先进复合材料在航空航天中的应用及发展

时间:2019-05-13 10:05:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《先进复合材料在航空航天中的应用及发展》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《先进复合材料在航空航天中的应用及发展》。

第一篇:先进复合材料在航空航天中的应用及发展

先进复合材料在航空航天中的应用

及发展

胡军 材料08A-1 08108010205 2011年12月14

日 先进复合材料在在航空领域的应用

摘要:介绍了材料的发展史,并且介绍了材料的分类,主要介绍了复合材料的现状。复合材料在航空航天领域的应用。最后介绍了复合材料在航空航天的发展。航空领域应用的新进展,先进复合材料在航空航天领域的应用。关键词: 复合材料;航空航天;国防;先进复合材料

1.1 前言

材料是人们生活和生产必须的物质基础。也是人类进化的重要里程碑。材料科学主要研究材料的成分、分子或原子机构、微观及宏观组织以及加工制造工艺和性能之间的关系。它是一门边缘新科学,主要一固态物理和固态化学、晶体学、热力学等位基础,结合冶金化工及各种高新科技术来探讨材料内在规律和应用。材料是人类用来制造机器、构件、器件和其他产品的物质。但并不是所有物质都可称为材料,如燃料和化工原料、工业化学品、食物和药品等,一般都不算作材料。

1.2材料可按多种方法进行分类。

按物理化学属性分为金属材料、无机非金属材料、有机高分子材料和复合材料。按用途分为电子材料、宇航材料、建筑材料、能源材料、生物材料等。

实际应用中又常分为结构材料和功能材料。结构材料是以力学性质为基础,用以制造以受力为主的构件。结构材料也有物理性质或化学性质的要求,如光泽、热导率、抗辐照能力、抗氧化、抗腐蚀能力等,根据材料用途不同,对性能的要求也不一样。功能材料主要是利用物质的物理、化学性质或生物现象等对外界变化产生的不同反应而制成的一类材料。如半导体材料、超导材料、光电子材料、磁性材料等。

材料是人类赖以生存和发展的物质基础。20世纪70年代,人们把信息、材料和能源作为社会文明的支柱。80年代,随着高技术群的兴起,又把新材料与信息技术、生物技术并列作为新技术革命的重要标志。现代社会,材料已成为国民经济建设、国防建设和人民生活的重要组成部分。

1.3材料的发展简史

人类社会的发展历程,是以材料为主要标志的。100万年以前,原始人以石头作为工具,称旧石器时代。1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。新石器时代后期,出现了利用粘土烧制的陶器。人类在寻找石器过程中认识了矿石,并在烧陶生产中发展了冶铜术,开创了冶金技术。公元前5000年,人类进入青铜器时代。公元前1200年,人类开始使用铸铁,从而进入了铁器时代。随着技术的进步,又发展了钢的制造技术。18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。19世纪中叶,现代平炉和转炉炼钢技术的出现,使人类真正进入了钢铁时代。与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相继问世并得到应用。直到20世纪中叶,金属材料在材料工业中一直占有主导地位。

20世纪中叶以后,科学技术迅猛发展,作为发明之母和产业粮食的新材料又出现了划时代的变化。首先是人工合成高分子材料问世,并得到广泛应用。先后出现尼龙、聚乙烯、聚丙烯、聚四氟乙烯等塑料,以及维尼纶、合成橡胶、新型工程塑料、高分子合金和功能高分子材料等。仅半个世纪时间,高分子材料已与有上千年历史的金属材料并驾齐驱,并在年产量的体积上已超过了钢,成为国民经济、国防尖端科学和高科技领域不可缺少的材料。其次是陶瓷材料的发展。陶瓷是人类最早利用自然界所提供的原料制造而成的材料。50年代,合成化工原料和特殊制备工艺的发展,使陶瓷材料产生了一个飞跃,出现了从传统陶瓷向先进陶瓷的转变,许多新型功能陶瓷形成了产业,满足了电力、电子技术和航天技术的发展和需要。

结构材料的发展,推动了功能材料的进步。20世纪初,开始对半导体材料进行研究。50年代,制备出锗单晶,后又制备出硅单晶和化合物半导体等,使电子技术领域由电子管发展到晶体管、集成电路、大规模和超大规模集成电路。半导体材料的应用和发展,使人类社会进入了信息时代。

现代材料科学技术的发展,促进了金属、非金属无机材料和高分子材料之间的密切联系,从而出现了一个新的材料领域——复合材料。复合材料以一种材料为基体,另一种或几种材料为增强体,可获得比单一材料更优越的性能。复合材料作为高性能的结构材料和功能材料,不仅用于航空航天领域,而且在现代民用工业、能源技术和信息技术方面不断扩大应用。

1.4复合材料的发展和应用

复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。

复合材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。

复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。

复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料用量到2003年估计可达10.5万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达7.5万吨,汽车等领域的用量仅为2.4万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。

1.4.1先进复合材料在航空航天领域的应用

碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性、纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。2005 年世界碳纤维的耗用量已超过2 万吨,图1 为21 世纪前十年碳纤维需求量的统计预测情况。航空航天领域的碳纤维需求情况见表1 所示,约占总消耗量的20%左右。

图 1: 世界碳纤维需求量(单位:吨)可维的需求量有所减少,2002 年约减少20%,2003 年则减少约9 %。2003 年以后航空航天领域对碳纤维的需求出现快速增长,2006 年与2001 年相比将增长约40 %,2008 年将增长约76 %,到2010 年和2001 年相比预计增长超过100%。本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展[2]

表 1: 世界碳纤维按应用领域需求的统计和预测

1.4.2 航空领域应用的新进展

T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H纤维。军品碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标,结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材料。

图 2: 美国F-22 军用飞机

民品

在民用领域,555座的世界最大飞机A380由于CFRP的大量使用,创造了飞行史上的奇迹。飞机25%重量的部件由复合材料制造,其中22%为碳纤维增强塑料(CFRP), 3%为首次用于民用飞机的GLARE纤维-金属板(铝合金和玻璃纤维超混杂复合材料的层状结构)。这些部件包括:减速板、垂直和水平稳定器(用作油箱)、方向舵、升降舵、副翼、襟翼扰流板、起落架舱门、整流罩、垂尾翼盒、方向舵、升降舵、上层客舱地板梁、后密封隔框、后压力舱、后机身、水平尾翼和副翼均采用CFRP制造。继A340对碳纤维龙骨梁和复合材料后密封框――复合材料用于飞机的密封禁区发起挑战后,A380又一次对连接机翼与机身主体结构中央翼盒新的禁区发起了成功挑战[3]。仅此一项就比最先进的铝合金材料减轻重量1.5吨。由于CFRP的明显减重以及在使用中不会因疲劳或腐蚀受损。从而大大减少了油耗和排放,燃油的经济性比其直接竞争机型要低13%左右,并降低了运营成本,座英里成本比目前效率最高飞机的低15%--20%,成为第一个每乘客每百公里耗油少于三升的远程客机。

图 3: 空中客车A-380 1.4.3 航天领域的新进展

火箭、导弹以高性能碳(石墨)纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化构件材料,在导弹、运载火箭和卫星飞行器上也发挥着不可替代的作用。其应用水平和规模已关系到武器装备的跨越式提升和型号研制的成败。碳纤维复合材料的发展推动了航天整体技术的发展。碳纤维复合材料主要应用于导弹弹头、弹体箭体和发动机壳体的结构部件和卫星主体结构承力件上,碳/碳和碳/酚醛是弹头端头和发动机喷管喉衬及耐烧蚀部件等重要防热材料,在美国侏儒、民兵、三叉戟等战略导弹上均已成熟应用,美国、日本、法国的固体发动机壳体主要采用碳纤维复合材料,如美国三叉戟-2 导弹、战斧式巡航导弹、大力神一4 火箭、法国的阿里安一2 火箭改型、日本的M-5火箭等发动机壳体,其中使用量最大的是美国赫克里斯公司生产的抗拉强度为5.3GPa 的IM-7 碳纤维,性能最高的是东丽T-800 纤维,抗拉强度5.65Gpa、杨氏模量300GPa。由于粘胶基原丝的生产由于财经及环保危机的加剧,航天级粘胶碳丝原料的来源一

[4]直是美国及西欧的军火商们深感棘手的恼头问题。五年前,法国SAFRAN 公司与美国WaterburyFiberCote Industries 公司以有充分来源的非航天级粘胶原丝新原料开发成功名为RaycarbC2TM 的新型纤维素碳布,并经受了美军方包括加工、热/结构性质及火焰冲刷试验在内的全部资格测试,在固体发动机的全部静态试验中都证明该替代品合格,2004 年十一月,该碳布/酚醛复合材料已用于阿里安娜V Flight164上成功飞行。

图 4: 法国阿里安娜V 型导弹

卫星、航天飞机及载人飞船高模量碳纤维质轻,刚性,尺寸稳定性和导热性好,因此很早就应用于人造卫星结构体、太阳能电池板和天线中。现今的人造卫星上的展开式太阳能电池板多采用碳纤维复合材料制作,而太空站和天地往返运输系统上的一些关键部件也往往采用碳纤维复合材料作为主要材料。

碳纤维增强树脂基复合材料被作航天飞机舱门、机械臂和压力容器等。美国发现号航天飞机的热瓦,十分关键,可以保证其能安全地重复飞行。一共有8 种:低温重复使用表面绝热材料LRSI;高温重复使用表面绝热材料HRSI;柔性重复使用表面绝热材料FRSI;高级柔性重复使用表面绝热材料AFRI;高温耐熔纤维复合材料FRIC―HRSI;增强碳/碳材料RCC;金属;二氧化硅织物。其中增强碳/碳材料RCC,最为要的,它可以使航天飞机承受大气层所经受的最高温度1700℃。[5]

随着科学技术的进步,碳纤维的产量不断增大,质量逐渐提高,而生产成本稳步下降。各种性能优异的碳纤维复合材料将会越来越多地出现在航空航天中,为世界航空航天技术的发展作出更大的贡献。

另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。

先进复合材料共固化技术在某型机上自90年代初得到应用以来,已生产了350余架次,实现了工程化的目标。通过原材料的开发、辅助材料的国产化研究、共固化工艺的优化、性能测试项目的优化和修补技术的研究,将一套完整共固化技术应用于批生产的同时,又获得了极大的经济效益,实现了低成本共固化技术的工程化应用。通过该材料的工程化应用,我们可得出以下的结论:

(1)金属-橡胶组合式芯模用于盒形结构受力部件的共固化成型,能够实现均压效果,并能有效降低制造成本;

(2)国产化辅助材料的应用,能够满足复合材料制造使用工艺要求,降低工程化制造成本;

(3)工程化生产的随炉试样(片)性能跟踪测试项目,可以进行优化选择,以降低生产成本;

(4)工程化生产的同时,开展有针对性的修补技术研究,既可解决生产过程中超差品的修补问题,也是产品使用过程的有效保障,技术经济及社会效果兼得;

(5)降低热压罐成型法制造成本的其他有益研究还有待不断开发。

结语

先进复合材料以其比强度比模量高 耐高温性能好、耐疲劳性能优越等独特优点获得广泛应用、和迅速发展.真空袋成型,热压罐成型技术的成熟发展更是极大的推动了先进复合材料的发展,目前较多的采用热压罐成型工艺设备,存在成本过高,制件尺寸受限制,真空袋成型工艺由于具灵活简便高效等特点得到了广泛的应用。通过对热压罐成型工艺原理研究,提出了几种降低成本及改进工艺性能的方案,先进复合材料共固化技术成型的产品,从材料开发、工艺优化、性能检测到售后服务等环节,以低成本为主导线,详细描述了一个热压罐共固化技术工程化的范例,达到了在热压罐成型方面明显降低制造成本的目的。

第二篇:先进复合材料在航空航天中的应用及发展

摘要:21世纪是新型材料为物质基础的时代。各种高分子材料以它优异的性能在各种方面领域有广泛的应用。在飞机制造工业中,由于高分子材料的使用,飞机本身的质量的减轻性能更加稳定的同时也减少了能源的消耗。本文主要是列举了几种常见的高分子材料在飞机上的应用。

关键词: 航空航天;国防

1.前言

材料是人们生活和生产必须的物质基础。也是人类进化的重要里程碑。材料科学主要研究材料的成分、分子或原子机构、微观及宏观组织以及加工制造工艺和性能之间的关系。它是一门边缘新科学,主要一固态物理和固态化学、晶体学、热力学等位基础,结合冶金化工及各种高新科技术来探讨材料内在规律和应用。材料是人类用来制造机器、构件、器件和其他产品的物质。但并不是所有物质都可称为材料,如燃料和化工原料、工业化学品、食物和药品等,一般都不算作材料。

2.材料可按多种方法进行分类。

按物理化学属性分为金属材料、无机非金属材料、有机高分子材料和复合材料。按用途分为电子材料、宇航材料、建筑材料、能源材料、生物材料等。实际应用中又常分为结构材料和功能材料。结构材料是 以力学性质为基础,用以制造以受力为主的构件。结构材料也有物理性质或化学性质的要求,如光泽、热导率、抗辐照能力、抗氧化、抗腐蚀能力等,根据材料用途不同,对性能的要求也不一样。功能材料主要是利用物质的物理、化学性质或生物现象等对外界变化产生的不同反应而制成的一类材料。如半导体材料、超导材料、光电子材料、磁性材料等。

材料是人类赖以生存和发展的物质基础。20世纪70年代,人们把信息、材料和能源作为社会文明的支柱。80年代,随着高技术群的兴起,又把新材料与信息技术、生物技术并列作为新技术革命的重要标志。现代社会,材料已成为国民经济建设、国防建设和人民生活的重要组成部分。

3.材料的发展简史

人类社会的发展历程,是以材料为主要标志的。100万年以前,原始人以石头作为工具,称旧石器时代。1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。新石器时代后期,出现了利用粘土烧制的陶器。人类在寻找石器过程中认识了矿石,并在烧陶生产中发展了冶铜术,开创了冶金技术。公元前5000年,人类进入青铜器时代。公元前1200年,人类开始使用铸铁,从而进入了铁器时代。随着技术的进步,又发展了钢的制造技术。18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。19世纪中叶,现代平炉和转炉炼钢技术的出现,使人类真正进入了钢铁时代。与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相 继问世并得到应用。直到20世纪中叶,金属材料在材料工业中一直占有主导地位。

20世纪中叶以后,科学技术迅猛发展,作为发明之母和产业粮食的新材料又出现了划时代的变化。首先是人工合成高分子材料问世,并得到广泛应用。先后出现尼龙、聚乙烯、聚丙烯、聚四氟乙烯等塑料,以及维尼纶、合成橡胶、新型工程塑料、高分子合金和功能高分子材料等。仅半个世纪时间,高分子材料已与有上千年历史的金属材料并驾齐驱,并在年产量的体积上已超过了钢,成为国民经济、国防尖端科学和高科技领域不可缺少的材料。其次是陶瓷材料的发展。陶瓷是人类最早利用自然界所提供的原料制造而成的材料。50年代,合成化工原料和特殊制备工艺的发展,使陶瓷材料产生了一个飞跃,出现了从传统陶瓷向先进陶瓷的转变,许多新型功能陶瓷形成了产业,满足了电力、电子技术和航天技术的发展和需要。

结构材料的发展,推动了功能材料的进步。20世纪初,开始对半导体材料进行研究。50年代,制备出锗单晶,后又制备出硅单晶和化合物半导体等,使电子技术领域由电子管发展到晶体管、集成电路、大规模和超大规模集成电路。半导体材料的应用和发展,使人类社会进入了信息时代。现代材料科学技术的发展,促进了金属、非金属无机材料和高分子材料之间的密切联系,从而出现了一个新的材料领域——复合材料。复合材料以一种材料为基体,另一种或几种材料为增强体,可获得比单一材料更优越的性能。复合材料作为高性能的结构材料和功能材料,不仅用于航空航天领域,而且在现代民用工业、能源技术和信息技术方面不断扩大应用。

4.材料的发展和应用

复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。

复合材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。

复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹 性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。

复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料用量到2003年估计可达10.5万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达7.5万吨,汽车等领域的用量仅为2.4万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。

5.材料在航空航天领域的应用

碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性、纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。2005 年世界碳纤维的耗用量已超过2 万吨。

可维的需求量有所减少,2002 年约减少20%,2003 年则减少约9 %。2003 年以后航空航天领域对碳纤维的需求出现快速增长,2006 年与2001 年相比将增长约40 %,2008 年将增长约76 %,到2010 年和2001 年相比预计增长超过100%。本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展[2]

6.航空领域应用的新进展

T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H纤维。军品碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固 件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标,结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材料。民品

在民用领域,555座的世界最大飞机A380由于CFRP的大量使用,创造了飞行史上的奇迹。飞机25%重量的部件由复合材料制造,其中22%为碳纤维增强塑料(CFRP), 3%为首次用于民用飞机的GLARE纤维-金属板(铝合金和玻璃纤维超混杂复合材料的层状结构)。这些部件包括:减速板、垂直和水平稳定器(用作油箱)、方向舵、升降舵、副翼、襟翼扰流板、起落架舱门、整流罩、垂尾翼盒、方向舵、升降舵、上层客舱地板梁、后密封隔框、后压力舱、后机身、水平尾翼和副翼均采用CFRP制造。继A340对碳纤维龙骨梁和复合材料后密封框――复合材料用于飞机的密封禁区发起挑战后,A380又一次对连接机翼与机身主体结构中央翼盒新的禁区发起了成功挑战[3]。仅此一项就比最先进的铝合金材料减轻重量1.5吨。由于CFRP的明显减重以及在使用中不会因疲劳或腐蚀受损。从而大大减少了油耗和排放,燃油的经济性比其直接竞争机型要低13%左右,并降低了运营成本,座英里成本比目前效率最高飞机的低15%--20%,成为第一个每乘客每百公里耗油少于三升的远程客机。7.航天领域的新进展

火箭、导弹以高性能碳(石墨)纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化构件材料,在导弹、运载火箭和卫星飞行器上也发挥着不可替代的作用。其应用水平和规模已关系到武器装备的跨越式提升和型号研制的成败。碳纤维复合材料的发展推动了航天整体技术的发展。碳纤维复合材料主要应用于导弹弹头、弹体箭体和发动机壳体的结构部件和卫星主体结构承力件上,碳/碳和碳/酚醛是弹头端头和发动机喷管喉衬及耐烧蚀部件等重要防热材料,在美国侏儒、民兵、三叉戟等战略导弹上均已成熟应用,美国、日本、法国的固体发动机壳体主要采用碳纤维复合材料,如美国三叉戟-2 导弹、战斧式巡航导弹、大力神一4 火箭、法国的阿里安一2 火箭改型、日本的M-5火箭等发动机壳体,其中使用量最大的是美国赫克里斯公司生产的抗拉强度为5.3GPa 的IM-7 碳纤维,性能最高的是东丽T-800 纤维,抗拉强度5.65Gpa、杨氏模量300GPa。由于粘胶基原丝的生产由于财经及环保危机的加剧,航天级粘胶碳丝原料的来源一直是美国及西欧的军火商们深感棘手的恼头问题。[4]五年前,法国SAFRAN 公司与美国WaterburyFiberCote Industries 公司以有充分来源的非航天级粘胶原丝新原料开发成功名为RaycarbC2TM 的新型纤维素碳布,并经受了美军方包括加工、热/结构性质及火焰冲刷试验在内的全部资格测试,在固体发动机的全部静态试验中都证明该替代品合格,2004 年十一月,该碳布/酚醛复合材料已用于阿里安娜V Flight164上成功飞行。卫星、航天飞机及载人飞船高模量碳纤维质轻,刚性,尺寸稳定性和导热性好,因此很早就应用于人造卫星结构体、太阳能电池板和天线中。现今的人造卫星上的展开式太阳能电池板多采用碳纤维复合材料制作,而太空站和天地往返运输系统上的一些关键部件也往往采用碳纤维复合材料作为主要材料。

碳纤维增强树脂基复合材料被作航天飞机舱门、机械臂和压力容器等。美国发现号航天飞机的热瓦,十分关键,可以保证其能安全地重复飞行。一共有8 种:低温重复使用表面绝热材料LRSI;高温重复使用表面绝热材料HRSI;柔性重复使用表面绝热材料FRSI;高级柔性重复使用表面绝热材料AFRI;高温耐熔纤维复合材料FRIC―HRSI;增强碳/碳材料RCC;金属;二氧化硅织物。其中增强碳/碳材料RCC,最为要的,它可以使航天飞机承受大气层所经受的最高温度1700℃。随着科学技术的进步,碳纤维的产量不断增大,质量逐渐提高,而生产成本稳步下降。各种性能优异的碳纤维复合材料将会越来越多地出现在航空航天中,为世界航空航天技术的发展作出更大的贡献。

第三篇:航空航天材料的应用与发展

航空航天材料的应用与发展

S201201 张明洁 2012040301003 飞行器及其动力装置、附件、仪表所用的各类材料,是航空航天工程技术发展的决定性因素之一。航空航天材料科学是材料科学中富有开拓性的一个分支。飞行器的设计不断地向材料科学提出新的课题,推动航空航天材料科学向前发展;各种新材料的出现也给飞行器的设计提供新的可能性,极大地促进了航空航天技术的发展。

航空航天材料的进展取决于下列3个因素:①材料科学理论的新发现:例如,铝合金的时效强化理论导致硬铝合金的发展;高分子材料刚性分子链的定向排列理论导致高强度、高模量芳纶有机纤维的发展。②材料加工工艺的进展:例如,古老的铸、锻技术已发展成为定向凝固技术、精密锻压技术,从而使高性能的叶片材料得到实际应用;复合材料增强纤维铺层设计和工艺技术的发展,使它在不同的受力方向上具有最优特性,从而使复合材料具有“可设计性”,并为它的应用开拓了广阔的前景;热等静压技术、超细粉末制造技术等新型工艺技术的成就创造出具有崭新性能的一代新型航空航天材料和制件,如热等静压的粉末冶金涡轮盘、高效能陶瓷制件等。③材料性能测试与无损检测技术的进步:现代电子光学仪器已经可以观察到材料的分子结构;材料机械性能的测试装置已经可以模拟飞行器的载荷谱,而且无损检测技术也有了飞速的进步。材料性能测试与无损检测技术正在提供越来越多的、更为精细的信息,为飞行器的设计提供更接近于实际使用条件的材料性能数据,为生产提供保证产品质量的检测手段。一种新型航空航天材料只有在这三个方面都已经发展到成熟阶段,才有可能应用于飞行器上。因此,世界各国都把航空航天材料放在优先发展的地位。

材料不仅是制造航空产品的物质基础,同时也是使航空产品达到人们所期望的技术性能、使用寿命与可靠性的技术基础。航空技术的进步与发展对航空材料起着积极的“牵引”作用;与此同时,材料科学与工程发展,新型材料的出现,制造工艺与理化测试技术的进步,又为航空新产品的设计与制造提供重要的物质与技术,从而对航空产业的发展起着有效的“推动”作用。例如,承载与隐形一体化材料的出现,既是隐形飞机设计构思提出的需求,同时也使隐形飞机从设想变为现实;优质单晶高温合金的出现,使发动机涡轮前温度得以大大提高,推动着高推重比航空发动机的进步。

由于航空产品具备高科技密集、系统庞大复杂、使用条件恶劣多变,要求长寿命、高可靠性和品种多、批量小等特点,从而使航空材料也相应地具有一系列特点:

(1)种类、品种、规格多。航空材料按用途分有结构材料、功能材料及工艺与辅助材料三大类:按化学成分分有金属材料、有机高分子材料、无机非金属材料以及各种复合材料。各类材料又涉及众多的牌号、品种与规格。

(2)高的比强度(σb/ρ)和高的比刚度(E/ρ)是航空结构材料的重要特点。减轻结构重量既可增加飞机、直升机的运载能力,提高机动性,加大航程,又可减少燃油消耗。因此,高强度铝合金、钛合金以及先进复合材料在航空上得到广泛的应用。

(3)高温合金是航空材料极其重要的组成部分。燃气涡轮(包括涡轮喷气、涡轮风扇、涡轮螺旋桨、涡轮轴)发动机是现代飞机、直升机的主要动力装置,而各类高温合金则是制造现代航空燃气涡轮发动机的关键材料。随着发动机推重比(或功重比)的提高,涡轮前温度也随之升高,对材料的耐温要求也愈来愈高。

(4)质量要求高。由于飞机、直升机是一种载人反复运行的产品,在规定的使用寿命期内,对使用可靠性、安全性有着极其严格的要求。为此对航空材料要进行严格的质量控制。

(5)抗疲劳性能是航空材料的另一个突出特点。大量的事实说明,在飞机、发动机所发生的失效事件中,约80%以上是各种形式的疲劳损伤所引起。航空材料的抗疲劳性能是关系到航空产品使用可靠性和使用寿命的一项非常重要的性能指标。

(6)成本高、价格贵。由于航空产品品种多样而批量小,相应地航空材料的牌号品种也多,批量也小,难以形成规模化生产,同时质量要求又高,从而导致材料的成本高,价格贵。材料费用在航空产品成本中占有很大比重。如何降低其价格是航空材料发展的一个重要努力方向。

中国航空产业经历了从修理、引进、仿制到改进、改型和自行设计研制的发展历程。用以制造航空产品的材料也经历了引进、仿制、改进、改型和自行研制的发展历程。到目前为止,我国已定型生产的航空用金属、有机高分子材料、无机非金属材料以及复合材料的牌号约2000余个;已建成具有一定规模的航空材料研究与生产基地,拥有生产航空产品所需各类材料牌号、品种与规格的生产设备及检测仪器;先后制订了1000余份各类航空材料、热工艺及理化检测标准(包括国标、国军标与航空标准);编写出版了《中国航空材料手册》、《发动机结构设计用材料性能数据手册》及《航空材料选用目录》等;颁布了“航空工业材料及热工艺技术工作规定”、“航空材料(含锻、铸件)技术管理办法”等法规性文件。从总体上看,我国目前已定型生产的航空材料(含类别、牌号、品种与规格)及其相应的标准与规范,基本上能满足第二代航空产品批生产的需求。针对第三代航空产品所需关键材料,如热强钛合金、高强铝合金、超高强度结构钢不锈钢、树脂基复合材料、单晶与粉末高温合金等,从技术上看,已具备试用条件,但要转化为在特定工况下使用的零部件,并体现出第三代航空产品的总体效能(技术与战术性能、使用可靠性与寿命以及经济效益等)尚需做大量的工作。

我国航空材料的现状与新一代航空产品(飞机以F-22为代表,发动机以推比10为代表)对材料的需求之间尚存在较大的差距,主要有如下三方面:

(1)前沿材料研究滞后,新材料储备小,第三代、第四代航空产品所需的一些关键材料,如快速凝固材料、高强轻质结构材料、热强钛合金、超高强度钢、金属间化合物及以其为基的复合材料、树脂基复合材料等的研究滞后,与国外先进新材料研制水平的差距约为15~20年;

(2)新材料研制、生产和应用研究的基础条件较差,如超纯熔炼、高温整体扩散连接、喷射成型、等温锻造、电子束沉积涂层、纳米材料制备、超高温检测、超声显微镜、激光无损检测等先进的合成与加工设备、质量检测与控制手段等不能满足新材料研制、生产与应用的需要;

(3)一些常用结构材料的质量不稳定,性能数据分散,表面质量差,尺寸精度低,有些品种规格不能正常供货,满足不了生产使用要求。

建立中国航空材料体系的具体思路应包括以下几个层次:

1.逐步理顺和建立我国航空用各类材料的牌号序列 首先要对现有用于各类航空产品的材料加以收集汇总,然后按照“淘汰落后材料,限用综合性能差与使用面窄的材料,合并性能水平相近的材料,推荐综合性能好的材料,补充暂缺的先进材料”等原则,加以分类整理,建立起适合我国国情的具有不同性能水平档次的各类材料的牌号序列,并逐步纳入国标、国军标或航标。

2.正确处理并逐步解决多国材料并存、重复、互不兼容的复杂局面

(1)对已往在引进国外航空产品过程中所仿制的,目前尚未纳入国标、国军标或航标的各类国外材料,进行全面清理和综合对比分析,选择其中国内没有且有应用前景的材料牌号,加以研究完善,而后使其尽快纳入国标、国军标、或航标中,编入到该类材料的牌号序列中。其余的国外材料牌号要加以限用,即限制在除原引进航空产品以外的产品上使用。

(2)随着我国对外开放的深入和加入“WTO”步伐的临近,引进航空产品及技术将会不断增加,妥善处理其中的材料问题将是建立中国航空材料体系的关键。为此,要在熟悉和掌握国外各类材料牌号与标准的基础上,进行对比分析,分别采取代用与仿制两种方法加以处置。

首先是用国内现有材料牌号代用。由于各国矿产资源和技术水平的不同,一些工业发达国家先后形成了各自的材料牌号序列。各国间完全相同的材料牌号是极少的,大多数只存在相当或相近的对应关系。因此,如果国内现有某材料牌号的化学成分与引进产品所用某一材料的化学成分相近,力学性能与工艺性能相当,即可用该材料代用相应国外材料。在这里需要的是理性的、实事求是的科学分析,必须摒弃过去那种“一丝不苟”照搬照抄国外的做法。在没有相应国内材料牌号与之对应的国外材料,且又没有仿制价值时,可根据具体的使用条件,采取“以优代劣”的办法加以处置。其次是对国内现有材料牌号难以代用的少量国外材料可作如下处置:对确有先进性和应用前景者,则可立项仿制;若用量少,要求高,国内难以仿制生产或虽可仿制生产,但经济上很不合算,同时国外又能正常供货的材料,可直接向国外采购,不必拘泥于“一切立足于国内”。

3.加大对现有定型材料的改进改型研究力度 通过调控成分或变更工艺等手段,充分挖掘现有材料的潜力,做到“一材多用”。

4.加强对新材料的研究 先进航空产品的发展,对材料的要求愈来愈高,因此,要加强对树脂基复合材料、陶瓷基复合材料、金属间化合物、高强高韧、可焊、耐蚀合金钢、高强铝合金、耐热钛合金等的研究。

5.在建立材料牌号序列的同时,建立航空材料性能数据库 对那些用作关键件、重要件的材料,要补充测试有关结构设计、可靠性评估与寿命预测等所需的性能数据。

6.加强特种工艺和理化测试技术的开发研究 在制订材料标准的同时,制订相应的特种工艺及理化检测标准,形成完整的标准系列,达到扩大材料应用范围,提高材料的应用技术经济效益。

7.建立和完善运行机制及行业规范 在有关材料选用、材料研制和材料采购等方面,建立和完善与市场经济相适应的运行机制及一套行之有效的行为规范,理顺材料选用、材料研制材料采购等部门之间的关系,使这方面的工作走上科学化、规范化和程序化的轨道。

第四篇:碳纤维在航空航天中的应用

碳纤维在航空航天中的应用

郭 伟 中国地质大学 地球科学学院

摘要: 碳纤维就是纤维状的碳,由有机纤维经碳化及石墨化处理而得到的微晶石墨材料。碳纤维的微观结构类似人造石墨,是乱层石墨结构。本文将针对碳纤维的结构、性能、制备方法及其在航空航天中的应用介绍。

引言

20世纪纳米科技取得了重大发展,而纳米材料是纳米技术的基础,碳纤维是一种比强度比钢大,比重比铝轻的材料,它在力学,电学,热学等方面有许多特殊性能,碳纤维的强度比玻璃钢的强度高;同时它还具有优异的导电、抗磁化、耐高温和耐化学侵蚀的性能,被认为是综合性能最好的先进材料,因此它在各个领域中的应用推广非常迅速。在近代工业中,特别是在航空航天中起着十分重要的作用。

1.碳纤维的概念

碳纤维就是纤维状的碳,由有机纤维经碳化及石墨化处理而得到的微晶石墨材料。它不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维。与传统的玻璃纤维(GF)相比,杨氏模量是其3 倍多;它与凯芙拉纤维(KF-49)相比,不仅杨氏模量是其2倍左右,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性出类拔萃。有学者在1981年将PAN基CF浸泡在强碱NaOH溶液中,时间已过去30多年,它至今仍保持纤维形态。2.碳纤维的结构

碳纤维的结构决定于原丝结构和炭化工艺。对有机纤维进行预氧化、炭化等工艺处理,除去有机纤维中碳以外的元素,形成聚合多环芳香族平面结构。在碳纤维形成过程中,随着原丝的不同,质量损失可达10~80%,形成了各种微小的缺陷。但无论用哪种材料,高模量的碳纤维中的碳分子平面总是沿纤维轴平行的取向。用x一射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构。碳纤维呈现乱层石墨结构。在乱层石墨结构中,石墨层片仍是最基本结构单元,一般由数张到数十张层片组成石墨微晶,这是碳纤维的二级结构单元。层片之间的距离叫面间距d,由石墨微晶再组成原纤维,其直径为50nm左右,长度为数百nm,这是纤维的三级结构单元。最后由原纤维组成碳纤维的单丝,直径一般为6—8μm。原纤维并不笔直,而是呈弯曲、裙皱、彼此交叉的许多条带组成的结构。在这些条带的结构中,存在着针形孔隙,其宽度为1.6—1.8nm,长度可达几十nm。在碳纤维结构中的石墨微晶与纤维轴构成一定的夹角,称为取向角,这个角的大小影响纤维模量的高低。如聚丙烯脯基碳纤维的d为0.337nm,取向角为8°。碳纤维结构是高倍拉伸的、沿轴向择优取向的原纤维和空穴构成的高度有序织态结构。影响碳纤维强度的重要因素是纤维中的缺陷。碳纤维中的缺陷主要来自两方面,一方面是原丝带来的缺陷,另一方面是炭化过程中产生的缺陷。原丝带来的缺陷在炭化过程中可能消失小部分,而大部分将保留下来,变成碳纤维的缺陷。同时,在炭化过程中,由于大量的元素以及各种气体的形成逸出,使纤维表面和内部形成空穴和缺陷。3.碳纤维的性能 3.1 碳纤维的力学性能

碳纤维具有很高的抗拉强度,其抗拉强度是钢材的2倍、铝的6倍。碳纤维模量是钢材的7倍、铝的8倍。

3.2 碳纤维的物理性能

碳纤维的密度在1.5—2.0g/cm3之间,这除与原丝结构有关外,主要决定于炭化处理的温度。一般经过高温(3000℃)石墨化处理,密度可达2.og/cm3,碳纤维的热膨胀系数与其他纤维不同,它有各向异性的特点。平行于纤维方向是负值(-0.72×10-6~0.90×10-6),而垂直于纤维方向是正值(32×10-6~22×10-6)。碳纤维的比热容一般为7.12×10-1 KJ/(kg·K)。热导率随温度升高而下降。碳纤维的比电阻与纤维的类型有关,在25℃时,高模量纤维为775μΩ/cm,高强度碳纤维为1500 μΩ/cm。碳纤维的电动势是正值,而铝合金的电动势为负值。因此当碳纤维复合材料与铝合金组合应用时会发生化学腐蚀。3.3碳纤维的化学性能

碳纤维的化学性能与碳很相似,它除能被强氧化剂氧化外,对一般碱性是惰性的。在空气中,温度高于400℃时则出现明显的氧化,生成CO和CO2。在不接触空气或氧化剂时,碳纤维具有突出的耐热性能,与其他材料相比,碳纤维要温度高于1500℃时强度才开始下降,而其他材料的晶须性能也早已大大的下降。另外碳纤维还具有良好的耐低温性能,如在液氮温度下也不脆化,它还有耐油、抗放射、抗辐射、吸收有毒气体和减速中子等特性。4.碳纤维的制备

碳纤维可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得:按状态分为长丝、短纤维和短切纤维:按力学性能分为通用型和高性能型。通用型碳纤维强度为1000兆帕(MPa)、模量为100GPa左右。高性能型碳纤维又分为高强型(强度2000MPa、模量250GPa)和高模型(模量300GPa以上)。强度大于4000MPa的又称为超高强型:模量大于450GPa的称为超高模型。随着航天和航空工业的发展,还出现了高强高伸型碳纤维,其延伸率大于2%。用量最大的是聚丙烯腈PAN基碳纤维。目前应用较普遍的碳纤维主要是聚丙烯腈碳纤维和沥青碳纤维。碳纤维的制造包括纤维纺丝、热稳定化(预氧化)、碳化、石墨化等4个过程。其间伴随的化学变化包括,脱氢、环化、预氧化、氧化及脱氧等。

第一、原丝制备,聚丙烯腈和粘胶原丝主要采用湿法纺丝制得,沥青和酚醛原丝则采用熔体纺丝制得。制备高性能聚丙烯腈基碳纤维需采用高纯度、高强度和质量均匀的聚丙烯腈原丝,制备原丝用的共聚单体为衣康酸等。制备各向异性的高性能沥青基碳纤维需先将沥青预处理成中间相、预中间相(苯可溶各向异性沥青)和潜在中间相(喹啉可溶各向异性沥青)等。作为烧蚀材料用的粘胶基碳纤维,其原丝要求不含碱金属离子。

第二、预氧化(聚丙烯腈纤维200~300℃)、不熔化(沥青200~400℃)或热处理(粘胶纤维240℃),以得到耐热和不熔的纤维,酚醛基碳纤维无此工序。

第三、碳化,其温度为:聚丙烯腈纤维1000~1500℃,沥青1500~1700℃,粘胶纤维400~2000℃。第四、石墨化,聚丙烯腈纤维为2500~3000℃,沥青2500~2800℃,粘胶纤维3000~3200℃。第五、表面处理,进行气相或液相氧化等,赋予纤维化学活性,以增大对树脂的亲和性。

第六、上浆处理,防止纤维损伤,提高与树脂母体的亲和性。所得纤维具有各种不同的断面结构。要想得到质量好碳纤维,需要注意一下技术要点:

(1)实现原丝高纯化、高强化、致密化以及表面光洁无暇是制备高性能碳纤维的首要任务。碳纤维系统工程需从原丝的聚合单体开始,实现一条龙生产。原丝质量既决定了碳纤维的性质,又制约其生产成本。优质PAN原丝是制造高性能碳纤维的首要必备条件。

(2)杂质缺陷最少化,这是提高碳纤维拉伸强度的根本措施,也是科技工作者研究的热门课题。在某种意义上说,提高强度的过程实质上就是减少、减小缺陷的过程。

(3)在预氧化过程中,保证均质化的前提下,尽可能缩短预氧化时间。这是降低生产成本的方向性课题。

(4)研究高温技术和高温设备以及相关的重要构件。高温炭化温度一般在1300~1800℃,石墨化一般在2500~3000℃。在如此高的温度下操作,既要连续运行、又要提高设备的使用寿命,所以研究新一代高温技术和高温设备就显得格外重要。如在惰性气体保护、无氧状态下进行的微波、等离子和感应加热等技术。5.碳纤维在航空航天中的应用

5.1在飞机机身上的应用

近10 年来,国内飞机上也较多的使用了碳纤维及其复合材料。例如由国内几家科研单位合作开发研制的某歼击机复合材料垂尾壁板,比原铝合金结构轻21 kg ,减质量30 %。北京航空制造工程研究所研制并生产的Q Y8911/ HT3双马来酰亚胺单向碳纤维预浸料及其复合材料已用于飞机前机身段、垂直尾翼安定面、机翼外翼、阻力板、整流壁板等构件。由北京航空材料研究院研制的PEEK/ AS4C 热塑性树脂单向碳纤维预浸料及其复合材料,具有优异的抗断裂韧性、耐水性、抗老化性、阻燃性和抗疲劳性能,适合制造飞机主承力构件,可在120 ℃下长期工作,已用于飞机起落架舱护板前蒙皮。在316 ℃这一极限温度下的环境中,复合材料不仅性能优于金属,而且经济效益高。随着基体树脂和碳纤维性能的不断提高,碳纤维增强树脂基复合材料的耐湿热性及断裂延伸率得到显著改善和提高。在飞机上的应用已由次承力结构材料发展到主承力结构材料。5.2 在航空发动机上的应用

树脂基复合材料由于具有密度小、比强度高和耐高温等固有特性,复合材料在航空涡轮发动机上应用的范围越来越广且比例越来越大,使航空涡轮发动机向“非金属发动机”或“全复合材料发动机”方向发展。凭借比强度高,比模量高,耐疲劳与耐腐蚀性好的优点,J TA GG 验证机的进气机匣采用碳纤维增强的PMR15 树脂基复合材料,比采用铝合金质量减轻26 %。

碳化硅纤维增强的钛基复合材料,凭借密度小(有的仅为镍基合金的1/ 2),比刚度和比强度高,耐温性好等优点,碳化硅纤维增强的钛基复合材料在压气机叶片、整体叶环、盘、轴、机匣、传动杆等部件上已经得到了广泛应用。

目前主要的陶瓷基复合材料产品是以SiC 或C纤维增强的SiC 和SiN 基复合材料。凭借密度较小(仅为高温合金的1/ 3~1/ 4),力学性能较高,耐磨性及耐腐蚀性好等优点,陶瓷基复合材料,尤其是纤维增强陶瓷基复合材料,已经开始应用于发动机高温静止部件(如喷嘴、火焰稳定器),并正在尝试应用于燃烧室火焰筒、涡轮转子叶片、涡轮导流叶片等部件上。5.3 在火箭发动机上的应用

由于火箭发动机喷管壁受到高速气流的冲刷,工作条件十分恶劣, 因此C/ C 最早用作其喷管喉衬, 并由二维、三向发展到四向及更多向编织。同时火箭发动机设计者多年来一直企图将具有高抗热震的Ct / SiC 用于发动机喷管的扩散段, 但Ct 的体积分数高, 易氧化而限制了其广泛应用, 随着CVD、CVI 技术的发展, 新的抗氧化Ct / SiC 及C-C/ SiC 必将找到其用武之地。Melchior 等认为碳纤维CMC、陶瓷纤维CMC 以及C/ C 复合材料,特别是以SiC 为纤维或基体的CMC 抗氧化, 耐热循环和烧蚀, 是液体火箭发动机燃烧室和喷管的理想材料, 并进行了总数为31 个的长达20 000 s 的燃烧室和喷管点火试验, 内壁温度高达1732 ℃, 一个600 kg 发动机成功地点火七次, 温度为1449℃。目前为解决固体火箭发动机结构承载问题, 美国和法国正在进行陶瓷纤维混合碳纤维而编织的多向(6 向)基质、以热稳定氧化物为基体填充的陶瓷复合材料。SiC 陶瓷制成的喉衬、内衬已进行多次点火试验。今天作为火箭锥体候选材料的有A12O3、ZrO2、ThO2 等陶瓷, 而作为火箭尾喷管和燃烧室则采用高温结构材料有SiC、石墨、高温陶瓷涂层等。碳纤维仍将是今后固体火箭发动机壳体和喷管的主要材料。5.4在卫星和宇航器上的应用

由于碳纤维的密度、耐热性、刚性等方面的优势, 增强纤维以碳纤维为主。碳纤维复合材料在空间技术上的应用, 国内也有成功范例, 如我国的第一颗实用通信卫星应用了碳纤维/环氧复合材料抛物面大线系统;第一颗太阳同步轨道“ 风云一号” 气象卫星采用了多折迭式碳纤维复合材料刚性太阳电池阵结构等。卫星结构的轻型化对卫星功能及运载火箭的要求至关重要,所以对卫星结构的质量要求很严。国际通讯卫星VA 中心推力筒用碳纤维复合材料取代铝后减质量23 kg(约占30 %),可使有效载荷舱增加450条电话线路,仅此一项盈利就接近卫星的发射费用。

参考文献

[1]高永忠.纤维增强树脂复合材料在武器装备上的应用[J].应用导航, 2006 ,01 :24.[2]李爱兰,曾燮榕,曹腊梅等航空发动机高温材料的研究现状[J].材料导报,2003 ,17(2):26.[3]《航空航天先进复合材料现状》论文 吴良义

[4]《复合材料在航空航天中的应用》论文 苏云洪,刘秀娟,杨永志 [5]部分内容来源于维基百科及百度百科等网站

第五篇:高分子复合材料在各种航空航天工具中应用

高分子复合材料在各种航空航天工具中应用

多种高性能的高分子复合材料目前已经用于各种航空航天工具中。例如,碳纤维复合材料不久前还只在军用飞机上用做主结构如机身和机翼。但是,近年来先进复合材料已开始用于大型民航客机上用做主结构,玻纤增强塑料也大量使用在一些较为次要的部位。

在美国,碳纤维复合材料主要用于航空航天工业;在欧洲,碳纤维复合材料在航空航天领域的使用量达到33%,仅次于其他工业用途。例如,无人驾驶飞机上,目前已经大量使用碳纤维复合材料。

新近推出的波音公司新型民航客机7E7和空中客车公司A380,都开始采用航空航天复合材料作飞机的主结构。这是因为复合材料能提供目前制铝工业所能提供的铝合金大致相同的性能,而且复合材料还能进一步降低成本。此外,复合材料还有耐久性好,所需保护少,零部件可以整合,耐腐蚀性强,通过利用智能纤维材料和嵌入式传感器进行结构监测等优点。

7E7客机绝大多是用复合材料制造的,将需要约25吨增韧碳纤维增强环氧树脂叠合材料和夹层材料。A380也使用通常的复合材料结构,例如机翼包皮的40%采用碳纤维增强塑料,减轻质量1.5t,减轻全装配结构11.6t。尾翼的大部分包括尾翼的安定面是碳纤维复合材料,仿照老式空中客车客机。未增强的后机身由连接到复合材料机架上的复合材料与合金架的组合体上的碳纤维蒙皮构成。总计复合材料将占机架质量的大约16%,减轻同种规模的全金属结构(空飞机的总质量将约为170t)。

下载先进复合材料在航空航天中的应用及发展word格式文档
下载先进复合材料在航空航天中的应用及发展.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    航空航天材料的发展

    航空航天材料的发展 贾儒数学试验班21 2120603006前一阵子电影《地心引力》上映后,引起很大反响,大家多为电影中的特效所震撼,也为宇航员在孤立无援状态下最终重返地球的精神......

    读写结合在小学语文阅读教学中的应用

    读写结合在小学语文阅读教学中的应用 摘要:小学生的语文课程,在整个小学阶段具有重要的意义。是为其奠定语文素养的基础。在小学语文教学中,老师需要重视学生们对文字的感知能......

    钢木组合在港口工程中的应用

    描述:近年来,随着大片竹胶板在建筑工程中应用增多,模板板面能够满足混凝土构件的平整度、光洁度等外观质量的要求。通过实际应用证明,钢木组合模板在港口工程施工中具有较大的推......

    数形结合在中学数学教学中的应用

    安 阳 师 范 学 院 数形结合在中学数学教学中的应用 甘世军 (安阳师范学院数学与统计学院 河南 安阳 455002) 摘 要:数形结合是数学教学中的一种非常重要的思想方法,“数”与......

    信息技术与课程整合在中小学中的应用

    信息技术与课程整合在中小学中的应用 信息技术与其他学科教学的整合是当前信息技术教育普及进程中的一个热点问题。去年10月,教育部部长陈至立在全国中小学信息技术教育会议......

    读写结合在中小学语文阅读教学中的应用

    读写结合在中小学语文阅读教学中的应用 【摘要】语文课程最重要是要将课堂所学到的语言文字进行综合实践运用。而中小学语文教育将读写进行有机结合,这也表明语文的阅读与写......

    数形结合在小学教学中的应用范文

    “数形结合”思想在小学数学教学中的渗透与应用 数学思想有许多,数形结合思想就是其中一种重要的思想。“数”和“形”是紧密联系的。我们在研究“数”的时候,往往要借助于......

    网络资源整合在小学数学教学中的应用

    网络资源整合在小学数学教学中的应用 黄活伟 随着计算机多媒体技术、网络技术的迅速发展,多媒体网络的教育应用已日渐成为现代教育改革的重点。网络作为一种新的教育媒介,已成......