第一篇:高温材料在燃气轮机中的应用和发展
华东理工大学
高温材料在燃气轮机中的应用和发展
燃气轮机在过去几十年中取得了突飞猛进的发展。燃气轮机具有热效率高、污染少、耗水少等优点,参与联合循环的燎气轮机组能达到更高的热效率,因而燃气轮机在电力上的应用越来越广泛。材料是先进燃气轮机设计、制造技术的基础和保证条件,特别足高温材料,没有先进的高温材料就不可能设计制造出先进的燃气轮机。高温合金材料是燃气轮机材料中极其重要的组成部分。在燃气轮机燃烧室、导向叶片、涡轮动叶片以及涡轮盘等部位上都有着广泛的应用。本文就当前燃气轮机所采用高温合金的主要特点及新技术的应用情况进行了说明和分析,并对目前世界主要国家的研制水平和发展趋势进行了简要的介绍。
一
概述
高温合金材料是现代燃气轮机所必需的重要金属材料,它能在高温(一般指600到1100度)氧化气氛中和燃气腐蚀条件下承受较大应力,并长期使用。20世纪40年代初,英国在镍—铬电热材料的基础上用铝和钛等元素对合金进行强化,促进了镍基高温合金的发展,同时也为燃气轮机性能的提高创造了必要条件。随后,美国和前苏联也相继研制了高温合金。我国自20 世纪50年代末至今,从无到有,由仿制到独创,基本上形成了我国的高温合金材料系列和科研生产基地。
二 高温合金材料的分类
高温合金按基体分类有铁基、镍基和钴基合金。实际上加入了大量的合金
华东理工大学
定。
4.2 导向叶片用高温合金
导向叶片的第一级是涡轮发动机上受热冲击最大的零件之一。但由于它是静止的,所受的机械负荷并不大。通常由于应力引起的扭曲、温度剧烈变化引起的裂纹以及过燃引起的烧伤,使导向叶片在工作中经常出现故障。根据导向叶片工作条件,要求材料具有如下性能:足够的持久强度及良好的热疲劳性能;有较高的抗氧化和抗腐蚀的能力;如用铸造合金,则要求具有良好的铸造性能。
4.3 涡轮动叶片用高温合金
涡轮工作叶片是涡轮发动机上最关键的构件之一。虽然工作温度比导向叶片要低些,但是受力大而复杂,工作条件恶劣,因此对涡轮叶片材料要求有:高的抗氧化和抗腐蚀能力;高的抗蠕变和持久断裂的能力;良好的机械疲劳和热疲劳性能以及良好的高温和中温综合性能。
4.4 涡轮盘用高温合金
涡轮盘在工作中受热不均,盘的轮缘部位比中心部位承受较高的温度,产生很大的热应力。榫齿部位承受最大的离心力,所受的应力更为复杂。为此对涡轮盘材料要求有:合金应具有高的屈服强度和蠕变强度;良好的冷热和机械疲劳性能;线膨胀系数要小,无缺口敏感性,较高的低周疲劳性能。
五 高温合金的发展趋势和新技术
为满足新一代的燃气轮机对高性能材料的需要,除在定向凝固铸造技术和单
华东理工大学
喷涂CoCrAlSiY/ZrO2剃度涂层是沿高温合金基体至涂层表面的厚度方向上,ZrO2含量逐渐增加,CoCrAlSiY 含量逐渐减少,表现出涂层成份剃度化分布,剃度涂层层与层间无明显的成份突变,组织呈连续变化,大大提高了涂层与基材的结合强度。该种涂层最大厚度可达180μm,可降低100~150度的工作温度。电子束:剃度涂层是通过制备一定直径的靶材,当电子束射击靶材时,通过靶材中的元素蒸发和真空室中连续供给氧气的技术,使金属Zr和Y 原子在CoCrAlY涂层表面形成在Y2O3中稳定的ZrO2涂层。涂层成份的变化通过控制电子束喷涂设备的功率来调整。该种涂层最大厚度可达120μm。
可以预见,今后将会有更多的不同元素组成的涂层应用于燃气轮机高温部件上,这样就可以大大提高燃气轮机的效率、可靠性和经济性,满足不同用途燃气轮机的使用要求。
六 现有水平及发展趋势
美国在20世纪90年代推出了一些新型镍基合金,Haynes242,230,214和556等。新型Inconel718.合金已用于美国F-117飞机发动机的尾喷管蜂窝夹芯板,该蜂窝夹芯板用超塑性成形扩散连接加工而成,能耐高温、压力和声压。Haynes242为Ni-Mo-Cr时效硬化合金,具有较高的强度和塑性、良好的抗氧化性和低热膨胀系数,可不用涂层防护,目前这种合金制成的发动机构件现已进入试车阶段,主要用于发动机环形件和件。Haynes230成份Ni-22%Cr-14%W2%Mo,主要用于发动机燃烧室部件和密封件等。Haynes214的成份为Ni-16%Cr-4.5% Al-13%Fe-Y,它是一种优良的抗氧化材料,用于蜂窝密封件时,其性能为Hastelloy的8倍。Haynes556为Fe-M-Cr-Co合金,为用于高温合金的新型焊接材料,主要也用于发动机构件。
华东理工大学
金材料,如国际镍公司发展的低膨胀系数合金4005(42Ni-29.5Fe-18Co-6Al-3Nb-1.5Ti)等。合金发展的一个主要特点是日益提高加入合金元素的总量。
我国正在开发一种用于680-700度盘件生产的新型Inconel718(中国牌号GH4169)合金。该改型合金基于Ni-19Cr-18Fe-3Mo-B,W(NB)较高,为5.2%-5.5%Ni+Ti+Al摩尔分数控制在6.5%-7.5%范围内,(Al+Ti)/Nb 原子比控制在1.1-1.4范围内,w(W)1%-2%为增强固溶强化效果,有时添加低含量的Co,一定含量的P作为该新型合金的晶界强化元素。该改型718合金的科研开发目的在于提高合金性能以得到高质量特别是更长的应力断裂寿命及提高650-700度的温度特性。目前改型718合金的目标是作为700度的盘件材料。其改变如下:(1)高温强度(例如700度)特别是应力断裂寿命和蠕变性能必须与传统Inconel718在650度时的性能相同;(2)调整主要强化元素Nb,Ti,Al(没有添加贵重元素Ta),同时保持γ1和γ2沉淀强化特性;(3)加入少量固溶强化元素,例如W和Co,但Co 含量应尽可能控制得低;(4)P作为一种新的晶界强化元素加入到合金中。另一种我国自主研制的γ沉淀硬化镍基高温合金GH4133(GH33A),w(Nb)1.15%-1.65%,已生产20多年,广泛应用于700度的各种喷气发动盘件上。为进一步提高持久(蠕变)强度和断裂韧性,采用加Mg 微合金化,增强晶界强化效应,发展和生产了GH4133B合金,目前我国民航机的喷气发动机涡轮盘,燃气轮机都使用了该合金。
燃气轮机广泛应用于现代的发电、航空航天、船舶等领域,燃气轮机技术水平的高低已成为一个国家科技水平、军事实力的综合国力的重要标志之一。通过分析目前世界先进发电燃气轮机各主要部件的使用材料,及对未来下一代燃气轮机使用材料的发展趋势进行讨论,可以有效把握和促进国内当前燃气轮
第二篇:燃气轮机在船舶动力方面的应用
燃气轮机在船用动力方面的应用与发展
邵高鹏
(清华大学汽车系,北京 100084)
摘 要:介绍船用燃气轮机的工作原理和特点,对比燃气轮机和内燃机性能的优缺点,总结燃气轮机应用于船用动力的现状和未来的发展方向。
关键词:船用燃气轮机;原理;应用;发展方向;
1.引 言
燃气轮机动力装置在50年代开始用于船舶,在此之前,水面舰艇都已蒸汽轮机和内燃机作为其动力装置,大型舰船以蒸汽轮机为其主要的动力装置,蒸汽轮机的优势在于技术相对简单,制造相对容易,但是其同样存在油耗大,占用空间大等等劣势,而柴油机的单机功率有限,必须采用多机并用。并且由于燃气轮机汽固有的一些优点,使得它逐渐向柴油机动力在船舶动力上的统治地位发起了挑战。最初的燃气轮机还只能应用与军用舰艇,但是随着燃气轮机技术的发展,燃气轮机在商船上也逐步得到了推广。
2.船用燃气轮机的工作原理
船用内燃机的循环模式可以分为简单开式循环,其工作过程同内燃机类似,也可以分为吸气、压缩、做功及排气四个工作行程,但是与内燃机又有很大的不同,下图中是一种燃气轮机的结构示意图。
轴流压气机的转子高速回转,在压气机的进口处产生吸力,将新鲜空气吸入压气机,对应着吸气的过程。空气在轴流压气机中增压,压力和温度都有升高,空气继续流动经过扩压器,减速增压进入燃烧室中,此时的空气温度和压力都较高,比容很小,这就实现了空气的压缩过程。在空气进入燃烧室的同时,燃油同时喷入与空气混合形成可燃混合气,点燃后迅速燃烧,温度继续升高,而压力变化不大(由于流动损失的存在);高温高压的燃气,经过涡轮的静叶的导向之后冲击涡轮的动叶叶片,推动叶片使涡轮转子高速转动而产生转矩。涡轮常分为两级,第一级涡轮(高压涡轮)上产生的转矩用于驱动与之联动的压气机,第二级涡轮(动力涡轮)上产生的转矩经过传动轴和减速箱输出,这就是燃气轮机的燃烧和做工过程。经过两级涡轮的燃气经废气箱和烟囱排入大气,是燃气轮机的排气过程,这部分气体中仍然含有一些能量,可以把这部分能量加以利用来提高整机的工作效率。
除了简单开式循环外,船用燃气轮机还有一些更为复杂的循环型式,包括回热机组和中冷机组等等。回热机组中排气温度高,经回热器(即换热器)先把压气机出口的空气加热,然后空气再进入燃烧室,优点是可以提高热效率,但是会增加机器的重量和尺寸;中冷机组在压缩过程中采用中间冷却,这样可以减小高压压气机的压缩功,使单位流量工质的输出功增大。
3.船用燃气轮机的特点
燃气轮机虽然发展比内燃机和蒸汽轮机稍晚,但是很快便在航空领域取得了绝对的统治地位,并在船用动力系统中也得到了广泛的应用,与传统的内燃机动力和蒸汽轮机等相比,燃气轮机能够克服很多它们的缺点,但是也有一些自身惯有的不足。
与柴油机相比,船用燃气轮机有以下特点:
1.燃气轮机工作时虽然同样经历吸气、压缩、做功和排气四个环节,但是这些环节是分别在不同位置同时、连续地进行的,各装置的工作过程互不干扰而且又同时进行,而柴油机要等一个冲程结束后才能开始另一个冲程。
2.燃气轮机以高速回转方式工作,它的主要运动部件压气机转子和涡轮转子等都经过精确地调节平衡,因此燃气轮机在高速转动的过程中冲击小,平稳性好。而活塞式内燃机运动方式为往复运动,工作时有较强的冲击。
3.相比内燃机,燃气轮机有更高的工作温度,而燃烧膨胀压力较低。4.燃气轮机启动时需要强制点火,而正常运行之后则可以自燃,而内燃机一般只有一种固定的着火方式。
5.燃气轮机运行时没有时间和角度的要求,也没有正时的问题,燃气轮机的燃油喷射是连续不间断的,而内燃机只在一个循环中的某个阶段进行喷油。
一般来说,与船用柴油机相比,燃气轮机的优点主要有:
1.比功率大,重量轻,体积小。在同等功率的各种内燃机中,燃气轮机具有最轻的重量和最小的体积。船用燃气轮机单位功率重量,只有高速柴油机的十五分之一或更小。
2.船用燃气轮机对功率指令反应迅速,低温起动性,加速性良好,且起动后立即可投入全负荷工作。不必“暖车”,不必慢慢提速,有利于提高舰船的机动性。
3.燃气轮机工作时有充足的空气来满足燃油燃烧所需。由于燃烧完善,从而保证在起动、加速、变速及正常运行等不同工况下排气都不会冒黑烟。这个突出的优点,大大提高了军用船舰的隐蔽性。
4.燃气轮机结构紧凑,传动机构较少,工作极为平稳,不震动,工作噪音。尤其是高频噪音较小。便于安装封闭式机罩而对机组实行整体隔音、降噪,从而使机舱工作条件得到改善。在一定程度上也能提高船舰的隐蔽性。
5.燃气轮机工作可靠性高,故障较少发生。同时拆卸、维修、安装都较方便。与船用柴油机相比,船用燃气轮机具有以下缺点:
1.耗油率偏高,尤其是小型船用燃气轮机。但随着技术的发展,已得到很大改善。2.燃气轮机的工作转速很高,但输出扭矩较小,必须通过减速箱降速提高扭矩才能输出作功。然而配套的减速箱减速比都比较大,其重量甚至大于燃气轮机本身,增加了结构的复杂性。
3.燃气轮机工作当中耗气量特别大。故进气通道及排气烟囱尺寸都较大,占用了船 舱的部分空间容积在小吨位船上布置起来有些不便。4.燃气轮机的构造较复杂精细,制造材料和工艺要求都很高,因而它的造价较柴油机高,维修配件也比较贵。
5.为满足燃气轮机高速、高温工作所需,对使用的润滑油有较严格的要求,必须具有良好的润滑性及抗高温的热稳定性。燃料则用热值高,含杂质、水分少,尤其是含硫分低的优质轻柴油,因而在一定程度上限制了使用范围并增加了营运成本。
4.燃气轮机应用于船舶的状况
1.军事方面:英国于1967 年率先提出实行水面战舰全燃汽轮机推进的动力政策。1969年以后,高性能船舶燃气轮机LM2500 研制成功,美国海军动力装置迅速走上了全燃推进的道路,并在装舰数量上远远超过了英国。原苏联一直是船舶燃气轮机的最大使用国,其海军装用燃机的舰艇数、燃机台数和装机总功率均占世界第一位。80 年代初,日本海军步英国、美国和原苏联后尘也走上了全燃推进的道路。最近十多年,其燃机装舰的速度和规模均超过了英国。目前的护卫舰,尤其是装备现代武器的大型护卫舰,采用燃机(含柴燃联合装置)推进日益增多;在驱逐舰和巡洋舰中,燃汽轮机将取代蒸汽机,成为两舰种的动力装置;轻型航母也倾向于采用燃机驱动。我国第一艘装备燃气轮动力的“舷号452”气垫登陆艇于1989年服役,成为我海军发展史上的一个重要里程碑。后来又在一些中大型军舰,如舷号112、113、168、169等驱逐舰上,装备了多种不同型号的燃气轮机动力,为海军的现代化建设奠定了牢固基础。2001年,以沈阳黎明公司为研制总成单位、六〇六所为总设计单位,联合清华大学、中科院、上海交通大学等科研院所和有关企业,组成设计研制项目联合体,借鉴国外技术,引进国外智力,共同研制R0110重型燃气轮机。这一项目被列为国家“十五”期间“863”能源领域重大专项。2009年,重型燃气轮机己进入最后联调及试验验证阶段。输出功率预计可达114500kW,可以作为中型常规航空母舰的主动力。这对于提高我国的综合国力具有积极推动作用。
2.民用船舶:近十年来,燃气轮机在高速渡船中得到大量应用。具有代表性的是瑞士斯坦纳航运公司营运的三艘HSS1500大型高速渡船。大型旅游船和高速集装箱船采用燃机推进是船用燃机在商船应用领域中的又一个重大突破。在商船推进领域中,船舶燃气轮机正在向船用柴油机的世袭地位挑战。
5.船用燃气轮机的未来发展方向
近20 年来,随着燃气轮机技术的发展、高性能航空发动机的改装以及在燃气轮机热力循环方面的开发研究,船用燃气轮机的性能日益先进,技术日臻完善。船用燃气轮机技术发展方向主要有以下几个方面。
1.提高燃气轮机参数,改进部件设计,提高简单循环机组性能,由于舰船对高性能燃气轮机的需求,近20 年来推出了多型大功率高效燃气轮机组。通过提高初温和压比、改进部性能等措施,在简单循环下机组效率超过40%,如GE公司的LM6000PC、R-R公司的MT30等。在推出新机组的同时,各大公司不断提高原有机组的性能。
2.采用先进的复杂循环,提高机组性能采用回热循环、间冷-回热循环等复杂循环,是提高燃气轮机性能的另一条途径。对于低压比小功率船用燃气轮机,通过增加回热器形成回热循环来提高效率;对于高压比三转子大功率船用燃气轮机,增加中间冷却器和回热器形成间冷回热循环,可增大功率、提高效率。
3.采用燃蒸联合循环,提高装置的功率和效率在燃气轮机后增加一个利用排气热量的余热利用回路,用来产生蒸汽并使它在蒸汽轮机中做功,然后蒸汽轮机与燃气轮机并车驱动螺旋桨。这种燃蒸联合装置可明显地提高装置的输出功率和效率。燃蒸联合循环的效率将达到45%~50%,在使用低压蒸汽时,整个系统的能量利用率高达80%。
4.燃气轮机发电模块是未来舰船燃气轮机的主要应用方向综合电力系统是今后舰艇动力的发展方向,其主要特点是将推进动力与电站动力合二为一,为舰船装备高能武器奠定电能基础。综合电力系统对电站总功率的需求大幅度增加,这就要求单台发电机组的功率成倍增长,传统意义上的柴油机发电机组已不能满足这种变化要求。燃气轮机单机功率大、输出转速高,特别适合作为综合电力系统的原动力.5.低NOx排放燃烧室的研制对陆地和空中推进装置日益严格的排放要求,未来舰船的主动力装置应满足今后的排放法规,以保证舰船在世界各国港口均能顺利入港。通常用于陆基燃气轮机的干式低排放系统采用贫预混燃烧室,但是这些装置大多数是以气态燃料运行而不是使用馏出油。英国罗尔斯·罗伊斯公司正承担一项计划,根据贫预混预气化(LPP)原理生产使用馏出燃油的液体干式低排放系统。此项工作已证明,在高功率下可以使NOx排放减少到是常规扩散火焰技术的10%。
参考文献:
[1]吉桂明.船舶燃气轮机技术和应用的展望吉桂明[J].舰船科学技术,2000.05.06 [2]王志安.船用燃气轮机技术的发展方向及我国发展途径的思考[J].热能动力工程,2011.07 [3]牛金章,邓武安.燃气轮机的发展及其在舰船上的应用[J].学术园地,2010.07 [4]闻雪友.现代舰船燃气轮机发展趋势分析[J].舰船科学技术,2010.08
第三篇:高温合金材料的应用与发展
高温合金材料的应用与发展分析
李桃山
王保山
南昌航空大学飞行器工程学院100631班:10号
南昌航空大学飞行器工程学院100631班:20号
摘 要:
本文主要介绍高温合金材料的定义及加工特点,通过了解合金的使用范围及选择标准,使更好的发展运用在各个领域。随着工业技术的发展。要求使用具有耐更高温度下的疲劳、蠕变、热稳定性以及抗氧化性能的高温材料,以适应先进设备(主要是航空运用)的设计要求,因此近半个多世纪以来人们从未停止过对的各种高温合金材料研发。从我国高温材料的发展历程与现状分析认为,我们应该发扬民主, 军民结合, 发扬全国一盘棋的精神, 形成一个和谐的集体,使我国高温合金体系建立在一个更坚实的基础上。
关键字:高温合金材料 合金分类 应用 合金发展前景 选择标准 前 言:
高温钛合金以其优良的热强性和高比强度,在航空发动机上获得了广泛的应用。类似的高温合金材料在未来很长的一段时间应该是王牌型材料,在科技日新月异的今天,对高温合金材料的研究与来发具有很高的实际意义与战略意义。未来的航空航天飞行器及其推力系统,要求发展比现有的Ti64和Ti6242合金的强度、工作温度和弹性模量更高,密度更小,价格更低的高温合金材料,因此,高温合金材料的是航空材料的发展主流。
一、高温合金材料的定义及加工特点
高温合金定义:高温合金是指以铁、镍、钴为基,能在600℃以上的高温及一定应力作用下长期工作的一类金属材料。并具有较高的高温强度,良好的抗氧化和抗腐蚀性能,良好的疲劳性能、断裂韧性等综合性能。高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用可靠性。高温合金加工特点
对于镍合金、钛合金以及钴合金等高温合金来说,耐高温的特性直接提高了加工难度。在加工时的重切削力和产生的高温共同作用下,使刀具产生碎片或变形,进而导致刀具断裂。此外,大多数此类合金都会迅速产生加工硬化现象。工件在加工时产生的硬化表面会导致刀具切削刃在切深处产生缺口,并使工件产生不良应力,破坏加工零件的几何精度。加工钛合金同样面临这些问题。尽管加工钛合金所需的切削力只比钢稍微高一点,但由于钛合金的特殊性能,使加工它比加工同等硬度的钢要困难得多。主要有以下几点:
1)钛合金和其它高温合金一样,也容易产生加工硬化;
2)钛基合金导热能力很低,使加工时产生的所有热量几乎都集中在切削刃上;
3)钛合金的弹性模量很小,尤其是在重切削力时,使工件容易受刀具偏移和震动的影响;
4)最严重的是钛合金比其它高温合金化学性能都要活泼,这一点使钛合金工件在加工时很容易与刀具发生化学反应,从而导致工件产生缩孔。
因为以上原因,加工耐高温合金需要特殊的加工技术,这里就不详细列出。
二、合金使用范围及选择标准
在540 ~ 815℃高强度应用场合主要采用析出强化合金。这些合金体系均包含通过镍、铝、钛或铌的析出物(Ni3 Al、Ni3 Ti、Ni3 Nb)以及固溶强化元素(如Mo)加以强化的奥氏体基体。
当析出物过剩并随温度升高开始溶解时,说明这些合金已达到温度极限。但是,通过增加析出成形元素(Ti、Al、Nb),可以提高其耐热性。此外,还必须持续增加镍含量,以形成金属间析出物,并稳定合金含量更高的奥氏体结构。还可以添加钴元素,降低析出物的溶解倾向。添加钨和钼等难熔元素,可提高高温硬度。所有这些添加元素可改善耐热性能,但亦使合金成本大幅提高。
选择合金取决于力学性能要求(即强度、蠕变、疲劳)以及最高使用温度。典型高温合金的成分、力学性能和使用温度上限分别见表
1、表2。
A286的名义镍含量为25% ,成本较低。
按耐热性能的升序排列,其他常用合金有901、718、X750、751、Waspaloy和Pyromet 41与720合金。表1所示为本系列材料逐渐增加的合金含量。Pyromet 718合金也许是最通用的高温合金,在675℃具有高强度和抗蠕变性,且这两种特性在 最高760℃下,均达合理水平,其抗疲劳特性极其优越。Waspaloy合金主要用于温度超出675℃时和最高温度在760℃时需达至超蠕变的情况。由于它的镍和钴含量更高,故其成本较高。Waspaloy是涡轮部件、锻模紧固件和钢模锻造等的理想之选。
高温合金的发展已很成熟,根据具体需求发展现有合金,比开发新型合金更为经济。合金生产工艺及控制技术日新月异,为合金性能的发展开辟了新的天地。
三、高温合金分类及其应用
1、高温合金又叫热强合金、超级合金。按基体组织材料可分为三类:铁基、镍基和铬基。
铁基高温合金——此类合金又分为固溶强化合金和时效硬化合金。时效硬化合金包括PyrometA57、CTX909合金和Thermo750和751合金,这些合金的适用温度最高为870℃。固溶强化合金(Pyromet 102、680和625合金)最高工作温度达1 205℃。
钴基高温合金——此类合金的代表是L-605。除含有镍、铁、铬和钨外,其钴含量达50%;它属展延性合金,工作温度最高约1 040℃;此类合金还包括MP159和188合金。此类合金尤其适用于需耐硫腐蚀的环境。
2、按生产方式可分为变形高温合金与铸造高温合金。按强化机理可分为碳化物强化、固溶强化、时效强化和弥散强化。(1)铸造高温合金
铸造高温合金及制品主要以航空、航天发动机,地面燃机等动力机械为服务 对象,其发展主要以动力机械需求为牵引。铸造高温合金及制品对原材料要求高,制备工艺复杂,产品质量控制严格,行业准入门槛高,国内外具有研制和生产铸 造高温合金能力的企业数量有限。
近年来,国内外铸造高温合金发展趋势主要表现为:
1)在等轴晶方面不再投入大量的人力和物力进行新合金的研制,而是通过工艺水平的提高,挖掘合金的潜能,提高等轴晶铸件的使用性能,因而高性能等轴晶的发展是一个重要的方向。
2)目前各种先进铸件制造技术和设备在不断开发和形成,如细晶工艺、热控凝固、真空离心铸造技术等,许多大型复杂结构高温合金铸件制造成功,并付诸应用,特别是越来越呈现出材料和工艺互相影响和促进的趋势。发达国家在铸造高温合金材料上将集中于少数极端工作条件的关键需求上,如适用于超高温、大应力、富氧或腐蚀环境等。同时,继续开发新技术,并提高现有技术的控制水平,从而提高各种高温合金铸件产品的质量一致性和可靠性。
3)定向、单晶高温合金研究方兴未艾,新型合金不断涌现,定向凝固合金已出现三代,单晶合金发展到5代,材料本体承温能力达到1200℃,基本达到此类材料的极限。(2)变形高温合金 变形高温合金在国内外发展基本比较平稳,美国变形高温合金年产量约4 万吨左右,我国约5000吨左右。变形高温合金在航空发动机中至今仍然是主要 用材,随着其他产品的日益成熟,变形高温合金的用量可能会有所减少,但这个 过程比较漫长。而且,通过改进现有变形高温合金的综合性能、优化生产工艺、降低制造成本,变形高温合金至少在数十年内仍是航空发动机的主要用材。
目前,国内的变形高温合金使用可分为两大类:
一是军用,主要用户为航空、航天、舰用等领域,军品的特点是高牌号、高 使用性能、高精度、种类规格繁多。
二是民用,主要在石油化工、能源动力、冶金与环保等诸多民用工业领域广 泛应用,尤其是近几年来,随着产品的升级换代,高温服役的部件使用温度提高,许多原先使用耐热钢、不锈钢部件都逐渐使用高温合金和耐蚀合金取代,对高温 合金及耐蚀合金的需求量非常大。民用变形高温合金产品种类主要有不同规格的 锻棒、轧棒、板材、带材、丝材、管材等。(3)新型高温合金
新型高温合金包括粉末高温合金、钛铝系金属间化合物、氧化物弥散强化(ODS)高温合金、耐蚀高温合金、粉末冶金及纳米材料等多种细分产品领域。1)粉末高温合金处于第三阶段,同时具有高强度、高使用温度及高抗裂纹扩展能力,粉末高温合金材料及制件已经在国外获得了广泛的应用。
2)钛铝系金属间化合物的各个合金均在我国航空、航天和兵器领域开始应用,应用进展明显快于国外。
3)氧化物弥散强化(ODS)高温合金主要用于航空航天等军工领域。4)耐蚀高温合金主要用于替代耐火材料和耐热钢,目前在化纤等领域已经得到广泛应用。
5)粉末冶金及纳米材料固体自润滑轴承、新型耐磨高韧性硬质合金、新型高温固体自润滑密封件等已经在相关行业逐步得到推广。
四、我国高温合金的发展与展望
自1956 年第一炉高温合金GH3030试炼成功,迄今为止,我国高温合金的研究生产和应用已经历了50多年的发展历程.目前,已有GH系变形高温合金和K系铸造高温合金。可以说,我国已具备了高温合金新材料、新工艺自主开发和研究的能力, 进行应用研究和对材料进行评估的能力以及进行故障分析的能力,可以解决航空、航天及其它工业部门生产和发展中所遇到的各种高温合金材料问题。50 多年来由于需求的推动, 全国科技人员和企业共同努力, 我国逐步形成了独有的高温合金体系, 其特点是牌号多, 性能相近的合金不少, 因而本来生产量很小, 工艺和性能难以稳定的问题更加突出.造成这种局面的主要原因是每引进一种发动机, 就要试制一批合金, 再加我国自行研制的合金品种的不断增加, 因而造成我国高温合金品种的多样化,但是最根本的原因是我们对每个合金的深入研究不够, 对每个合金的特点不能做出有说服力的判断, 再加上合金研制与设计人员沟通不够, 以及国家在这方面没有明确的政策, 造成合金的品种增加多, 淘汰少, 从而形成当前如此局面, 这是留给高温合金工作者和发动机设计人员的一个复杂而艰巨的任务.应该指出, 要想合理地解决这一问题, 必须发扬民主, 军民结合, 发扬全国一盘棋的精神, 形成一个和谐的集体,使我国高温合金体系建立在一个更坚实的基础上。
五、结束语:
高温合金的研制与应用一直受到各国研究者的高度重视和政府的大力支持,在中国西北地区亦是如此。但国内研制高温合金与国外有较大差距这种差距不是在研究水平上,而是在工业化生产水平和应用尤其是应用上。
高温合金发展的趋势是进一步提高合金的工作温度和改善中温或高温下承受各种载荷的能力,延长合金寿命。就涡轮叶片材料而言,单晶叶片将进入实用阶段,定向结晶叶片的综合性能将得到改进。
此外,有可能采用激冷态合金粉末制造多层扩散连接的空心叶片,从而适应提高燃气温度的需要。就导向叶片和燃烧室材料而言,有可能使用氧化物弥散强化的合金,以大幅度提高使用温度。为了提高抗腐蚀和耐磨蚀性能,合金的防护涂层材料和工艺也将获得进一步发展。
但是,由于高温合金的难变形特性以及我国尚无大型挤压机和先进的大型热模锻、等温锻造等设备, 使我国高温合金材料的热加工面临很大的困难。虽然冶金学家致力于合金化提高合金的耐高温性能,但收效甚微。
因此,进一步提高合金性能与对高温合金材料开发的工作道路仍是曲折而漫长的。
参考文献
[1] 胡本芙.高温合金研究的新进展[J].北京科技大学学报.1981年03期 [2] 师昌绪.仲增墉我国高温合金的发展与创新[J].第46 卷2010年11月第11 期第1281一1288 页
[3] Kurt P.Rohrbach.高温合金的发展与选择[J].宇航材料工艺.2005年
第01期
[4] 李凤梅.中国航空材料现状、问题与对策[A].中国材料研讨会论文摘要集 [C].2004年
[5] 施宗灿、齐焕君 张庆玲.航空材料的“领跑者”[N].中国航空报.2006
第四篇:微型燃气轮机发电机组的发展概况(本站推荐)
微型燃气轮机发电机组的发展概况
微型燃气轮机发电机组的雏形可追溯到60年代,但作为一种新型的小型分布式能源系统和电源装置的发展历史则较短。1995年在美国动力年会上,AlliedSignal、Capstone与Elliott公司展示了25~75kW微型燃气轮机发电机组样机。其后发展迅速,每年均有样机推出。美国能源部技术峰会指出微型燃气轮机发电机组市场很大,工业应用竞争激烈,其中未来电力市场结构将是影响微型燃气轮机发电机组发展因素之一;微型燃气轮机发电机组的廉价高效,性能可靠对其发展十分重要,同时,燃料处理。微型燃气轮机发电机组压缩,回热系统以及电力电子技术对提高微型燃气轮机发电机组的可靠性及降低造价也很重要,并且,廉价耐用可靠的高温材料将是微型燃气轮机发电机组在热效率和环保方面取得进展的关键;微型燃气轮机发电机组分布式发电的联网是其特殊技术问题。
总之,近年来微型燃气轮机发电机组进展显著,特别是美国微型燃气(燃气发电机组)轮机的发展达到高潮。
技术特征及优势
微型燃气轮机发电机组具有多台集成扩容、多燃料、低燃料消耗率、低噪音、低排放、低振动、低维修率、可遥控和诊断等一系列先进技术特征,除了分布式发电外,还可用于备用电站、热电联产、并网发电、尖峰负荷发电等,是提供清洁、可靠、高质量、多用途、小型分布式发电及热电联供的最佳方式,无论对中心城市还是远郊农村甚至边远地区均能适用。
发展动力——分布式发电
微型燃气轮机发电机组的发展源于分布式发电。分布式发电主要是由电力市场的放松控制所驱动的,同时还得益于天然气市场的放松控制。电力市场的放松控制是世界范围内的发展趋势,它使得用户可以选择向谁买电或允许用户自行发电,就地供电(现货电力)成为向用户提供最低廉用电的主要竞争武器之一。
分布式发电的发展为微型燃气轮机发电机组的技术发展和市场扩展提供了极好的平台。目前,美、英等国电力市场已从控制发电转向分布式发电的竞争。小型发电厂在分布式电网中的应用,已成为一种日益增长的可行选择。这种发电方式能够为用户减缓电网拥挤,增加电网机动性,降低送电损失和成本,改善电力质量。微型燃气轮机发电机组技术的发展及其商用推出大大增加了分布式发电面向较小用户的可能性,微型燃气轮机发电机组发电装置的紧凑性,可靠性和遥控运行以及环境友好等特点,意味着它们特别适合分布式发电的区域性应用,例如可以置于非常靠近用户运行
技术进展
国际上几个公司研发的第一代微型燃气轮机发电机组的技术参数,其功率为28~75kW,效率为22.5~33。因此,在新一代微型燃气轮机发电机组中,期望通过引人高新技术如陶瓷材料部件(陶瓷叶轮等),以大大提高效率。研究表明进气温度为1350℃的微型陶瓷燃气轮机发电机组的效率可达40。微型燃气轮机发电机组装置的洁净,可靠,高质量源于以下技术:通过采用贫燃料预混合技术,可使排放降低,通常NOx排放低于12ppm(燃用天然气(天然气发电机组)或丙烷燃料时为9ppm),噪声低于70dB;通过采用空气轴承,不需维修或维修性好,设计大修周期为40,000~50,000小时甚至更高;通过采用数字式遥控的联网离网发电变换装置,可以确保发电质量和电网安全。同时,微型燃气轮机发电机组也具有较好的技术经济性,目前售价为250~350美元/kW。
因此,先进微型燃气轮机发电机组提供了清洁可靠高质量多用途分布式小型发电的最佳方式。
第五篇:高温除尘技术及其应用
高温除尘技术及其应用
高温气体除尘技术是利用高温过滤介质(金属或陶瓷过滤材料)直接在高温条件下实现气体的除尘和净化,其突出优点是可以最大程度地利用气体的物理显热,提高能源利用率,实现高温条件下过程强化反应,实现气体的洁净排放,同时可以简化工艺过程,节省工艺设备投资,另外可以节约水资源,并避免了湿法除尘所带来的二次水污染。
高温气体除尘技术在能源、石油化工、钢铁、建材等工业领域有广阔的应用前景:整体联合循环发电技术:煤气化联合循环发电(IGCC)是一项跨世纪的发电新技术,煤气化产生的高温煤气经过高温除尘和净化后首先通过燃气透平发电,尾气通过余热锅炉产生蒸汽驱动汽轮机发电,构成联合循环发电,发电效率达45%~50%,较普通燃煤发电效率高5%~10%,同时污染物排放很低,是一种高效、清洁发电工艺。高温除尘是其核心技术。
自20世纪80年代以来,各国竞相开展煤气化联合循环发电技术。荷兰NUONPOWERBUGGENUM建立了25万kWIGCC工业示范电站,美国SOUTHERNCOMPANY和日本WAKAMATSU都建立了半工业示范电站。中国华能集团“绿色煤电”工程也将在天津建立一座20万kW IGCC工业示范电站。该项环保节能技术具有广阔的应用前景。
煤化工多联产技术:我国的能源状况是“缺油少气富煤”。煤化工是煤炭的深加工产业,发展煤化工有利于推动我国石油替代能源发展战略的实施,有利于推动我国化学工业的结构调整,同时满足国民经济发展的需要。
煤炭属于低效率、高污染能源,传统的煤化工是高消耗、高污染、低效率即“两高一低”的低技术层次的行业。现代煤化工以煤、水煤浆为原料,通过煤气化获得高温煤气,经过高温气体除尘和净化获得洁净合成气,其后续产品可以是甲醇、二甲醚、烯烃、氢、油或电等,这是一种低排放、高效率的洁净生产工艺。
近几年,Shell煤气化技术作为先进的洁净煤技术大举进入中国煤化工市场。目前国内共有煤炭、电力、化工等14家企业投资上马17套Shell煤气化工业装置,以“煤头”代替“油头”生产合成气从而生产甲醇、合成氨乃至烯烃等化工产品。
中石化巴陵化肥厂、中石化湖北分公司、安庆分公司、湖北应城和广西柳州化肥厂、云南云天化股份有限公司和云南沾化集团引进荷兰壳牌的煤气化技术,“以煤带油”生产合成氨;大连大化集团、河南省永城煤炭电力集团、河南中原大化集团有限公司以及河南省开祥化工有限公司引进荷兰壳牌的煤气化技术,利用该技术生产合成气,作为生产甲醇的原料。甲醇作为“清洁替代燃料”,用于汽车能起到节能的作用。甲醇可进一步用于生产二甲醚,后者是一种替代液化气的清洁燃料,可替代煤气、液化石油气用于民用燃料,也是柴油发动机最洁净替代燃料,可降低氮化物排放,实现无烟燃烧,并可降低噪声,其排放废气可达到或超过美国加州有关中型载重汽车及客车的尾气排放标准(ULEV)。甲醇还可进一步用于生产烯烃,以制作各种化工产品;神华集团公司、大唐国际电力股份有限公司引进荷兰壳牌的煤气化技术,利用该技术生产合成气,进一步为神华集团的煤制油项目、大唐国际的46万t煤基烯烃项目制氢。
煤液化技术:中国石油资源匮乏,大量依赖进口。从数量上分析,石油基液体燃料和化工品的短缺量很大,预计到2020年我国原油消费量将达到4~5亿t,原油进口量将达到消费总量的60%。神华集团在内蒙建设的1Mt/a直接液化工业示范工程单条生产线年处理液化原料煤超过2Mt,是迄今为止世界上最大的加氢液化生产线。图3为煤直接液化技术生产工艺流程。其中,氢是由煤气化生成合成气后,通过高温气体净化和分离获得。高温除尘是过程核心技术之一。煤液化可得到质量符合标准,含硫、氮很低的洁净发动机燃料,不改变发动机和输配、销售系统均可直接供给用户。产品以汽油、柴油、航煤,以及石脑油、丙烯等为主,根据煤种和工艺的不同,3~6t煤可以制得1t液体燃料。根据目前工业示范工程经济分析结果,在石油原油价格不低于每桶30美元的情况下,煤制油工业化生产可以获得一定的经济效益。煤液化产品市场潜力巨大,工艺、工程技术集中度高,是我国新型煤化工技术和产业发展的重要方向,其战略意义重大。
汽/柴油吸附脱硫技术:为了改善日益恶化的环境污染问题,世界许多国家对其环保法规进行更新和修改,其中对硫含量指标做出了明确而严格的规定。1999年12月21日,英国环境保护机构(EPA)颁布了汽油硫含量标准和机动车排放标准的II级补充法规,规定成品汽油中平均硫含量应低于30μg/g,美国环保局规定自2006年9月公路柴油硫含量低于15μg/g,欧洲标准规定2005年公路柴油硫含量低于50μg/g.为了达到环保法规的要求,世界各大炼油公司开发了许多新型的脱硫技术。美国康菲(ConocoPhillips)公司开发的吸附脱硫技术(S-Zorb)通过采用流化床反应器,使用其专门的吸附剂脱除原料中的硫,从而达到对汽油进行脱硫的目的,具有产品硫含量低,辛烷值损失小、能耗少、操作费用低的优点。为S-Zorb吸附脱硫技术基本原理,其中,高温气体除尘是该工艺的一项关键技术。
我国燕山石化引进康菲公司开发的吸附脱硫技术(S-Zorb)技术,对其1000万t/a炼油系统进行改造,成功产出首批符合欧Ⅳ排放标准的高品质清洁汽柴油。随着这一国内首座可以生产欧Ⅳ标准汽柴油的千万吨炼油基地的投产,燕山石化已经具备向北京市场提供符合欧Ⅳ排放标准的高品质汽柴油的条件,提前兑现了中国政府对国际奥委会的承诺,可随时向首都市场供应优质能源产品,服务绿色奥运。同时,这项技术在国内还有很好的推广前景。
钢铁工业、水泥工业气体除尘技术:钢铁工业是我国节能减排工作重点行业之一。2005年钢铁工业产生废气57134亿Nm 3,占全国比重21.31%;产生烟尘71万t,占工业排放量8.3%;产生粉尘129.6万t,占工业排放量15.65%。钢铁工业中高炉煤气、转炉煤气的高温除尘技术的广泛推广对钢铁行业的节能减排工作有着重要的意义。水泥工业是高能耗、高污染行业,其工业粉尘和二氧化碳排放量巨大,开展烟气干法除尘和余热发电技术的推广,可大幅度降低粉尘和二氧化碳的排放量,有着很好的节能减排作用。
另外,高温除尘技术在垃圾焚烧炉高温气体净化,机动车尾气净化,生物质能源高温气体净化等方面都有广阔的应用前景。
高温除尘技术展望自20世纪80年代,西方国家开展了高温气体过滤除尘技术的开发,其主要目标是实现被称之为跨世纪新技术的煤的洁净燃烧联合循环发电工艺技术(IGCC,PFBC)的商业化。在高温过滤材料的研制、高温除尘技术开发以及工程化应用等方面取得了很大进展。开发了许多高性能滤材,如日本Asahi公司的均质堇青石陶瓷滤管,德国Schumacher公司的SiC滤管,美国3M公司生产的Nextel系列Al 2 O 3-SiO 2陶纤袋,以及SiC-Al 2 O 3等纤维增强复合陶瓷过滤元件等。
Schumacher公司的SiC滤管已成功用于荷兰Bueggenon的IGCC工业装置。另外,针对陶瓷过滤材料韧性差、抗热震性差的特点,美国Mott和Pall公司开发了310SFeAl金属间化合物、FeCrAl等烧结金属过滤材料,其中,FeAl烧结金属过滤材料已成功用于美国SouthernCompany和日本Wakamatsu的IGCC半工业试验装置。
我国自20世纪90年代开展了高温气体过滤除尘技术的开发,钢铁研究总院/安泰科技股份有限公司开发了310SFeAl金属间化合物等高性能烧结金属过滤材料。安泰科技股份有限公司、国电热工研究院、中科院山西煤化所围绕IGCC工艺技术发展,开发了以金属过滤材料为介质的高温除尘技术,并在煤气化中试装置上成功应用,为工程化发展奠定了良好的基础。根据能源工业洁净能源技术发展的需要以及制造工业技术进步和节能减排的需要,进一步发展我国高温除尘过滤材料制备技术和高温除尘工程应用技术是非常必要的。