:键角为120°。双键碳原子与其所连接的四个原子共平面。C)化学性质:
①加成反应(与X2、H2、HX、H2O等)
②加聚反应(与自身、其他烯烃)
③氧化反应
能使酸性高锰酸钾溶液褪色(3)苯及苯的同系物:
A)通式:CnH2n-6(n≥6);代表物:
B)结构特点:苯分子中键角为120°,平面正六边形结构,6个C原子和6个H原子共平面。C)化学性质:
①取代反应(与液溴、HNO3、H2SO4等)
②加成反应(与H2、Cl2等)
苯的同系物能使酸性高锰酸钾溶液褪色(4)醇类:
A)官能团:-OH(醇羟基); 代表物: CH3CH2OH、HOCH2CH2OH B)结构特点:羟基取代链烃分子(或脂环烃分子、苯环侧链上)的氢原子而得到的产物。结构与相应的烃类似。C)化学性质:
①羟基氢原子被活泼金属置换的反应
②跟氢卤酸的反应
③催化氧化(α-H)
④酯化反应(跟羧酸或含氧无机酸)(5)羧酸
A)官能团:(或-COOH);代表物:CH3COOH B)结构特点:羧基上碳原子伸出的三个键所成键角为120°,该碳原子跟其相连接的各原子在同一平面上。C)化学性质:
①具有无机酸的通性
②酯化反应(7)酯类
A)官能团:(或-COOR)(R为烃基); 代表物: CH3COOCH2CH3 B)结构特点:成键情况与羧基碳原子类似 C)化学性质:
水解反应(酸性或碱性条件下)
3、常见糖类、蛋白质和油脂的结构和性质(1)单糖
A)代表物:葡萄糖、果糖(C6H12O6)
B)结构特点:葡萄糖为多羟基醛、果糖为多羟基酮
C)化学性质:①葡萄糖类似醛类,能发生银镜反应 ;②具有多元醇的化学性质。(2)二糖 A)代表物:蔗糖、麦芽糖(C12H22O11)
B)结构特点:蔗糖含有一个葡萄糖单元和一个果糖单元,没有醛基;麦芽糖含有两个葡萄糖单元,有醛基。C)化学性质:
①蔗糖没有还原性;麦芽糖有还原性。
②水解反应(3)多糖
A)代表物:淀粉、纤维素 [(C6H10O5)n ] B)结构特点:由多个葡萄糖单元构成的天然高分子化合物。淀粉所含的葡萄糖单元比纤维素的少。C)化学性质:
①淀粉遇碘变蓝。
②水解反应(最终产物均为葡萄糖)
⑥在酸、碱或酶的作用下水解最终生成多种α-氨基酸。
(4)油脂
A)组成:油脂是高级脂肪酸和甘油生成的酯。常温下呈液态的称为油,呈固态的称为脂,统称油脂。天然油脂属于混合物,不属于高分子化合物。B)代表物:
油酸甘油酯: 硬脂酸甘油酯:
C)结构特点:油脂属于酯类。天然油脂多为混甘油酯。分子结构为:
R表示饱和或不饱和链烃基。R1、R2、R3可相同也可不同,相同时为单甘油酯,不同时为混甘油酯。
D)化学性质:
①氢化:油脂分子中不饱和烃基上加氢。如油酸甘油酯氢化可得到硬脂酸甘油酯。
②水解:类似酯类水解。酸性水解可用于制取高级脂肪酸和甘油。碱性水解又叫作皂化反应(生成高级脂肪酸钠),皂化后通过盐析(加入食盐)使肥皂析出(上层)。
5、重要有机化学反应的反应机理(1)醇的催化氧化反应
说明:若醇没有α-H,则不能进行催化氧化反应。(2)酯化反应
说明:酸脱羟基而醇脱羟基上的氢,生成水,同时剩余部分结合生成酯。
三、有机化学计算
1、有机物化学式的确定
(1)确定有机物化学式的一般途径
(2)有关烃的混合物计算的几条规律
①若平均式量小于26,则一定有CH4 ②平均分子组成中,l < n(C)< 2,则一定有CH4。
③平均分子组成中,2 < n(H)< 4,则一定有C2H2。有机物化学式的确定方法 一,“单位物质的量”法
根据有机物的摩尔质量(分子量)和有机物中各元素的质量分数,推算出1 mol有机物中各元素原子的物质的量,从而确定分子中各原子个数,最后确定有机物分子式。
【例1】某化合物由碳、氢两种元素组成,其中含碳的质量分数为85.7%,在标准状况下11.2L此化合物的质量为14g,求此化合物的分子式.解析:此烃的摩尔质量为Mr=14g÷=28g/mol mol 此烃中碳原子和氢原子的物质的量分别为:
n(C)=28g×85.7%÷12g/mol=2mol n(H)=28g×14.3%÷1g/mol=4mol
所以1mol此烃中含2 molC和4molH 即此烃的分子式为C2H4 二,最简式法
根据有机物各元素的质量分数求出分子组成中各元素的原子个数之比(最简式),然后结合该有机物的摩尔质量(或分子量)求有机物的分子式。
【例1】另解:由题意可知:C和H的个数比为 :=1:2
所以此烃的最简式为CH2,设该有机物的分子式为(CH2)n
由前面求得此烃的分子量为28可知14 n=28 n=2 即此烃的分子式为C2H4。三,燃烧通式法
根据有机物完全燃烧反应的通式及反应物和生成物的质量或物质的量或体积关系利用原子个数守恒来求出1 mol有机物所含C、H、O原子的物质的量从而求出分子式。如烃和烃的含氧衍生物的通式可设为CxHyOz(Z=0为烃),燃烧通式为
CxHyOz+(x+y/4-z/2)O2 → xCO2+y/2H2O
【例2】某有机物0.6g完全燃烧后生成448mL(标准状况)CO2和0.36g水。已知该物质的蒸气对氢气的相对密度为30,求有机物的分子式。
解析:该有机物的分子量为30×2=60
0.6g该有机物的物质的量为 = 0.01 mol
n(CO2)= =0.02mol n(H2O)= =0.02mol
由原子个数守恒可知n(C)=n(CO2)=0.02mol,n(H)=2n(H2O)=0.04mol
0.6g该有机物中m(c)= M(C)×n(C)=12 g/mol×0.02mol =0.24g
m(H)= M(H)×n(H)= 1 g/mol×0.04mol=0.04g
m(O)= 0.6g-0.24g-0.04g=0.32g
CxHyOz +(x+y/4-z/2)O2 → x CO2 + y/2H2O
x y/2 0.01 mol 0.02 mol 0.02 mol
x=0.02 mol×1/0.01 mol=2 y=0.02 mol×4/0.01 mol=4 z=0.32g÷16g/mol÷0.01 mol =2 所以该有机物的分子式为C2H4O2 四,平均值法
根据有机混合物中的平均碳原子数或氢原子数确定混合物的组成。
平均值的特征为: C小≤≤C大 H小≤≤H大 【例3】某混合气体由两种气态烃组成,取0.1 mol 该混合气态烃完全燃烧后得 4.48LCO2(标准状况)和3.6gH2O则这两种气体可能是()
A.CH4和C3H8 B.CH4和C3H4 C.C2H4和C3H4 D.C2H2和C2H6
解析:由题意可知0.1 mol 该混合气态烃含碳原子的物质的量为:
n(c)= n(CO2)= = 0.2 mol
含氢原子的物质的量n(H)= 2n(H2O)=2×= 0.4 mol
即1 mol该混合气态烃含碳原子的物质的量n(C)=2 mol n(H)= 4mol
该混合气态烃的平均分子式为C2H4,根据平均值的特征可知选BD。五,商余通式法(适用于烃类分子式的求法)
根据烷烃(CnH2n+2),烯烃和环烷烃(CnH2n),炔烃和二烯烃(CnH2n-2),苯和苯的同系物(CnH2n-6)的通式可以看出这些烃类物质的分子中都有一个共同的部分为CnH2n,这部分的式量为14n,因此用烃的分子量除以14就可以得到分子所含碳原子数即n值,再根据余数就可以求得烃的分子式。其规律为: Mr/14能除尽,可推知为烯烃或环烷烃 Mr/14余数为2,可推知为烷烃 Mr/14差2可推知二烯烃或炔烃 Mr/14差6可推知为苯或苯的同系物
【例4】某烃的相对分子量为106,求该烃的分子式。
解析:106/14差6能除尽即(106+6)/14=8所以该烃的分子式为C8H10 六,区间法
根据有机物燃烧耗O2量的上下限值及有机物通式列出不等式进行求解确定其分子式。
【例5】常温下,在密闭容器中混有2ml气态烷烃和13mlO2,点燃爆炸,生成的只是气态产物,除去CO2和H2O后,又在剩余物中加入6mlO2,再进行爆炸重新得到的也只是气态产物,除得到CO2外,还剩余O2,试确定该烃的分子式。
解析:设烷烃的分子式为CnH2n+2,1ml完全燃烧时耗O2为(3n+1)/2ml,2ml完全燃烧时耗O2为(3n+1)ml。由题意可知13<3n+1<13+6
即4<n<6 所以n =5 分子式为C5H12 七,讨论法
当反应物的相对用量不确定或条件不足时应根据有机物的状态或分子式中碳原子或氢原子数为正整数等这些条件来讨论有机物的分子式。
【例6】吗啡是严格查禁的毒品,吗啡分子中含碳71.58%,氢6.67%,氮4.91%,其余为氧元素。已知吗啡相对分子质量不超过300,试求吗啡的分子式
解析:该题初看起来条件不足无从下手,但仔细分析题意就会发现吗啡的分子量不超过300,氮原子的百分含量最小,原子个数最少。根据有机物中原子个数为正整数的特点,不妨先设吗啡分子中氮原子数为1,由题意可知吗啡的分子量为:14/4.91% = 285 < 300,如果氮原子数大于1,很显然吗啡的分子量会超过300不符合题意。因此可以确定吗啡的分子量为285,该分子中所含N、C、H、O个数分别为:N(N)=1,N(C)=285×71.58%÷12=17,N(H)=285×6.67%÷1=19,N(O)=285×16.84%÷16=3。故吗啡的分子式为C17H19NO3。
2有机物燃烧规律
有机物完全燃烧的通式:
烃:
烃的含氧衍生物: 一.有机物的质量一定时:
规律1.烃类物质(CxHy)完全燃烧的耗氧量与成正比.规律2.有机物完全燃烧时生成的CO2或H2O的物质的量一定,则有机物中含碳或氢的质量分数一定;若混合物总质量一定,不论按何种比例混合,完全燃烧后生成的CO2或H2O的物质的量保持不变,则混合物中各组分含碳或氢的质量分数相同。
规律3.燃烧时耗氧量相同,则两者的关系为:⑴同分异构体 或 ⑵最简式相同 例1.下列各组有机物完全燃烧时耗氧量不相同的是
A.50g乙醇和50g甲醚 B.100g乙炔和100g苯
C.200g甲醛和200g乙酸 D.100g甲烷和100g乙烷 解析:A中的乙醇和甲醚互为同分异构体,B、C中两组物质的最简式相同,所以答案为D。例2.下列各组混合物中,不论二者以什么比例混合,只要总质量一定,完全燃烧时生成CO2的质量也一定,不符合上述要求的是 A.甲烷、辛醛 B.乙炔、苯乙烯 C.甲醛、甲酸甲酯 D.苯、甲苯
解析:混合物总质量一定,不论按什么比例混合,完全燃烧后生成CO2的质量保持不变,要求混合物中各组分含碳的质量分数相同。B、C中的两组物质的最简式相同,碳的质量分数相同,A中碳的质量分数也相同,所以答案为D。
二.有机物的物质的量一定时:
规律4.比较判断耗氧量的方法步聚:①若属于烃类物质,根据分子中碳、氢原子个数越多,耗氧量越多直接比较;若碳、氢原子数都不同且一多一少,则可以按1个碳原子与4个氢原子的耗氧量相当转换成碳或氢原子个数相同后再进行比较即可。②若属于烃的含氧衍生物,先将分子中的氧原子结合氢或碳改写成H2O或CO2的形式,即将含氧衍生物改写为CxHy·(H2O)n或CxHy·(CO2)m或CxHy·(H2O)n·(CO2)m形式,再按①比较CxHy的耗氧量。规律5.有机物完全燃烧时生成的CO2或H2O的物质的量一定,则有机物中碳原子或氢原子的个数一定;若混合物总物质的量一定,不论按何种比例混合,完全燃烧后生成的CO2或H2O的量保持不变,则混合物中各组分中碳或氢原子的个数相同。例3.相同物质的量的下列有机物,充分燃烧,消耗氧气量相同的是 A.C3H4和C2H6 B.C3H6和C3H8O C.C3H6O2和C3H8O D.C3H8O和C4H6O2 解析:A中C3H4的耗氧量相当于C2H8,B、C、D中的C3H8O可改写为C3H6·(H2O),C中的C3H6O2可改为C3H2·(H2O)2,D中的C4H6O2可改为C3H6·(CO2),显然答案为B、D。
例4.1molCxHy(烃)完全燃烧需要5molO2,则X与Y之和可能是 A.X+Y=5 B.X+Y=7 C.X+Y=11 D.X+Y=9 例5:有机物A、B只可能烃或烃的含氧衍生物,等物质的量的A和B完全燃烧时,消耗氧气的量相等,则A和B的分子量相差不可能为(n为正整数)()
A.8n B.14n C.18n D.44n 解析: A中的一个碳原子被B中的四个氢原子代替,A和B的分子量相差8的倍数,即答案A.如果A和B的分子组成相差若干个H2O或CO2 ,耗氧量也不变,即分别对应答案C和D。三.有机物完全燃烧时生成的CO2和H2O的物质的量之比一定时:
规律6:有机物完全燃烧时,若生成的CO2和H2O的物质的量之比为a:b,则该有机物中碳、氢原子的个数比为a:2b,该有机物是否存在氧原子,有几个氧原子,还要结合燃烧时的耗氧量或该物质的摩尔质量等其他条件才能确定。例6.某有机物在氧气中充分燃烧,生成的水蒸气和二氧化碳的物质的量之比为1:1,由此可以得出的结论是 A.该有机物分子中C:H:O原子个数比为1:2:1 B.分子中C:H原子个数比为1:2
C.有机物必定含O
D.无法判断有机物是否含O
答案:B、D 例7.某烃完全燃烧后,生成二氧化碳和水的物质的量之比为n:(n-1),此烃可能是 A.烷烃 B.单烯烃 C.炔烃 答案:C
D.苯的同系物
例8.某有机物6.2g完全燃烧后生成8.8g二氧化碳和0.3mol水,该有机物对氢气的相对密度为31.试求该有机物的分子式.答案:C2H6O(乙醇)四.有机物完全燃烧前后气体体积的变化 1.气态烃(CxHy)在100℃及其以上温度完全燃烧时气体体积变化规律与氢原子个数有关 ①若y=4,燃烧前后体积不变,△V=0 ②若y>4,燃烧前后体积增大,△V= ③若y<4,燃烧前后体积减少,△V= 2.气态烃(CxHy)完全燃烧后恢复到常温常压时气体体积的变化直接用烃类物质燃烧的通式通过差量法确定即可。
例9.120℃时,1体积某烃和4体积O2混和,完全燃烧后恢复到原来的温度,压强体积不变,该烃分子式中所含的碳原子数不可能是
(A)1(B)2(C)3(D)4 解析:要使反应前后压强体积不变,只要氢原子个数可以等于4并保证能使1体积该烃能在4体积氧气里完全燃烧即可答案:D 例11.两种气态烃以任意比例混合,在105℃时1 L该混合烃与9 L氧气混合,充分燃烧后恢复到原状态,所得气体体积仍是10 L.下列各组混合烃中不符合此条件的是(A)CH4 C2H4(B)CH4 C3H6(C)C2H4 C3H4(D)C2H2 C3H6 答案:B、D 3.液态有机物(大多数烃的衍生物及碳原子数大于4的烃)的燃烧,如果燃烧后水为液态,则燃烧前后气体体积的变化为:氢原子的耗氧量减去有机物本身提供的氧原子数的。例10:取3.40ɡ只含羟基、不含其他官能团的液态饱和多元醇,置于5.00L的氧气中,经点燃,醇完全燃烧.反应后气体体积减少0.560L ,将气体经CaO吸收,体积又减少2.8L(所有体积均在标况下测定)。则:3.4ɡ醇中C、H、O的物质的量分别为:C____; H______; O_______;该醇中C、H、O的原子个数之比为___________。
解析:设3.40ɡ醇中含H、O原子的物质的量分别为x和y 则: x+16y=3.40ɡ-2.80L/22.4L·mol-1×12ɡ·mol-1......方程① x/4-y/2 =0.560L/22.4L·mol-1......方程②
⑴、⑵联解可得:x=0.300mol y=0.100mol 进而求得原子个数比。
答案:C.0.125 mol、H.0.300 mol、O.0.100 mol;
该醇中C、H、O的原子个数之比为 5∶12∶4 五.一定量的有机物完全燃烧,生成的CO2和消耗的O2的物质的量之比一定时: 1.生成的CO2的物质的量小于消耗的O2的物质的量的情况
例11.某有机物的蒸气完全燃烧时,需要三倍于其体积的O2,产生二倍于其体积的CO2,则该有机物可能是(体积在同温同压下测定)A.C2H4 B.C2H5OH C.CH3CHO D.CH3COOH 解析:产生的CO2与耗氧量的体积比为2:3,设该有机物为1mol,则含2mol的C原子,完全燃烧时只能消耗2mol的氧气,剩余的1mol氧气必须由氢原子消耗,所以氢原子为4mol,即该有机物可以是A,从耗氧量相当的原则可知B也正确。答案为A、B。2.生成的CO2的物质的量等于消耗的O2的物质的量的情况
符合通式Cn·(H2O)m 3.生成的CO2的物质的量小于消耗的O2的物质的量的情况
⑴若CO2和O2体积比为4∶3 ,其通式为(C2O)n ·(H2O)m。
⑵若CO2和O2体积比为2∶1,其通式为(CO)n ·(H2O)m。例12.有xL乙烯和乙炔的混合气体,完全燃烧需要相同状态下氧气yL,则混合气体中乙烯和乙炔的体积比为
()
A. B. C. D.
例13.某有机物X燃烧时生成CO2和H2O,1 mol X完全燃烧时消耗O2 3 mol.(1)试写出X可能的分子式(三种):。(2)若X不跟钠和氢氧化钠反应,0.1 mol X与足量银氨溶液反应生成43.2 g银,则X的结构简式为.答案:
1、C
2、(1)C2H4、C2H6O、C3H4O2(2)OHCCH2CHO 四.同分异构体的书写
一、中学化学中同分异构体主要掌握四种: CH3 ①碳干异构:由于C原子空间排列不同而引起的。如:CH3-CH2-CH2-CH3和CH3-CH-CH3 ②位置异构:由于官能团的位置不同而引起的。如:CH2=CHCH2CH3和CH3CH=CHCH3 ③官能团异构:由于官能团不同而引起的。如:HC≡C-CH2-CH3和CH2=CH-CH=CH2;这样的异构主要有:烯烃和环烷烃;炔烃和二烯烃;醇和醚;醛和酮;羧酸和酯;氨基酸和硝基化合物。
④顺反异构:高中仅烯烃中可能存在,且C=C同一碳原子所连的两个基团要不同。
二、烷烃的同分异构体书写回顾
以C7H16为例:
1、先写最长的碳链: C-C-C-C-C-C-C
2、减少1个C,依次加在第②、③......个C上(不超过中线): C-C-C-C-C-C
3、减少2个C:
1)组成一个-C2H5,从第3个C加起(不超过中线): C-C-C-C-C
2)分为两个-CH3
a)两个-CH3在同一碳原子上(不超过中线): C-C-C-C-C C-C-C-C-C
b)两个-CH3在不同的碳原子上:
C-C-C-C-C C-C-C-C-C
三、同分异构体的书写技巧
1、一卤代烃种数与烃的质子峰个数、化学环境不同的氢原子的种数的关系
[例1]某烃的分子式为C5H12,核磁共振氢谱图中显示三个质子峰,该烃的一氯代物有 种。
[解析]写出C5H12的各种同分异构体进行分析,结果如下表: 同分异构体 质子峰数 一氯代物 CH3CH2CH2CH2CH3 3 3(CH3)2CHCH2CH3 4 4 C(CH3)4 1 1 【小结】
(1)烃的一卤代物种数 = 质子峰数 = 化学环境不同的H原子种数
(2)分子结构越对称,一卤代物越少,分子结构越不对称,一卤代物越多。
[练习] 某有机物A的分子式为C8H8O,A能发生银镜反应,其苯环上的一氯代物只有二种,试写出A的可能的结构简式。
2、丁基异构的应用
(1)写出丁基的四种同分异构体:
CH3CH2CH2CH2-(2)写出分子式为C5H10O的醛的各种同分异构体并命名:
CH3-CH2-CH2-CH2-CHO 戊醛
(3)分子式为C5H12O的醇有 种能被红热的CuO氧化成醛?
3、将“残基”拚成分子结构简式的技巧
[例3]某烃的分子结构中含有三个CH3-、二个-CH2-、一个-CH-,写出该烃可能的分子结构并命名。
第一步:找中心基(支链最多的基):
第二步:找终端基(-R)构造分子骨架:-CH3(3个)
第三步:将中间基插入:2个-CH2-(1)插入一个“-CH2-CH2-”,三个位置等同,故只有一种:CH3-CH2-CH2-CH-CH3
(2-甲基戊烷)
(2)将两个“-CH2-”插入,三个位置等同,故只有一种:CH3-CH2-CH-CH2-CH3
(3-甲基戊烷)
[练习]某有机物分子结构中含:一个 ;一个-CH-;一个-CH2-;3个CH3-;1个Cl-,则请写出符合条件的该有机物的可能的结构简式: 【跟踪训练】
1、目前冰箱中使用的致冷剂是氟里昂(二氯二氟甲烷),根据结构可推出氟里昂的同分异构体 A.不存在同分异构体 B.2种
C.3种
D.4种
2、某苯的同系物的分子式为C11H16,经测定,分子中除含苯环外不再含其它环状结构,分子中还含有两个甲基,两个亚甲基(-CH2-)和一个次甲基。则符合该条件的分子结构有
A、3种 B、4种 C、5种 D、6种
3、某苯的同系物,已知R-为C4H9-,则该物质可能的结构有 A、3种 B、4种 C、5种 D、6种
4、菲的结构简式为,它与硝酸反应,可能生成的一硝基取代物有
A、4种 B、5种 C、6种 D、10种
5、分子式为C8H16O2的有机物A,在酸性条件下能水解生成C和D,且C在一定条件下能转化成D。则有机物A的结构可能有
A、1种 B、2种 C、3种 D、4种
6、苯的二氯取代物有三种,那么苯的四氯取代物有 种.7、有机物
按系统命名法的名称是,该有机物的一氯代产物有 种。
8、二甲苯苯环上的一溴取代物共有6种,可用还原法制得3种二甲苯,它们的熔点分别如下: 6种溴二甲苯的熔点(℃)234 206 213 204 214.5 205 对应还原的二甲苯的熔点(℃)13-54-27-54-27 54 由此推断
熔点为234℃的分子的结构简式为为 ;
熔点为-54℃的分子的结构简式
;
第四篇:高一化学必修二教学反思
高一化学必修二教学反思
高一化学必修二教学反思1
上学期我们顺利地完成了高中化学必修一的模块教学 , 下面我讲从以下几个方面谈谈如何更有效地进行必修模块的教学。
一、对课程标准的理解与认识,自身教育观念的更新
在本模块的教学之初,由于对课程标准的解读不是很深刻,只是凭主观上的认识对传统教学大纲与课程标准作了简单的对比,在实际教学中过分注重了知识目标的实现,忽略了其他目标的实现,所以感觉新课标教材很不好用。
然而,当我通过对新课程理论的学习及课程标准的研究之后,对课程性质、课程理念、课程目标才有了深刻的认识,正是这种新的认识,促进了自身教育观念的更新,使得我在后续的教学中明确了方向,有了理论指导。
高中化学新课程必修模块的课程目标是 : 认识常见的化学物质,学习重要的化学概念,形成基本的化学观念和科学探究能力,认识化学对人类生活和社会发展的重要作用及其相互影响,进一步提高学生的科学素养。
二、充分利用新课程改革提供的自主创造空间
1、改变师生关系,转变工作方式。传统教学的实施很容易给人一种错觉,即课堂教学的重心更偏重于教师的教,而忽略了学生自主的学。然而,新课程提倡的却是教师的教是服务于学生的学,学生的自主学习又离不开教师的教的引导,二者之间属于相辅相承、缺一不可的关系。
因此,在实际教学中,学生和老师是处于平等的地位,课堂教学应该是师生间平等的对话。在这样的情况下,学生才可能学得自由,学得有创新,有成就感,有动力。
在模块一的教学里,我努力朝上述方向努力,可能是自己的教学经验不足,师生关系的完善在本学期并没有实现预期的效果,在必修二的模块里,我将采取有效的方式更进一步地实现师生课堂地位平等化。
2、运用多样化、最优化的教学方法,以教法的改革促进学生学习方式的转变。
教学有法而无定法,化学中的教学方法很多,那么,我们在实际教学中该选择什么样的教学方法呢?这个问题是我一直在思考的问题。通过教学实践,我发现,任何方法都有它实现最佳效果的界定条件,都不是万能的。在实际教学中,我们所涉及的知识板块、知识结构各不尽相同,因此我们就要寻找能够在这特定的条件下能起到最优效果的方法。也就是,从实际出发,因地制宜、因时制宜、因人制宜地选择最优教学方法。在一定的条件下,几种方法可同时并用,以实现最优的教学效果,当然,教师在选择教学方法的同时要兼顾学生的学习起点、学习方法的'特殊性及学生对相关知识的心理认知特点,重视学生的学习过程 , 以教法的改革来促进学生学习方法的转变。
在实践中,我认为学案导学的方法可以十分有效地促进学生学习方式的转变,非常有利于学生从被动的听课向主动听课的转变。
新课程赋予了我们广阔的自由发挥的空间,因此,抓住机遇,大胆创新对提高教育教学质量起着重要的作用。
3、积极寻求有利于学生全面发展的评价方式
对学生的评价既要注重全体学生的共同发展,又要兼顾学生的个体差异性的发展。要促进学生的全面发展,那全面发展的标准又是什么?要寻求促进学生全面发展的评价方式,首先要弄明白上述问题。对此,我深感困惑,因为现在的高考还是最主要的指挥棒,对于理科生来说,必修模块的学习是他们进行选修模块学习的基础。采取什么样的评价方式才能有利于学生的全面发展是一个十分重要的问题。
三、充分利用现有资源,实现教学目标的多元化
必修课的定位是全体学生科学素养的发展,所以在实施中不能只抓知识传授和训练。在教学目标上必须在现有的基础之上创造条件使学生在知识技能、过程方法、情感态度价值观等方面得到全面发展;在教学内容的选择和安排上,必须要关注学生经验和社会生活现实;在教学方式上,必须坚持以探究为主的多样化教学方式。
在教学中,我们需要处理好两个环节,第一个环节就是实验探究,第二环节就是知识目标的完成。在不同的知识板块上,我们要紧紧围绕三维目标的实现这个中心来进行有效的教学策略的设计与实施。
以上是我在必修一模块教学实践中的一些体会,既有成功的地方,也有需要改进的不足之处,正是这些宝贵的经验为我将要进行的必修二模块教学奠定了基础。
高一化学必修二教学反思2
寒假开学已有一个月,在此月中学生学习了化学必修二的第一章:物质结构元素周期律,这一章是本学期的重点,是会考和高考的重点。元素周期表是元素周期律的具体表现形式,是学化学的重要工具,对整个中学化学的学习具有重要的指导作用,因此学生对元素周期表的熟悉程度直接影响着其对化学元素的学习。以事实为依据,注重科学探究方法的运用。我先让学生从感性上来认识元素周期表,看元素周期表的实物图,让学生亲自数元素周期表的行和列,调动学生的积极性和主动性,使学生参与到教学中来。然后上升到理性认识上来,就是通过一些熟悉的元素的原子结构示意图,总结出周期序数与电子层数和主族元素的族序数与最外层电子数的关系,这样是知识更有系统性,。增加核外电子排布的内容,以认识元素周期律变化的根本原因,增加同一主族元素的性质的递变规律,从纵横两个方面理解元素周期律也培养了学生的抽象思维和逻辑思维能力。
在化学键的学习时,以知识内容为载体,注重化学原理的应用和化学用语的书写,落实基础。在学习离子键和共价键时,电子式的书写也是学生不好处理的,而教材中电子式是以资料卡片的形式给出的。我从元素符号出发先让学生掌握原子的电子式的书写,然后过渡到离子的电子式,进而到简单的离子化合物、供价化合物的电子式的书写,进而到化合物的形成过程,注重完整性和连贯性。在学习用电子式形成过程时,从原子结构示意图出发,活泼金属容易失电子,活泼非金属容易得电子,然后离子键以氯化钠的形成为例,共价键以氯化氢的形成为例,通过介绍他们的形成过程,用电子式的形式表达出来,引出离子键和共价键,具有代表性,学生容易明白,对教材要求掌握的知识容易接受。
三五五教学模式在我校发展的很好,,课堂气氛活跃,大多数学生回答问题争先恐后,小组集体观念很强,学生的学习效果较好。要想上好一堂课,我总结有以下两点心得体会:
一、课堂45分钟是教与学最重要的环节。
一堂课能否上好,关键在于教师的准备是否充分,也就是备课是否充分。教师只有认真做好备课工作,才能较好的`组织课堂教学。就备课而言,我认为应该做到以下几点:
1、认真钻研教材
钻研教材包括钻研新课程标准、化学课本等。仔细钻研新课程标准让我更明确教学目标、教学重点和教学难点所在,使自己在课堂教学中做到层次分明。认真钻研课本则能更清晰的为学生讲解知识点,做到有条有理,层次分明,从而使学生更容易掌握好所学的内容。
2、做好听课总结
三人行,必有我师。针对这一点,我尽可能去听课,课后认真总结别人上课的优点和不足,取其精华,弃其糟粕。半学期以来,发现听课后认真总结,对自己的备课、上课有很大的帮助。
3、深入了解学生
只有了解学生,教学工作才能做到有的放矢。了解学生包括很多方面,如学生对原有知识和技能的掌握情况、学生的学习方法和学习习惯等。例如,讲到《元素周期律》时,我发现学生连前18号元素原子有几个电子都不知道,原以为是学生对电子数和核电荷数的关系这一知识点掌握得不好;经过了解,才知道初中教学并不要求学生掌握常见元素的原子序数。这就能够做到及时补缺、补漏,从而让学生更好地将两个知识点联系起来。
4、注重实验教学。
实验是一门一实验为基础的科学,特别是在高中教学中,有许多演示实验和分组实验;应该充分利用已有的教学设备,该学生更多的“事实”以加深学生对知识点的理解。例如,为了说明原电池工作原理,我在课堂上演示这个实验,让他们发现确实有电流产生,从而得出结论,增强了学生的学习兴趣。
二、课前课后也是不可忽视的重要环节
每当我轮值晚自习时,我不是简单地在教室闲逛,而是充分利用师生短暂的共处时间,解答学生的各种疑难。在辅导过程中,一旦发现有某个问题被集中地提出,我就会马上反省自己的课堂教学是否有哪个知识点教授得不够清晰,并在下次课堂上进行改进后的讲解。实践证明,这样很好地实现了教师和学生、课前和课后的互动。
第五篇:高一化学必修二知识点总结(模版)
高一化学必修二知识点总结
一、元素周期表
★熟记等式:原子序数=核电荷数=质子数=核外电子数
1、元素周期表的编排原则:
①按照原子序数递增的顺序从左到右排列;
②将电子层数相同的元素排成一个横行——周期;
③把最外层电子数相同的元素按电子层数递增的顺序从上到下排成纵行——族
2、如何精确表示元素在周期表中的位置: 周期序数=电子层数;主族序数=最外层电子数 口诀:三短三长一不全;七主七副零八族
熟记:三个短周期,第一和第七主族和零族的元素符号和名称
3、元素金属性和非金属性判断依据:
①元素金属性强弱的判断依据: 单质跟水或酸起反应置换出氢的难易;
元素最高价氧化物的水化物——氢氧化物的碱性强弱; 置换反应。
②元素非金属性强弱的判断依据:
单质与氢气生成气态氢化物的难易及气态氢化物的稳定性; 最高价氧化物对应的水化物的酸性强弱; 置换反应。
4、核素:具有一定数目的质子和一定数目的中子的一种原子。
①质量数==质子数+中子数:A == Z + N
②同位素:质子数相同而中子数不同的同一元素的不同原子,互称同位素。(同一元素的各种同位素物理性质不同,化学性质相同)
二、元素周期律
1、影响原子半径大小的因素:
①电子层数:电子层数越多,原子半径越大(最主要因素)
②核电荷数:核电荷数增多,吸引力增大,使原子半径有减小的趋向(次要因素)
③核外电子数:电子数增多,增加了相互排斥,使原子半径有增大的倾向
2、元素的化合价与最外层电子数的关系:最高正价等于最外层电子数(氟氧元素无正价)负化合价数 = 8—最外层电子数(金属元素无负化合价)
3、同主族、同周期元素的结构、性质递变规律:
同主族:从上到下,随电子层数的递增,原子半径增大,核对外层电子吸引能力减弱,失电子能力增强,还原性(金属性)逐渐增强,其离子的氧化性减弱。
同周期:左→右,核电荷数——→逐渐增多,最外层电子数——→逐渐增多
原子半径——→逐渐减小,得电子能力——→逐渐增强,失电子能力——→逐渐减弱 氧化性——→逐渐增强,还原性——→逐渐减弱,气态氢化物稳定性——→逐渐增强 最高价氧化物对应水化物酸性——→逐渐增强,碱性 ——→ 逐渐减弱
三、化学键
含有离子键的化合物就是离子化合物;只含有共价键的化合物才是共价化合物。
NaOH中含极性共价键与离子键,NH4Cl中含极性共价键与离子键,Na2O2中含非极性共价键与离子键,H2O2中含极性和非极性共价键
一、化学能与热能
1、化学能转化为电能的方式: 电能
(电力)火电(火力发电)化学能→热能→机械能→电能 缺点:环境污染、低效 原电池 将化学能直接转化为电能 优点:清洁、高效
2、原电池原理
(1)概念:把化学能直接转化为电能的装置叫做原电池。
(2)原电池的工作原理:通过氧化还原反应(有电子的转移)把化学能转变为电能。
(3)构成原电池的条件:(1)有活泼性不同的两个电极;(2)电解质溶液(3)闭合回路(4)自发的氧化还原反应
(4)电极名称及发生的反应:
负极:较活泼的金属作负极,负极发生氧化反应,电极反应式:较活泼金属-ne-=金属阳离子 负极现象:负极溶解,负极质量减少。
正极:较不活泼的金属或石墨作正极,正极发生还原反应,电极反应式:溶液中阳离子+ne-=单质 正极的现象:一般有气体放出或正极质量增加。
(5)原电池正负极的判断方法:
①依据原电池两极的材料:
较活泼的金属作负极(K、Ca、Na太活泼,不能作电极);
较不活泼金属或可导电非金属(石墨)、氧化物(MnO2)等作正极。
②根据电流方向或电子流向:(外电路)的电流由正极流向负极;电子则由负极经外电路流向原电池的正极。
③根据内电路离子的迁移方向:阳离子流向原电池正极,阴离子流向原电池负极。
④根据原电池中的反应类型:
负极:失电子,发生氧化反应,现象通常是电极本身消耗,质量减小。正极:得电子,发生还原反应,现象是常伴随金属的析出或H2的放出。
(
6)原电池电极反应的书写方法:
(i)原电池反应所依托的化学反应原理是氧化还原反应,负极反应是氧化反应,正极反应是还原反应。因此书写电极反应的方法归纳如下:
①写出总反应方程式。
②把总反应根据电子得失情况,分成氧化反应、还原反应。
③氧化反应在负极发生,还原反应在正极发生,反应物和生成物对号入座,注意酸碱介质和水等参与反应。
(ii)原电池的总反应式一般把正极和负极反应式相加而得。(7)原电池的应用:
①加快化学反应速率,如粗锌制氢气速率比纯锌制氢气快。②比较金属活动性强弱。③设计原电池。④金属的防腐。
四、化学反应的速率和限度
1、化学反应的速率
(1)概念:化学反应速率通常用单位时间内反应物浓度的减少量或生成物浓度的增加量(均取正值)来表示。
计算公式:v(B)= =
①单位:mol/(L•s)或mol/(L•min)②B为溶液或气体,若B为固体或纯液体不计算速率。③重要规律:速率比=方程式系数比
(2)影响化学反应速率的因素:
内因:由参加反应的物质的结构和性质决定的(主要因素)。
外因:
①温度:升高温度,增大速率
②催化剂:一般加快反应速率(正催化剂)
③浓度:增加C反应物的浓度,增大速率(溶液或气体才有浓度可言)
④压强:增大压强,增大速率(适用于有气体参加的反应)
⑤其它因素:如光(射线)、固体的表面积(颗粒大小)、反应物的状态(溶剂)、原电池等也会改变化学反应速率。
2、化学反应的限度——化学平衡
(1)化学平衡状态的特征:逆、动、等、定、变。
①逆:化学平衡研究的对象是可逆反应。
②动:动态平衡,达到平衡状态时,正逆反应仍在不断进行。
③等:达到平衡状态时,正方应速率和逆反应速率相等,但不等于0。即v正=v逆≠0。
④定:达到平衡状态时,各组分的浓度保持不变,各组成成分的含量保持一定。
⑤变:当条件变化时,原平衡被破坏,在新的条件下会重新建立新的平衡。(3)判断化学平衡状态的标志:
① VA(正方向)=VA(逆方向)或nA(消耗)=nA(生成)(不同方向同一物质比较)②各组分浓度保持不变或百分含量不变 ③借助颜色不变判断(有一种物质是有颜色的)
④总物质的量或总体积或总压强或平均相对分子质量不变(前提:反应前后气体的总物质的量不相等的反应适用,即如对于反应xA+yB zC,x+y≠z)
一、有机物的概念
1、定义:含有碳元素的化合物为有机物(碳的氧化物、碳酸、碳酸盐、碳的金属化合物等除外)
2、特性:①种类多②大多难溶于水,易溶于有机溶剂③易分解,易燃烧④熔点低,难导电、大多是非电解质⑤反应慢,有副反应(故反应方程式中用“→”代替“=”)
二、甲烷
烃—碳氢化合物:仅有碳和氢两种元素组成(甲烷是分子组成最简单的烃)
1、物理性质:无色、无味的气体,极难溶于水,密度小于空气,俗名:沼气、坑气
2、分子结构:CH4:以碳原子为中心,四个氢原子为顶点的正四面体(键角:109度28分)
3、化学性质:①氧化反应:(产物气体如何检验?)甲烷与KMnO4不发生反应,所以不能使紫色KMnO4溶液褪色
②取代反应:(三氯甲烷又叫氯仿,四氯甲烷又叫四氯化碳,二氯甲烷只有一种结构,说明甲烷是正四面体结构)
4、同系物:结构相似,在分子组成上相差一个或若干个CH2原子团的物质(所有的烷烃都是同系物)
5、同分异构体:化合物具有相同的分子式,但具有不同结构式(结构不同导致性质不同)
烷烃的溶沸点比较:碳原子数不同时,碳原子数越多,溶沸点越高;碳原子数相同时,支链数越多熔沸点越低
同分异构体书写:会写丁烷和戊烷的同分异构体
三、乙烯
1、乙烯的制法:
工业制法:石油的裂解气(乙烯的产量是一个国家石油化工发展水平的标志之一)
2、物理性质:无色、稍有气味的气体,比空气略轻,难溶于水
3、结构:不饱和烃,分子中含碳碳双键,6个原子共平面,键角为120°
4、化学性质:
(1)氧化反应:C2H4+3O2 = 2CO2+2H2O(火焰明亮并伴有黑烟)
可以使酸性KMnO4溶液褪色,说明乙烯能被KMnO4氧化,化学性质比烷烃活泼。
(2)加成反应:乙烯可以使溴水褪色,利用此反应除乙烯
乙烯还可以和氢气、氯化氢、水等发生加成反应。
CH2=CH2 + H2→CH3CH3 CH2=CH2+HCl→CH3CH2Cl(一氯乙烷)CH2=CH2+H2O→CH3CH2OH(乙醇)(3)聚合反应:
四、苯
1、物理性质:无色有特殊气味的液体,密度比水小,有毒,不溶于水,易溶于有机 溶剂,本身也是良好的有机溶剂。
2、苯的结构:C6H6(正六边形平面结构)苯分子里6个C原子之间的键完全相同,碳碳键键能大于碳碳单键键能小于碳碳单键键能的2倍,键长介于碳碳单键键长和双键键长之间 键角120°。
3、化学性质
(1)氧化反应 2C6H6+15O2 = 12CO2+6H2O(火焰明亮,冒浓烟)
不能使酸性高锰酸钾褪色(2)取代反应
① + Br2 + HBr 铁粉的作用:与溴反应生成溴化铁做催化剂;溴苯无色密度比水大
② 苯与硝酸(用HONO2表示)发生取代反应,生成无色、不溶于水、密度大于水、有毒的油状液体——硝基苯。+ HONO2 + H2O 反应用水浴加热,控制温度在50—60℃,浓硫酸做催化剂和脱水剂。
(3)加成反应
用镍做催化剂,苯与氢发生加成反应,生成环己烷 + 3H2
五、乙醇
1、物理性质:无色有特殊香味的液体,密度比水小,与水以任意比互溶
如何检验乙醇中是否含有水:加无水硫酸铜;如何得到无水乙醇:加生石灰,蒸馏
2、结构: CH3CH2OH(含有官能团:羟基)
3、化学性质
(1)乙醇与金属钠的反应:2CH3CH2OH+2Na= 2CH3CH2ONa+H2↑(取代反应)
(2)乙醇的氧化反应★
①乙醇的燃烧:CH3CH2OH+3O2= 2CO2+3H2O
②乙醇的催化氧化反应2CH3CH2OH+O2= 2CH3CHO+2H2O ③乙醇被强氧化剂氧化反应 CH3CH2OH
六、乙酸(俗名:醋酸)
1、物理性质:常温下为无色有强烈刺激性气味的液体,易结成冰一样的晶体,所以纯净的乙酸又叫冰醋酸,与水、酒精以任意比互溶
2、结构:CH3COOH(含羧基,可以看作由羰基和羟基组成)
3、乙酸的重要化学性质
(1)乙酸的酸性:弱酸性,但酸性比碳酸强,具有酸的通性
①乙酸能使紫色石蕊试液变红
②乙酸能与碳酸盐反应,生成二氧化碳气体
利用乙酸的酸性,可以用乙酸来除去水垢(主要成分是CaCO3): 2CH3COOH+CaCO3=(CH3COO)2Ca+H2O+CO2↑ 乙酸还可以与碳酸钠反应,也能生成二氧化碳气体: 2CH3COOH+Na2CO3= 2CH3COONa+H2O+CO2↑ 上述两个反应都可以证明乙酸的酸性比碳酸的酸性强。
(2)乙酸的酯化反应
(酸脱羟基,醇脱氢,酯化反应属于取代反应)
乙酸与乙醇反应的主要产物乙酸乙酯是一种无色、有香味、密度比水的小、不溶于水的油状液体。在实验时用饱和碳酸钠吸收,目的是为了吸收挥发出的乙醇和乙酸,降低乙酸乙酯的溶解度;反应时要用冰醋酸和无水乙醇,浓硫酸做催化剂和吸水剂 化学与可持续发展
一、金属矿物的开发利用
1、常见金属的冶炼:①加热分解法:②加热还原法:铝热反应 ③电解法:电解氧化铝
2、金属活动顺序与金属冶炼的关系:
金属活动性序表中,位置越靠后,越容易被还原,用一般的还原方法就能使金属还原;金属的位置越靠前,越难被还原,最活泼金属只能用最强的还原手段来还原。(离子)
二、海水资源的开发利用
1、海水的组成:含八十多种元素。
其中,H、O、Cl、Na、K、Mg、Ca、S、C、F、B、Br、Sr等总量占99%以上,其余为微量元素;特点是总储量大而浓度小
2、海水资源的利用:
(1)海水淡化: ①蒸馏法;②电渗析法; ③离子交换法; ④反渗透法等。(2)海水制盐:利用浓缩、沉淀、过滤、结晶、重结晶等分离方法制备得到各种盐。