直放站与分布系统典型故障处理案例(5篇材料)

时间:2019-05-13 11:36:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《直放站与分布系统典型故障处理案例》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《直放站与分布系统典型故障处理案例》。

第一篇:直放站与分布系统典型故障处理案例

直放站与分布系统典型故障处理案例 2009-06-19 14:20

分类:移动基站资料

字号: 大 中 小

1.故障现象:室内分布信号泄漏问题

上海中土大厦酒店,维护测试人员发现酒店信号泄漏严重,离大楼10米,室内信号在-60dBm左右,根据室内信号覆盖要求:离楼宇10米以外,室内泄漏信号电平应在-85dBm以下。

故障分析: 在维护过程中,发现有较多的站点由于设计或施工方面的原因,造成室内信号覆盖楼宇信号泄漏。

主要有以下几种情况容易造成信号泄漏:

一、特殊区域的天线安装不合理或电平过高,主要为楼宇大门口外墙体为玻璃结构,楼面狭长过道

正对窗口等区域;

二、有源设备未经调试或调试不当,造成楼层信号过强;

三、早期室内覆盖站点,由于设计天线电平口功率过高,造成楼宇整体信号偏强;

四、楼宇结构不同问题造成信号泄漏;

五、施工过程由于没有按照设计位置安装,造成信号分布不均。

处理过程:

在酒店大堂,我们测试记录室内信号(LAC:6261、CH:

34、CID:14081、电平-40dBm),然后测试离楼宇10米外区域,观察记录信号(LAC:6261、CH:

34、CID:14081、电平-65dBm),其LAC、CID和CH与室内信号一致,排除了存在同频干扰情况。可以确定中土大酒店确实存在信号泄漏问题。其次我们需要对楼宇进行详细的信号覆盖测试,大楼高层测试:过道信号平均电平在-55dBm,窗边信号电平在-75dBm左右;大楼低层测试:

三、四层东面及北面窗边信号电平在-44dBm~55dBm,二层窗边电平在-55dBm左右,一层门口及窗边电平在-55dBm左右,其余区域信号电平在-65dBm左右,最差电平在-75dBm。可以判定造成酒店信号泄漏的区域主要为1~4层等低层。我们对大楼低层的信号分布和楼层结构情况进行分析,二楼和四楼楼层结构情况与三楼类似,酒店大堂比较空旷,外墙都是玻璃,对信号衰减很小,不利于实现对室内信号覆盖的有效控制,造成信号泄漏。

在2~4F非营业时间用负载将1~4层信号逐一进行屏蔽测试,然后我们对大楼四周离楼10米以外区域进行测试,发现室内信号邻频不可见,锁频测试室内信号都在-90dBm以下。

从上述的测试情况来看,造成中土大厦酒店信号泄漏的主要原因为:

1.特殊区域(大堂)天线设计不合理,且天线功率过高

2.2~4层部分天线安装过于靠近窗口

针对信号泄漏的区域,我们进行了布线系统调整,调整的思路和措施如下:

1.2~4层部分天线安装过于靠近窗口,由于酒店不同意天线挪位,所以我们通过调整布线器件,将天线功率进行重新分配,增强电梯厅信号电平,降低窗口信号电平至-70dBm左右。

通过调整器件,降低部分天线功率的同时,也可能增强了其它天线的功率,有时会造成新的泄漏源。为避免这种情况的发生,我们一般选取覆盖区域不宜造成泄漏的天线作为多余功率的转移点,比如:覆盖电梯的天线(井道、楼宇中间电梯厅)、覆盖地下室的天线。有时,楼宇整体功率过高,我们可以通过降低主机输出功率,来控制泄漏问题。单副天线造成泄漏,我们可以增加衰减器来降低天线功率。但是在降

低功率的同时,保证楼层信号覆盖符合要求。

2.特殊区域信号泄漏

中土大酒店门口泄漏严重,主要由于大堂内全向吸顶天线覆盖,且天线功率较高(9dBm)。由于酒店大堂比较空旷,外墙都是玻璃,对信号衰减很小,比较容易造成信号泄漏。我们可以考虑以下几种方法:

I.将大堂天线挪位,使不正对大门或离大门距离稍远(可以利用大堂柱或其它物体)

II.降低大堂天线功率

III.改变覆盖天线类型,可以采用单向或定向天线,来控制门口信号泄漏

需要注意的是:我们要先排除其它楼层信号泄漏到门口的情况。对于中土大酒店,我们可以降低大堂天线ANT3-1F功率(通过单个天线加衰减器,因为一层其余天线增强信号则会形成新的泄漏)。

整改完毕后大楼低层窗口电平控制在-67dBm左右,一层门口电平在-70dBm左右,出入口切换顺利。离楼10米外室内信号电平在-85dBm以下,基本解决了大楼信号泄漏问题。

一、传输故障

在日常抢修工单中,OMC如果不能明确确定故障部位,一般将故障定位为传输断。根据站点现场处理情况,对于传输故障我们主要将其分为3种:外环故障、内环故障、设备故障。

1、外环故障:

室内覆盖站点DDF架或ODB收信端到移动交换中心的通信链路故障。对于外环传输故障的判断,我们通过在DDF架或ODB上往交换中心作环路,通过OMC确定该环路是否通畅,如果OMC确定该环路无故障,我们将环路断开,再由OMC确定该环路是否通畅,以检查基站与交换中心之间是否存在其它

环路,以免造成对传输故障的误定位。

2、内环故障

室内覆盖站点DDF架或ODB发信端到基站主控单元的通信链路故障。对于内环传输故障的判断,我们由DDF架或ODB往主机做环路,通过设备主控板上的传输指示灯来确认环路是否存在故障。

3、设备隐性故障

基站设备隐性故障造成传输故障,比如:传输反复。

由于设备隐性故障造成传输故障比较难以判断,目前我们一般采用先排除内外环故障后,如果仍存

在传输反复故障,基本认为设备存在隐性故障。

二、传输故障的原因分析

在实际抢修过程中,我们针对传输故障的不同,对造成传输故障的原因进行分析,并采用不同的方

法加以处理解决:

1、外环传输故障

目前,造成站点外环传输故障的原因主要为:人为过失、传输设备故障和市话交换传输故障。人为过失主要指机房不是独立机房,进出人员比较复杂,在DDF架或ODB上的接头和跳线受到损坏,造成传输故障;业主在楼宇改造施工中,损坏传输设备,造成传输故障。

传输设备故障主要为ODB上的光法兰盘故障,在做外环时,发现环路存在故障,在更换光法兰盘后,重新作环路,环路通畅,复原设备后,设备工作正常,故障排除。

市话交换传输故障由于需要电信部门配合处理,我们一般现场电话通知OMC情况,由OMC进行处理。由于网络调整和资源配置的原因,交换网络经常进行调整,市话交换传输故障出现的频率比较高,而且处理过程涉及电信部门,故障处理时间有时偏长,严重影响基站设备的运行。

2、内环传输故障

内环传输故障由于发生在基站设备之间的环路,能够及时判断故障并加以处理解决。内环传输故障

主要为:接头故障、光端机故障和跳线故障。造成内环传输故障的原因,主要有几个方面:

1)机房环境

机房环境直接影响内环传输的好坏,影响设备能否最佳运行和设备使用寿命的长短。比如机房温度过高,会造成光端机运行一定的时间后出现故障;光纤老化比较快,光纤有可能会缩短使用寿命。机房灰尘较多,光纤接头容易脏。如果机房不是独立机房,客观上造成人为过失因素的增加。比如吉发大厦由于与联通设备共用机房,8月中旬联通公司晚上在机房施工,造成我方设备连续几天出现故障,经抢修后恢

复正常。2)电源提供

较多设备的电源由业主直接提供,设备电源没有一定保护措施,容易由于外界电源变化造成设备故障,比如宝山宾馆移动设备与业主设备电源共线,6月初业主设备经常跳闸断电,造成移动设备不能正常工作,经与业主协调后,移动设备电源单独走线,故障隐患排除。

3)设备质量

维护站点中光端机设备出现的故障较多,需要增强其质量检测力度;其次,接头问题主要为2M线接头制作质量不过关,需要工程施工时严格要求按规范来做。比如海烟大酒店8月6日传输断,抢修人员到达现场,发现光端机可能由于内部电路问题,不能正常工作,更换光端机后,仍然存在内环故障,经查为跳线接头损坏,重做后环路畅通,传输故障排除,设备运行正常。

3、设备隐性故障

设备出现隐性故障主要为主控板故障或主机软件设置存在问题。在确定故障后,我们暂采用更换主控板和软件重新配置来处理,由于主控板的备件比较少,在一定程度上影响设备的修复时间和对用户的服务质量。比如新元大酒店7月21日出现传输反复故障,抢修人员当天更换2M线后主机工作正常,7月23日又出现传输反复故障,电源柜存在问题处理后恢复正常,到8月7日又出现传输反复故障,我们更换光端机后恢复正常,初步怀疑设备主控板存在隐性故障,由于没有主控板备件,当日没有更换主控板,8月11日出现传输反复,更换主控板后恢复正常,设备至今工作良好。

要有效的保障设备完好运行,最大程度的减少传输故障的发生,我们认为软硬一起抓。软的方面:一方面提高抢修人员的技术水平和理论水平,提高抢修效率;另一方面完善维护制度,提高服务质量;硬的方面:保障设备质量和机房设施完备,确保网络运行最优,通信通畅。

3.故障现象:

杭州黄龙世纪广场C区12和13楼是移动公司重点客户单位的所在地,该单位的领导曾多次直接投诉到移动公司的老总那里,反映手机通话质量不好。因为黄龙世纪广场C区的室内覆盖由京信公司负责设计和施工的,所以移动公司的运维人员要求我们解决该区域覆盖的投诉问题。

故障分析、处理过程:

经检查,在占用室内的信源频点CH87的情况下,通话清晰。偶然间在黄龙世纪广场的C区北侧的楼梯口附近测试时,接到同事打来的电话,当时手机占用CH68(CID20122)的频点,我想让它占用室内覆盖的频点,就边通话边往楼内的走廊走,可是越往里走,对方听我的信号越吃力,而我可以很清晰地听到对方的说话,这说明CH68的上行有问题,而且CH68的邻频中没有室内覆盖CH87的频点,所以,不能直接切换到室内CH87的频点上,结果就导致掉话,他们所反映的问题应该就是它了。出了世纪广场C区后,我把手机锁定在CH68的频点上,顺着CH68信号强弱的特性,顺藤摸瓜一直找到CH68的基站位置,它在花园大酒店的楼顶,第二扇区,朝向东南(见下图)。相对于世纪广场C区,它的信号是比较强的。而且在花园大酒店的电梯内,发现电梯内也有CH68的信号,强度高达-50dBm,可以肯定电梯内也进行了覆盖。我根据推理分析如下:花园大酒店第二扇区的信号经过耦合,进入功率放大器,覆盖电梯,此功放因调试不当而上行噪声电平过大,影响了该基站的上行接收灵敏度,直接导致了CH68的上下行不平衡。如果,接收方信号足够强,这一现象感觉不到,但若接收方驻留在该小区信号开始变弱,又不能切换到合适的邻小区上,直接导致该信号的上行通话质量的下降。世纪广场C区就是这样的情况。找到了问题的所在,解决问题就容易了。建议把世纪广场C区的频点CH87加到花园大酒店的第二扇区CH68的邻频中,并调整花园大酒店电梯内覆盖的功率放大器,使它不至于影响基站的接收灵敏度而

收不到上行的弱信号,保持上下行链路的平衡。

4.故障现象:

直放站覆盖区域用户反应村中信号很差,无法正常通话。

故障分析:

1、首先检查直放站整个系统是否完全连通;

2、检查天馈系统是否完好;

3、检查直放站设备下行增益,看是否因为直放站下行增益不够引起信号无输出或输出过弱;

4、检查下行功放模块,看是否烧坏;

5、检查施主天线与重发天线之间的隔离度,看看是否由于施主天线与重发天线之间的隔离度不够引

起的直放站无输出或输出过弱。

处理过程:

1、经检查直放站的系统已全部连接并且天馈系统完好,检查直放站的下行增益也正常。

2、覆盖区CQT测试,CID:13701 BCCH:40 TCH:40、58。信号电平较好,室外-65左右,无

法主叫,并出现脱网现象。

3、用手机锁定该小区,手机无中国移动字样,无信号。

4、关闭直放站,在施主天线处,使用13701小区进行CQT拔打测试,主、被叫正常。

5、检查直放站有自激现象。直放站二2个扇区,上下行分开,共4幅重发天线。施主天线方向角为270度,下行重发天线角度分别170度、350度。施主天线与直放站间隔仅15米左右,并且较直放站低,系统存在自激现象。

6、检查设备输出功率,为35dBm,调整输出功率至25dBm。天线附近主叫正常,确定设备有自激。

7、直放站靠近施主端二个重发天线是下行,另一端二个重发天线是上行,将上、下行天线进对调,增加重发与施主的隔离度,再调整设备输出功率,最后测试输出33dBm有轻微自激,32dBm时无自激。

故此为直放站施主天线与重发天线之间的隔离度不够,导致覆盖区无信号或信号输出过弱,可采用

以下方法解决:

1、调整该直放站的施主天线及重发天线之间的水平距离,或者垂直距离。在施主天线与重发天线之间增加隔离网或者利用自然屏蔽物增加施主天线与重发天线之间的隔离度(不太实际,因为前期工作已经做好,要调整施主与重发天线之间的距离需移动电杆)。

2、由于直放站有二个扇区,不能通过更改施主天线方向角来解决自激,只能通过下降设备输出功率来解决自激,导致覆盖区内信号电平有所下降,现场CQT测试,可以正常通话。

5.故障现象:直放站上行干扰故障处理分析

2005年12月5日状元岙村用户投诉该村移动手机通话时话音质量较差,从OMC统计数据发现该直

放站的施主基站上行干扰严重。

故障分析、处理过程:

我方工作人员对状元岙直放站进行实地检测,首先关闭该直放机,判断干扰的产生是直放机原因还是基站本身原因。直放机关闭1小时后,观察指标正常,因此可以判断该直放机对施主基站存在严重干扰。

该直放站为光纤直放站,分A端机和B端机,A端机安装在施主基站的机房内,根据以往处理无线直放站的经验,我们先对B端机的上行通路作了调整,将上行底噪从-33dbm调至-39dbm,调整后再观察指标发现有所好转,但尚未达到正常范围,再将底噪值从-39dbm调至-48dbm,观察指标发现有好转,但依然达不到正常范围。经过两次调整后仍不能解决问题,我们分析再在B端调整已没有意义。对A端机检测时发现光输入为2dbm,底噪-69dbm。分析:基站架顶输出功率约40dbm,推算出从基站架顶到A端机光输入共损耗38db,根据底噪的理论算法底噪应小于-82dbm。因此我们对A端机的上行通路作了调整,从-69dbm调至-82dbm,观察指标发现已恢复正常,覆盖区域通话正常。

总结:

直放站对基站上行干扰处理流程

1、关闭直放站,判断干扰是否为直放站引起。

2、检查上行通路,若为光纤直放站,应调整A端机的上行通路。

3、推算出理论底噪值,调整时幅度不宜过大,应在理论值的基础上下调3db为宜。

6.故障现象:

直放站覆盖区域内出现掉话率高、通话断续、单通等问题。

故障分析: 网络服务质量不好,多是由于干扰原因引起,一般情况下,干扰是网络调整时未顾及直放站而引起的,也有一种情况是,直放站自身出现故障。

1、覆盖区网络干扰 网络优化调整,新站建设等,是引起直放站覆盖区域网络干扰的主要因素。

2、直放站上下行的链路不平衡

直放站上下行链路不平衡多数表现为上行链路不足,上行链路不足,导致掉话、断续、单通等服务

质量问题。

3、可能发生了轻度的自激

直放站自激是导致直放站覆盖区域网络服务质量差的主要因素之一。

4、上下行隔离度不够

上下行隔离度不够,能够导致上行链路受下行强信号阻塞干扰,进而导致掉话、断续、单通等服务

质量问题。

5、基站的参数设置不合理

不当的切换参数设置,容易引起不合理的切换,致使服务质量不高的小区提供服务,而服务质量较

高的小区却不能提供服务。

处理过程:

首先查看最近该区域是否开展了优化调整,如果有调整,需要进一步查看优化报告,弄清楚优化调

整的意图,然后对直放站做相应的调整。

如果,是由于新建直放站点对原有网络形成干扰,那么进行测试评估,对不合理的建设,提出合理

化整改建议。

在排除网络干扰因素后,先确定直放站是否自激,检测方法如案例一;在确定直放站没有自激的情况下,进一步检查设备的上下行隔离度,保证直放站上行不受下行强信号阻塞干扰。

上下行链路平衡测试首先应测试直放站上行的实际增益,上行不足容易导致掉话、单通等问题。直放站中,器件老化是导致上行不足的主要原因,应对相应的器件进行更换。

7.故障现象:

DT测试,发现直放站覆盖区域信号波动较大,有明显的陡降衰弱,信号电平呈阶梯状,各阶梯电平

相对平稳。

故障分析:

导致出现这种问题的因素可以归纳为以下四个:

1、直放站施主天馈系统有问题 在BTS上,有话务载频与控制载频连接不同天馈时,各耦合链路间差损不同,造成覆盖区域信号波

动。

2、直放站内部的模块工作不稳定

直放站带内波动过大,不同频点信号经过放大器的增益不同,导致覆盖区域信号波动。

3、直放站可能发生了轻微的自激

个别频点受轻微干扰,导致该频点信号电平降低。

4、不合理的小区重选、切换设置

呼叫建立发生切换,从信号强小区到弱小区切换。

处理过程:

查看DT数据,确定信号在哪些频点上波动。如果这些频点不属于同一小区,那么需要从上述第4条着手分析,检查数据对应小区之间的切换关系设置,调整切换参数。如果这些频点属于同一小区,那么首先检查直放站输入端,各支路的损耗,在确保各支路正常的情况下,检查设备的工作状况,可以通过降低直放站增益,观察再次DT数据,以确定直放站是否出现了自激的情况。如果排除了上述第1、3、4条故障存在的可能,那么用工程仪表测试直放站在各频点的增益,以确认直放站带内各点的增益是否平滑,对于故障设备,尽早返修。

8.故障现象:

某一光纤直放站开通后,在覆盖区,手机接入网络时间过长,有时甚至达到几十秒,且接入成功率

过低。试分析其原因并提出解决措施。

故障分析: 原因:

1、直放站反向增益设置值不合理;

2、搜索窗设置不合理;

3、光纤距离过长;

4、上行存在一定的干扰;

5、光纤直放站所引用扇区较忙。

处理过程: 1)、直放站反向增益设置值不合适,通过适当调整直放站反向增益值,可以缩短手机入时间,提高接

入成功率。

2)、通过适当调整基站接入参数,提高手机接入成功率。如:增大接入参数ACC_TMO,来增加移动台等待基站基站确认的时间,增大PWR_STEP,使得移动台能在更短时间内达到需要的发射功率,以接入系统,增大PAM_SZ和MAX_CAP_SZ值,增加单个探针的持续时间。

9.互调干扰 故障现象:

某大楼地下室打电话还可以,但是楼层中电话经常出现断续、对方听不清楚现象。

故障分析、处理过程:

该系统为直放站信源的全覆盖分布系统,现场检查情况如投诉所述,在楼层中打电话经常出现断续、对方听不清,此时在覆盖区域内存在由直放站放大的71和77号频点经常切换;关掉直放站,在楼层中手机占用室外83号频点,场强比较弱但是通话情况良好。判断应该是直放站信号受到干扰,且是三阶互调干扰(根据三阶互调公式:△f=2f2-f1,71号频点受到77和83号频点的互调干扰,83号频点也受到77和71号频点的互调干扰,直放站开启时,测试手机上看不见83号频点,说明83号频点受到的干扰相当大);所以71号频点受到互调干扰,此时信号的衰弱相当大,造成了话音质量差。

调整直放站施主天线的方位角,叉开接收频点就可以解决该现象。

10.联通干扰 故障现象:

某大酒店用户投诉地下室和电梯经常有信号,但是打不出电话,而且时间很长。

故障分析、处理过程:

该系统是直放站覆盖地下室和电梯,八木天线安装在7层楼顶,初步怀疑是直放站上行有问题;用测试手机在电梯和地下室拨打电话,发现有些地方可以正常打电话,有些地方却不能拨打电话,仔细观察发现手机上的主频有切换(主频92),当其切换到94号频点时,就不能打电话了;寻找94号频点:到接收天线处,没有发现94号频点,但在八木天线附近,有一个联通的接收天线,而且联通的直放站也装在移动直放站的旁边,怀疑时由于联通的选带直放站下行滤波不好,把移动的94号频点一起放大覆盖,但其上行信号却没有放大,尝试关掉联通直放站,一切恢复正常。出现这种现象真实情况描述:是在联通的重发天线下有94号频点,当区域内94号频点场强大于92号频点时,就切换到94号频点,由于没有上行导致

了打不出电话的现象。

上报移动公司,要求联通公司的该分布厂家在其直放站上加一个频段滤波器或者调整联通直放站施

主天线位置。11.故障现象: 湖州806所2期移动直放站(该站是采用双纤传输光信号的的光纤直放站)监控轮询不成功,监控

电话拨打显示网络繁忙。

故障分析: 现场拨打测试可以发现:该站覆盖区域场强测试良好,但拨打电话时即显示网络繁忙,不能正常拨打电话。多次拨打均显示同一故障,排除无线信道不足的可能,因该站是采用双纤传输光信号的的光纤直放站,故下列三种情况均可能引起该故障:施主基站故障;直放站主机上行链路故障;光纤传输部分故障。联系机房中心确认:施主基站正常,检查该直放站主机,确认工作正常,通过光功率计对所用光纤进行测试,确认是否是上行电信号转化成光信号后传输所用的光纤断路。

处理过程:

通过现场电话拨打测试很分析确认:信号传输上行链路有问题。联系确认:施主基站正常运行;进行主机功率测试显示主机上行链路没有问题,信号传输正常;通过光功率计对光信号进行检测,发现:光纤断路导致上行信号不能正常传输。联系光纤代维人员进行测试检查,发现:系光纤被松鼠咬断所致。重新熔接该光纤后,覆盖区域上行信号传输恢复正常。覆盖区域电话拨打正常,通话质量良好。联系监控中

心进行轮询确认,轮询正常。

12.故障现象:直放站覆盖区域信号弱故障处理

直放站覆盖区信号很弱,只能在距直放站40米内有一、二格信号,场强底于-95dBm以下。

故障分析、处理过程:

现场检测:直放站远端供电正常,主机工作,光端机收发光信号正常,用频谱仪检测直放站下行输入电平正常(-21dBm),下行输出功率(+38dBm)正常。观察频谱仪屏幕显示TCH载波幅度正常,而BCCH载波幅度很底,判断为直放站接收的基站BCCH耦合链路出问题,到基站机房检查,发现该基站刚扩容,增加了一块载波板,基站的BCCH信道移动公司调整在新扩容的载波板上,TCH信道不变,因此,BCCH信号没有直接将耦合信号合路到直放站近端设备上,远端检测到的很弱BCCH信号是通过基站的发射天线空间耦合到直放站近端设备。判断该直放站相当于丢失了BCCH广播信道而出现直放站输出功率正

常,覆盖区信号很弱的现象。

现场维修:增加一个45dB基站信号耦合器,将现基站BCCH载波信号与原载波的TCH耦合信号合路。到覆盖区测试覆盖区信号正常,测打电话音质良好。故障排除。

结论:基站扩容后没有将BCCH信号合路到直放站射频输入端口,造成直放站覆盖区丢失了BCCH广播信道而出现覆盖区信号很弱的现象,手机无法正常使用。

13.故障现象:直放站同频干扰技术分析

新昌镜屏乡安山村经测打有话音质量差及手机无信号显示等现象,也发生了用户投诉。

故障分析: 经技术人员查勘,该站站址所处山头垂直有近130m高度,接收潭角基站信源,中间光纤跳接镜屏基站,与信源基站距离约2.5公里,中间有山阻挡,但在90度直角所在村庄是直视空间。特别是该站重发天线与基站覆盖区弱信号地区之间也是直视地区,我们知道在二个信号源(一个直放站发出的信号,一个是基站发出的信号)存在叠加区域时,会有同相相加和反相相加的地区。安山站这个重叠区在二站直角附近(见图),这个区域对基站距离为1000米左右有阻挡,信号为-65dBm左右,而对直放站站址较高相对也没阻挡,但距离远,定向天线约1.5公里。因此容易出现信号相当的地区造成反相叠加,不能打电话区域即同频干扰区,情况如图所示:

处理过程:

为了消除干扰区,可以下调直放站功率,但这会影响直放站覆盖区,显然不行。因此,只有改信源基站接收,使干扰区消失,否则很明显直放站功率也不能开太大,直放站发射功率必须满足P有效-L前后

比-L空间

L空间:直放机到干扰区空间衰耗

L空间=92+20lgd,P干:基站在干扰区形成的场强

P有效应该等于直放机发射功率P减去馈线衰耗,加上天线增益,安山站重发天线为二路,因此

=P-Y1+G=P-2-4+17=P+11——②

这样②式为

P有效=P+11

=-80+28+92+20lg1.5-11=+33dBm。

这就是说,安山直放站天线口功率必须控制在33dBm以下才能不产生同频干扰,经过实际调试也达

到了上述要求,但会减小覆盖面。

安山直放站例子证明在基站为全向站情况下(即不能使直放站与基站不同频)要避免同频干扰,在选点时就应尽量使直放站重发天线避免与基站覆盖区有直视关系或与接收信源基站不能有共同直视关系。

第二篇:爱立信基站典型故障处理案例[定稿]

爱立信基站典型故障处理案例

案例1:对基站进行IDB的配置总是无法完成,提示为时间超时。当对基站进行IDB数据的配置时,因为TRU与DXU软件版本不一致,或BSC下载软件的同时进行DXU数据配置而产生冲突,或第一次IDB配置电源电压类型错误,或短时间内频繁的对DXU进行IDB配置等原因,偶尔可能导致再进行IDB的数据配置时,出现提示为时间超时而无法完成的现象。导致DXU同机架内部的通信上存在异常现象,出现类似机架掉死的现象,更换DXU无效。

解决的办法是,将DXU(或新的DXU)放到同基站的其它机架上,或另外的基站上,仅对DXU加电,按照存在问题的机架配置进行IDB的重新配置,完成后再安装到存在问题的机架上,不必再重新配置,对DXU等各模块加电重起,即可解决问题。

案例2:RBS200基站工作不稳定,经常退服。基站各部件的稳定工作离不开稳定的时钟信号,而基站的时钟信号是从PCM传输中提取的,爱立信的基站不提供外部时钟输入的端口, RBS200基站是爱立信早期推出的GSM基站产品,这些基站设备是基于采用传统的PDH传输组网方式而设计的,并不非常适用于SDH传输组网方式,这就会导致RBS200基站在和某些厂家的SDH传输设备配合使用时,导致基站工作不稳定,频繁出现时钟同步的告警,经常退服,严重影响了基站的正常运行。

解决办法有两种:一种是将RBS200基站使用的SDH传输更换为PDH传输;另一种是将RBS200基站设备更换为RBS2000基站设备,因为RBS2000对同步要求较RBS200低,能够很好同SDH传输配合工作。

案例3:开始时,马厂湖基站有部分TS总是无法正常工作,且不固定在某个载频上,更换TRU、DXU无效,对基站的数据进行拆掉重新加载后仍无效,后来整个基站所有的TS均无法正常工作,基站硬件、传输、数据等均不存在问题。点检查了基站的所有硬件均不存在故障现象,对怀疑有问题的TRU、DXU进行了更换;对传输进行了环路测量,也未发现传输电路存在质量问题;检查小区、基站的定义数据也都正常。怀疑基站的数据存在掉死的现象,但没有确凿的证据。尝试用另外一种方法进行故障的定位。从BSC的ETC传输接口处,即ETRBLT板子2M接口处将马厂湖基站的传输DIP=97同另外一个类似配置的基站装载机厂的传输DIP=98直接进行互换,也就是说互相用对方基站的数据来开通基站。互换后发现,马厂湖基站的数据在装载机厂基站上仍然存在同样的问题,而装载机厂基站的数据在马厂湖基站上却能正常工作。这就可以说明,马厂湖基站的硬件、传输均不存在问题,基站数据确实存在掉死的现象。

在确认马厂湖基站的数据存在掉死的情况后,重新定义了新的TG数据,来替换原先存在掉死现象的TG数据,整个基站恢复正常运行。

对上述基站数据掉死的解决办法还有一种是进行BSC的重新启动,因为需要在晚上进行,因此可能会导致基站退服的时间较长。

案例4:中国银行基站第2小区对应的机架为2个CDU C,4个载频配置,总是在4个载频全部开起来后,又很快全部退服,现象为第1、2个TRU状态为TX not enabled,第3、4个TRU为Fault灯和Operational灯同时亮。每次对DXU进行复位,总是出现上述的同样现象,整个小区无法正常运行。

因为第3、4个TRU总是出现故障现象,将这两个TRU更换,仍然出现同样的故障现象;更换第3、4个TRU对应的第2个CDU C,仍然出现同样的故障现象。将第3、4个TRU放到第5、6个TRU的位置上,将第2个CDU放到第3个CDU的位置,这样载频的位置为第1、2、5、6,甩开TRU第3、4位置不使用,整个小区正常运行,不再出现上述故障现象。

根据以上处理过程进行分析,应该是第2个CDU C对应的CDU BUS总线或第3、4个TRU对应的背板存在问题,导致第2个CDU C不能正常工作,不仅导致第3、4个TRU不能正常工作,而且导致整个小区不能正常工作。

将第2个CDU C对应的CDU BUS总线拆下来,更换一新的CDU BUS总线后,故障解决,确认是第2个CDU C对应的CDU BUS总线存在问题。下图是CDU BUS的连接示意图:

还有一种解决办法,就是将CDU C更换为CDU C+,并且使用Y cable,按照如下图连接:

这样就可以不再使用第2个CDU C对应的有问题的CDU BUS总线,就不会出现整个小区开不起来的现象。

案例5:沂水城东基站A小区扩容一个机架,由6载频扩容为8载频。在打开跳频的情况下,A小区所有8个载频的时隙全部正常工作后很快陆续全部退服,同时出现1A级的XBus Fault告警,但告警很快又消失。对基站A小区复位或闭解CF,仍然是同样的故障现象。将A小区的跳频关掉后可以正常运行。

针对出现的XBus Fault告警,重点检查了新增扩的机架TRU和DXU背板跳点设置,CDU BUS的连接情况,均未发现异常,更换DXU也不能解决问题。考虑到当时是在上午忙时,此小区承担的话务量很高,有可能是因为A小区重起时接入用户太多导致负荷过高而不能以跳频方式正常运行,设置A小区参数CB=YES禁止待机时手机接入,设置A小区为Layer=3小区限制其它小区手机用户向A小区切换,这样的参数设置曾经解决过类似大容量小区在打开跳频的情况下忙时重起困难的问题,但仍不能解决沂水城东A小区的问题。

怀疑新增扩的2个TRU虽然状态显示正常,但仍然可能存在问题,导致XBbus工作异常。由于A小区的主架的6个TRU和副架的2个TRU间已多次互相倒换位置来排除TRU的问题,已经不能分清哪2个TRU是新增扩的。于是将A小区的所有8个载频全部替换,问题解决。总结:某个存在故障的TRU可以导致其背板连接的总线工作异常,在这个案例中,导致了XBus工作异常,小区不能打开跳频,但是此TRU的状态显示完全正常。解决办法是替换怀疑有问题的TRU,尤其是新增扩的TRU,不要采取在有问题的小区内互相倒换的方式,因为存在故障的TRU无论在那个位置均可以导致同样的故障现象。应该用其它小区或新带来得TRU替换。

还有一个例子也是存在故障的TRU导致其背板连接的总线工作异常的情况:某小区新扩一个机架,载频由6个扩容到7个,但是每次启站时总是很快出现驻波比过高的基站告警,所有载频全部退服,故障原因是新扩的TRU(在新扩的副架上)存在问题,虽然表面状态均很正常,但是把它插到机框内加电后,就会干扰背板总线的正常工作,导致出现整个小区驻波比过高的问题产生。

案例6:付庄基站为3个RBS2202机架级联、4/4/4配置,故障现象为B小区退服,复位后B小区恢复正常,但几小时后又再次退服,基站不存在任何告警。如此反复,B小区工作状态很不稳定。

因为是在基站运行中出现的故障,所以首先怀疑是B小区DXU出现故障,但是更换后仍无法解决。检查B小区的射频电缆、PCM传输电缆、CDU总线均无异常。通过OMT软件监测付庄基站3个机架DXU的PCM连接状态均正常。考虑到B小区是级联A小区的,即PCM传输电缆从A小区DXU的G.703-2端口连接到B小区DXU的G.703-1端口,这段传输通路是否存在问题?更换这段通路上的所有传输电缆,仍不能解决问题。再向前考虑一步,是不是A小区DXU的G.703-2端口存在问题,虽然没有故障状态显示?更换A小区的DXU,重新配置IDB数据后,问题解决。

总结:针对多机架级联的基站,第2、3小区退服的情况,要考虑前一级级联的小区所在的机架是否存在DXU故障、PCM传输电缆接错、IDB数据中未定义PCM级联等情况。

案例7:某个基站第2小区有3个时隙LMO状态为0800,复位和更换载频后无效。

检查基站的定义数据,发现第2小区对应的TG-139,在定义半永久连接关系时,将RBLT-1309与DCP 28连接是错误的,导致DCP 28相对应的4个TS时隙,无法正常工作。应该是RBLT-1308与DCP 28连接,正确修改后,故障解除。类似的故障现象可能还有如下的故障原因:(1)某个基站第2小区4个时隙LMO状态为0800复位和更换载频无效:用DTIDP指令检查DIP的定义数据,发现MODE=1是错误的。RBS200基站的DIP定义为MODE=1,即传输的第16时隙仅用于传信令,不用于传话音。而此基站为RBS2000基站,正确的定义是MODE=0,如果定义为MODE=1,会导致DCP 16,即传输的第16时隙不能正常使用,出现上述的故障现象,或者导致用户占用时出现单通现象。

(2)某个基站第3小区2个时隙LMO状态为0800,复位无效: 第3小区的2个时隙的故障原因是在定义基站数据时,MO CF的参数SIG=UNCONC错误,因为所有的TRX的SIG=CONC,导致TG分配的DCP不够用。将MO CF的参数该为SIG=CONC,故障消除。

案例8:某个新建基站传输状态正常,硬件也不存在问题,但基站开不起来 基站数据定义看起来不存在问题,其它检查也做了很多,但基站仍然不能开起来。重点检查基站DIP所连接的SNT的DEVICE数据定义,会发现RBLT的状态不对,为MBL闭掉的状态,试图解闭,可能还会发现未完全定义,再用EXDAI、EXDUI指令进行补充定义,解闭此SNT所带的RBLT,再重新LOAD基站数据后问题解决。对新建基站开不起来的情况,还有BSC侧MO=RXOCF的TEI值与基站OMT软件定义的不一致,导致基站无法同BSC建立联系。此种情况较多的出现在级联基站上,重新定义,使基站的TEI值同BSC侧定义的TEI值一致便可解决问题。

案例9:盲校基站存在瞬断现象,导致信道完好率虽然很接近但达不到100%,同时基站传输设备也出现传输瞬断的现象。

检查基站硬件设备,及传输设备均未发现异常,更换DXU也无法解决问题。在基站上进行故障处理时,发现老式的爱立信开关电源存在模块损坏的情况,但仍能正常工作。经过长时间现场观察,发现交流电压不稳定,忽高忽低,当电压过高时,开关电源的过压保护器便跳脱保护,爱立信开关电源所有的模块处在过压保护的状态,同时传输设备瞬间复位,导致基站瞬断。此时就发现了交流电压过高可能是导致盲校基站瞬断的原因。经过分析,老式的爱立信开关电源对交流电电压波动范围的适应性较差,当电压过高超出其限定值时,开关电源的所有模块出现瞬间的保护而导致其直流输出电压异常,从而导致传输设备因直流供电不能满足要求而瞬间复位,导致爱立信基站瞬间退服。

将老式的爱立信开关电源更换为能适应宽范围交流电压波动的新式开关电源,问题解决,盲校基站再也未出现瞬断的现象。这样的情况也存在于其它部分型号的、对交流电压波动适应性差的老式开关电源上。

案例10:柳行头基站为九期新建全向2载频基站,传输环路状态正常,不存在滑码、误码等传输质量差的情况,基站硬件状态正常,不存在任何告警,但将传输头子接到DXU的G.703-1接口后,BSC侧传输状态显示WO正常状态,但是DXU黑灯,所有的指示灯均不亮。从BSC侧观察是CF无法Load成功,导致此基站开不起来。

首先全面检查基站硬件、传输设备、传输电缆等均没有发现问题,检查柳行头基站数据、小区数据定义也没有发现问题,更换DXU也不能解决问题。

从BSC的ETC传输接口处将柳行头基站的传输同另外一个相同配置且正在运行的松峰基站传输互换,不必改动任何数据,也就是说互相用对方基站的数据来开通。柳行头基站的数据在松峰基站上运行正常,而松峰基站的数据却无法在柳行头基站上运行,这就可以说明柳行头基站的数据不存在错误、掉死等异常情况,而从BSC到柳行头基站的传输通路上存在问题,也可能是基站硬件存在问题(这已排除)。

这样重点怀疑从BSC到柳行头基站的传输通路上存在问题,需要仔细检查,传输维护人员从BSC往基站方向一段一段进行检查,果然发现在北园传输机房处柳行头基站的传输跳线存在问题,120欧姆4根信号传输线中的一根与配线端子处在似接触非接触的状态,重新卡接后,柳行头基站CF软件load成功,基站顺利开通,问题解决。

需要注意的是,基站电路环路时是通的,并不能代表基站电路完全不存在问题,因为还存在类似上述传输信号线接触不好、远端告警等一些特殊的传输故障现象。

案例11:邮政局基站C小区扩容到主、副架共12个载频,但是最多只能开起来10个载频,总有2个载频无论如何也开不起来,并且这2个开不起来的载频位置不固定,状态表现为仅Tx not enable灯亮。基站不存在告警。更换相应的载频无效。仔细观察开不起来的2个载频的故障现象,发现总是某一个CU上的2个载频同时出现开不起来的现象,虽然这个CU也不是固定的。将12个载频中的某两个位于同一个CU上的载频TRX闭掉,其它10个载频均能正常工作。

根据以上现象,考虑到爱立信基站载频相互间发射部分TX和接收部分RX存在“借用现象”,即载频A的RX(可能载频A的TX存在问题)和载频B的TX可以组成一个完整的正常工作的“载频”,而载频A的状态可能为正常运行状态,而载频B的状态为仅Tx not enable灯亮。

进一步从BSC上观察邮政局基站C小区各MO的工作状态,发现最后2个载频的TX-11&&-12工作状态开始时总是NOOP,过一段时间之后状态变为FAIL,但是考虑到最后2个载频的TX发射部分可以借用另外2个载频的TX发射部分,即存在TX的“借用现象”,因此状态仍有可能是正常运行的。导致TX状态为FAIL的原因有发射通路上的CDU存在问题,连接的天线驻波比过大,TX定义的连接小区错误,TRU的发射部分存在故障等原因。经过排查,重点怀疑是最后2个载频,即TRX-11&&-12对应连接的CU存在问题,虽然此CU的运行状态正常,无故障灯指示。更换此CU后,邮政局C小区的12个载频全部开起来,问题解决。这种类型的故障处理,不要被基站各硬件的运行状态显示所迷惑,可能状态是正常的,但是也有可能存在问题,就像上面所讲的CU的故障现象。

案例12:TX无法正常工作,基站告警为CDU output power limits exceeds 九期工程中,在开通西梁王基站(S2,2,2)时,发现虽然基站本测过程中,各MO 状态正常,均无告警,但是在开站时,当TX打开后, B小区CDU的Fault 红灯亮,,小区不能工作。我们通过OMT查寻告警,监测到SO CF 2A:9 :CDU output power limits exceeds。首先我们怀疑天馈系统有问题,用驻波比测试仪测得DTF值1.08,SWR值1.19,均为正常值。随后更换了CDU及TRU后故障仍未排除。最后我们根据TX的原理,输出功率由前向及反向功率的比较得出的(Reference RBS2202),于是检查对应的Pref,Pfwd馈线,发现标签贴反,导致反向功率总大于前向功率,更改后故障消除。

案例13:基站存在SO CF 2A: Timing bus fault告警,TRU无法工作。建工大厦基站(S6,6,6,)在扩为(S8,6,6)时,A小区扩容的副柜TRU状态不对,TRU的Fault在自检后长亮。此时B,C小区已正常。用B,C小区的机柜带A小区的副柜无问题,从而证明A小区的副柜本身无问题。通过OMT查寻告警,监测到SO CF 2A: Timing bus fault。更换C5 BUS线后故障仍未排除,于是判定故障点应在A小区机柜本身之内。根据OMT读出告警,判断故障为机柜内 BUS问题,更换后状态正常,A小区正常工作。

案例14:PSU的排障方法

下面是满配置的PSU与ECU的光纤连接示意图: 在基站出现同PSU相关的告警后,到基站上观察PSU的状态,可能有如下两种情况:第一种是PSU亮红灯或不亮灯,第二种是PSU面板状态正常但可能存在故障。针对第一种情况,首先检查PSU的-48V直流(PSU-48)或230交流(PSU 230)输入是否正常,可能存在输入开关跳脱或熔丝熔断的情况,如果排除上述情况,那么很可能是亮红灯或不亮灯的PSU存在故障,进行更换确认。对更换后的新PSU,应该先加-48V直流或230交流输入(下面的接头),再连接直流输出接头(上面的接头),否则容易导致新加的PSU因为直流电流倒灌的原因而再次损坏。针对第二种情况,使用逐个排除的方法来找出存在故障但面板显示正常的PSU。满配置的PSU数量一共是4个,与ECU通过光纤串联在一起,形成一个环路。首先甩开左边第1个PSU,将剩下的3个PSU同ECU通过光纤串形连接,再观察基站的PSU相关告警是否消除,如果消除,则说明左边第1个PSU存在故障,进行更换;如果故障仍未消除,可将左边第2个PSU单独甩开,将剩下的3个PSU同ECU通过光纤串形连接,需注意的是从左边第1个PSU直接连接到第3个PSU的光纤需要换成长一点的光纤,再观察基站的PSU相关告警是否消除,以此类推,逐个排查PSU。除了上述方法,类似的,还可采用每个PSU单独同ECU串形连接,再观察基站告警是否消除的方法,逐一进行排查。还有一点需要说明的是,基站对PSU的识别并不是完全根据PSU的安装位置,例如最左边的PSU被识别为PSU-0,向右依次为PSU-

1、PSU-

2、PSU-3,实际上并不是这样的。基站识别PSU是通过光纤环路来识别的,不在这个环上的PSU将不被识别,同时针对这个不在环上的PSU基站也不会产生告警。光纤环路连接最左边的PSU被识别为PSU-0,然后依据光纤环路上的连接,向右依次识别为PSU-

1、PSU-2等,例如PSU-0,它的实际安装位置可能是从最左边数第3个PSU。

有一个故障现象是某个PSU的架顶-48V输入接口因短路损坏严重,不能再使用,并且基站存在相应告警。消除告警的办法是在PSU与ECU的光纤环路中,甩开这个损坏严重的架顶-48V输入接口对应的PSU,再从IDB数据中删除多余的PSU(损坏的接口对应的)即可消除告警。

第三篇:故障处理及典型案例分析讲义..

故障处理及典型案例分析讲义

事故处理的一般原则

调度机构值班调度员是其调度管辖范围内电网事故处理的指挥者,对事故处理的正确性和迅速性负责,在处理事故时应做到:

1、尽速限制事故的发展,隔离并消除事故的根源、解除对人身和设备安全的威胁,防止人身伤害、防止电网稳定破坏和瓦解。

2、尽一切可能保持电网设备稳定运行,并优先保证发电厂厂用电、枢纽变站用电及重要用户的供电。

3、迅速恢复解列电网、发电厂的并列运行。

4、尽快对已停电的用户恢复供电,重要用户优先。

5、调整电网的运行方式,使其恢复正常。

在处理事故时,调度系统运行值班人员应服从调度机构值班调度员的指挥,迅速正确地执行调度指令。凡涉及调度机构调度管辖范围设备的操作,均应得到相应调度机构值班调度员的指令或许可。为防止事故扩大和减少事故损失,下列情况的操作可以不待调度指令,由现场人员先按有关规定处理,处理后应立即向值班调度员汇报:

1.将直接威胁人身安全的设备停电。2.解除对运行设备安全的威胁。3.将故障设备停电隔离。

4.发电厂、变电站执行经调度机构认可的保厂用电和站用电措施。

5.电压回路失压时将可能失压误动的有关继电保护和安全自动装置退出运行。6.本规程及现场规程中明确规定可不待调度指令自行处理者。

事故处理的一般规定

1、发生断路器跳闸的单位,运行值班人员须在跳闸后 3 分钟内向调度机构值班调度员汇报事故发生的时间、跳闸设备和天气情况等事故概况,跳闸后 15 分钟内,应将一次设备检查情况、继电保护及安全自动装置动作情况等内容汇报值班调度员。

2、设备出现异常情况时,有关单位运行值班人员应及时、简明扼要地向调度机构值班调度员报告异常发生的时间、现象、设备情况及频率、电压、潮流的变化等。

3、发生事故时,相关厂、站运行值班人员应坚守岗位,加强与值班调度员的联系,随时听候调度指挥,进行处理;其他厂、站应加强监视,避免在事故当时向值班调度员询问事故情况,以免影响事故处理。

4、事故处理期间,调度系统运行值班人员必须严格执行发令、复诵、汇报、录音及记录规定,使用规范的调度用语,指令与汇报内容应简明扼要。

5、为迅速处理事故和防止事故扩大,必要时,上级调度机构值班调度员可越级发布调度指令,但事后应尽快通知有关下级调度机构值班调度员。

6、事故处理期间,除有关领导和专业人员外,其他人员均应迅速离开调度室,必要时值班调度员可以要求其他专业人员到调度室协商解决处理事故中的有关问题。

7、事故处理期间,调度系统运行值班人员有权拒绝回答与处理事故无关的询问。

8、上级调度机构委托下级调度机构调度管理的设备发生事故或异常,一般由受委托调度机构值班调度员负责处理,但发生与委托设备相关的复杂事故(如母线跳闸,全站失压等),由委托方值班调度员视情况决定是否终止委托关系。

9、事故处理告一段落后,值班调度员应按调度信息管理相关规定将事故情况报告主管领导和上级调度机构值班调度员,并填写事故记录。

系统发生事故时,要求事故及有关单位运行人员必须立即向调度汇报的主要内容

系统发生事故时,有关厂、站正确、迅速、简明地汇报事故情况,是正确而迅速地处理事故的首要条件。因此,事故及有关单位应立即向上级值班调度员报告概况,汇报内容包括事故发生的时间及现象、断路器变位情况、继电保护及自动装置动作情况和频率、电压、潮流的变化及设备状况等;待弄清楚情况后,再迅速详细汇报。非事故单位应加强监视,不要急于向调度员询问事故情况,以免影响事故处理。

系统振荡时的一般现象为:

1.发电机、变压器及联络线的电流表、电压表、功率表的指针周期性地剧烈摆动;发电机、调相机和变压器发出有节奏的嗡鸣声。

2.失去同步的发电厂与系统间的联络线的输送功率表、电流表将大幅度往复摆动。

3.振荡中心电压周期性地降至接近于零,且其附近的电压幅值摆动最大,随着离振荡中心距离的增加,电压波动逐渐减小。白炽照明灯随电压波动有不同程度的明暗现象。

4.送端部分系统的频率升高,受端部分系统的频率降低,并略有摆动。

系统振荡产生的主要原因:

1.系统发生严重故障,引起稳定破坏。

2.故障时断路器或继电保护拒动或误动,无自动调节装置或装置失灵。3.电源间非同期合闸未能拖入同步。

4.大容量机组调速器失灵或进相运行,或失磁,大型调相机欠励运行等引起稳定破坏而失去同步。

5.环状网络(或并列双回线)突然开环,使两部分电网联络阻抗增大;或送、受端之间的大型联络变压器突然断开或电网大型机组突然切除,使联络阻抗增大。

6.失去大电源。7.多重故障。

8.弱联系统阻尼不足或其它偶然因素。

系统振荡事故和短路事故的区别

系统振荡事故:

1、电流电压作往复摆动,变动速度较慢;

2、系统任一点的电流电压的相位角随功角的变化而变化;

3、系统三相对称。短路事故:

1、电流电压发生突变,变动大而快;

2、系统电流电压的相位角基本不变;

3、除三相短路外,系统三相不对称。

消除系统振荡的处理原则:

1.当系统发生振荡时,各发电厂及装有调相机的变电站,应不待调度指令立即充分利用发电机、调相机的过载能力增加励磁,提高电压至最大允许值,直至设备过载承受极限为止。

2.频率降低的发电厂、网,应充分利用备用容量(包括起动备用水轮机组)和事故过负荷能力提高频率、电压直至消除振荡或恢复到正常频率为止。必要时地调值班调度员指令配调、发电厂、变电站切除部分用电负荷。

3.频率升高的发电厂、网,迅速降低发电机出力,提高电压,使其频率降低至与受端系统频率接近,但频率不得低于49.0Hz(与南方网联网时,不得低于49.5Hz),直至消除振荡;同时注意保证火电厂厂用电系统的正常运行。

4.当系统发生振荡时,不得任意将发电机或调相机解列,若由于发电机失磁而引起的电网振荡,立即降低失磁机组有功出力,并恢复发电机励磁,直至振荡消除.否则将失磁机组解列。

5.系统自发生振荡时起,按上述办法处理后,经3至4分钟,振荡仍未消除时,地调值班调度员应在规定的解列点解列电网。

系统频率异常及事故的处理

第267条 云南电网与南方电网联网运行,若电网频率偏差超过50±0.2Hz 时,省调值班调度员应及时检查并调整省际联络线功率满足规定。若省际联络线潮流超过稳定极限,省调值班调度员应立即采取措施将联络线潮流降至稳定极限内,必要时可采取解列机组或事故拉闸限电等措施,并向总调值班调度员汇报。

系统频率出现异常时,如为云南电网责任,省调值班调度员在总调统一指挥下,配合尽快恢复系统正常频率,在10 分钟内使省际联络线潮流满足规定。值班调度员可以采取的措施应包括但不限于:

1.省调直调电厂立即调出备用容量或减少发电机出力(包括停 机)。

2.需要时,向总调申请支援,修改送受电计划。3.必要时,可采取限制负荷或事故拉闸限电措施。

第268条 云南电网独立网运行时,系统频率异常及事故处理 的一般原则:

1.当电网频率降至49.8Hz 以下时,主调频电厂和第二调频电厂无须等待调度指令,应立即自行增加出力直至频率恢复到合格范围内或至设备允许过负荷出力。2.当电网频率降至49.8Hz 以下,经电厂增加出力,且备用水电机组均已并网而频率仍不能回升到合格范围时:

1)49.8~49.0Hz:如须限电拉闸,省调值班调度员须在10分钟内将限电负荷数分配给各地调,地调应在接令后10 分钟内完成。如遇执行不力,省调越级执行。2)49.0Hz 以下:各地调和发电厂、变电站的运行值班人员应立即汇报省调值班调度员,各地调立即执行省调值班调度员指令,按“事故拉闸限电序位表”进行拉闸,使频率恢复至合格范围内。

3.当电网频率下降到危及发电厂厂用电安全运行时,发电厂可按调度机构认可的保厂用电规定,执行保厂用电措施。

4.当电网频率超过50.2Hz 以上时,各发电厂必须按省调指令相应将出力降低使系统频率恢复到合格范围以内,必要时省调值班调度员应发布停机、停炉指令或采取水电厂短时弃水运行,在20分钟内使频率恢复正常。

第269条 地区电网孤网运行时,系统频率异常及事故处理参照第268 条执行。第270条 为保证电网频率质量,水电厂应做到: 1.低频自启动机组正常投入。

2.在接到调度机构值班调度员开机指令后备用机组10 分钟以内并网运行。3.当调频厂运行机组出力将达到最大或最小技术出力时,及时向调度机构值班调度员汇报。

第271条 低频减载动作切除的线路,未得调度机构值班调度员同意不得送电(事先规定的保安电力线和装置误动切除的线路除外)。

通讯中断的事故处理 第311条 厂、站及调度机构间通讯联系中断时,运行值班人员应尽量设法通过其他厂、站或调度机构转接电话,同时通知有关人员尽快处理。

第312条 电网发生事故时,凡能与调度机构通讯畅通的厂、站及其他调度机构,有责任向失去联系的单位转达调度指令和联系事项。

第313条 厂、站与调度机构通讯联系中断时,应按下列原则处理: 1.发电厂应维持通讯联系中断前运行状况。

2.与调度机构失去联系的单位,应尽可能保持电气接线方式、运行方式不变,有关规定允许自行处理的异常或事故除外。

3.一切已批准但未执行的检修计划及操作应暂停执行。4.调度指令已下发,正在进行的操作应暂停,待通讯联系恢复后再确认是否继续操作。

5.上级调度机构值班调度员可视电网运行情况将其调管设备临时委托相关下级调度机构进行调度管理。第314条 调度通讯中断期间,进行过异常或事故处理的单位,在通讯联系恢复后应尽快报告值班调度员。

设备缺陷的定义

是指使用中的设备、设施发生异常或存在的隐患。这些异常或隐患将影响:

1、人身、电网和设备安全

2、电网和设备的可靠、经济运行

3、设备出力或寿命

4、电能质量

设备缺陷按照其严重程度分为紧急、重大、一般。

1、紧急缺陷:设备或设施发生直接威胁安全运行并需立即处理,随时可能造成设备损坏、人身伤亡、大面积停电、火灾等事故者。

2、重大缺陷:对人身、电网和设备有严重威胁,尚能坚持运行,不及时处理有可能造成事故者。

3、一般缺陷:短时内不会发展为重大缺陷、紧急缺陷,对运行虽有影响但尚能坚持运行者。

设备缺陷的处理时限:

1、紧急缺陷

消除时间或立即采取措施以限制其继续发展的时间不超过24小时。

2、重大缺陷

消除时间原则上不超过7天。

但由于电网运行方式或其他特殊情况的限制,无法及时处理的缺陷,经本单位技术主管领导同意及各级调度部门批准后,可适当延长处理时限。在此期间,必须安排缺陷的跟踪、试验、检查或采取措施,以免发展成为紧急缺陷。

3、一般缺陷

属下列情况之一的一般缺陷,应列入下一个季度的生产计划予以消除: 1)不需要停电处理; 2)可带电作业处理;

3)经调整运行方式,使缺陷设备停电但不影响正常供电。

必须停电处理的一般缺陷,应在发现缺陷后的第一次停电时消除。

存在问题及风险的危险点分析

设备管辖范围不清晰,导致设备管理失控

第一大类:对设备管辖范围不清晰,导致设备管理失控。此类问题及风险是防范擅自改变调度管辖设备状态的关键,一旦运行人员对连最基本的管辖范围都不清楚,发生擅自改变调度管辖设备的违反调度纪律的事件是必然的。

在这几年出现的不安全事件、违反调度纪律事件中,“设备管辖范围不清晰”原因居首位。

管辖设备、许可设备这几个概念在受令资格培训的时候讲过,大家熟悉下。第一大类第一点刚才已作为示例进行了介绍,现在讲解下第二点:对各级调度管辖设备的交界面、隔离点不清楚。讲述之前先熟悉下这几个概念。举两个实例来讲,一个是电厂,一个是变电站。

未区分调度管辖设备和许可设备,设备的申请、汇报、操作方式错误

上面了设备管辖划分的一些基本原则,清楚了管辖设备、许可设备的定义、关系和区别。

既然方式已经划分了管辖设备和许可设备,那么其本质不一样,在进行调度业务联系时候是有区别的。

还是举2个例子。对于变电站的情况相对简单,存在不同调度管辖和许可设备的分界点是主变。对于地调许可设备来说,比如主变需要停电,变电站现场运行人员向配调申请操作(配调下令操作),配调(申请)得到地调许可后,配调就可以下令变电站运行人员进行操作(地调不下令)。

如果是地调管辖设备停电操作,比如说110kV线路断路器操作,由于线路及断路器间隔是由地调管辖,那么变电站运行人员向地调申请,由地调调度员直接下令。

对于现场运行人员而言,没有你管辖的设备,对于地调管辖设备和许可都是需要调度员下令,对于地调管辖设备也是需要下令。只是接受那级调度员的指令进行操作的问题。所以申请、汇报和操作时注意设备是那级调度管辖。

厂站自管设备操作影响到调度机构管辖设备正常运行

上面讲解的是调度管辖设备和许可设备的问题,这里讲的是调度管辖设备和厂站自行管辖设备的问题。

根据厂站管辖设备的定义,运行人员认为厂站管辖的设备的指挥权限归相应厂站,可以不需要调度的许可进行操作。理论上是如此,但是有一个最重要的前提条件是:下级调度管辖或者厂站管辖设备状态变化不能影响上级调度管辖设备的状态。

举个例子:赛珠电厂不安全事件。2012年3月31日起,赛珠电站安排全停检修工作,厂用电由电站外来电源供电。4月4日铅厂电站主动与赛珠电站联系,告铅厂电站计划于4月5日安排全停检修工作,届时将停止对赛珠电站厂用电供电,赛珠电站并未重视此信息,也未考虑本厂厂用电安排。

4月5日上午,赛珠电站全停检修工作结束,省调调度员下令将厂内设备转冷备用,准备复电。此时铅厂电站按计划开始停电操作,故赛珠电站厂用电消失。赛珠电站值长李××在事前、事后均未向省调汇报的情况下,即自行安排由普渡河六级电站外来10kV电源经10kVⅡ母转供10kV#2厂用变(带电路径如附图红线所示),因220kV#2主变10kV侧与10kVⅡ母为死连接,在厂用电切换时,用10kV厂用电对220kV#2主变进行了反充电,致使#2主变带电运行。

运行人员认为自行管辖的母线可以不向地调申请执行操作,但是忽略了一个前提是操作改变了省调调管设备状态为考虑清楚10.kV母线与主变的接线方式。所以也就是上一个风险点中说的要厂站人员一定要区分好不同设备的交界面。可见成果:编写《厂站自管设备缺陷影响调度管辖或许可设备的清单》。

操作模式不明确,未区分是直接操作还是委托操作

这一个风险点是检查对象是调度员。直接操作: 值班调度员直接向厂站值班员发布调度指令的操作方式。委托操作:调度机构将其调管设备的操作权委托其它调度机构的操作方式。

关键点:

1、经相关方值班调度员协商后,可采取委托操作方式将其中一方调管设备委托另一方值班调度员操作。一般情况下上级调度对下级调度存在委托关系。

2、委托操作是一次还是二次,操作对象的目标状态是什么,委托条件比如是操作是在这次线路停电中还是停复电中。注意事项操作过程中的异常由谁来处理,出现异常要及时汇报。

3、委托操作完成后,委托方值班调度员应及时通知受委托方值班调度员及相关运行单位值班人员委托关系结束。

4、如有委托操作,现场和调度机构均需要做好记录,而且是交接班重点。

委托操作至存在与调度机构之间,但是委托方调度必须要通知被委托的厂站。厂站运行人员同样需要明确委托操作范围、目标状态、条件和注意事项。可见成果:调度委托操作流程。

第二大类:调度术语及调度业务联系不规范

检查调度运行操作及业务联系时互报姓名、设备编号读法、语言规范性、调度术语运用、设备双重命名等环节。

调度业务联系时不使用规范术语

风险点是:调度业务联系时不使用规范术语。

调度用语是电网调度工作的重要载体和基本工具,调度指令的下达、接受、执行以及其它调度信息的传递均通过调度、运行人员使用调度用语来完成。调度用语进行必要的规范化,避免因调度用语的随意性、个人表达习惯以及地域语言差异导致调度信息传递的失真、错误,严重的情况会导致电网事故,是电网调度工作发展的客观要求。

举例子:落实情况的调度业务联系。落实是调度各项工作的前期准备,旨在为其他调度业务的开展提供准确的信息支持,后续操作的基础。看地调与厂站人员如何进行落实业务的对话。

措施:调度业务联系时不使用规范术语,产生误解。各单位参照《云南电力调度控制中心调度用语规范化细则》,依照用语准确、规范、简洁的要求及时编写本单位的用语规范化示例,示例中需包含本单位业务联系相关的申请、许可、通知、汇报、配合、委托、落实等内容。

不熟悉调度术语,业务联系时答非所问

第二大类的第3个风险点是:不熟悉调度术语,业务联系时答非所问。调度术语包括的内容非常多,具体参见《调规》附录1。

由于本次培训重点是范围设备状态错误改变或擅自改变的问题,这里以一次设备状态的定义为例。一次设备状态分为4个:xxxxxx。一旦现场运行人员不熟悉设备一次状态定义就会答非所问,比如说我问现场110kV水金Ⅰ回线131断路器处什么状态,现场答复131断路器处断开状态。那请问你按照你的说法110kV水金Ⅱ回线132断路器也是断开状态,现在110kV水金Ⅰ回线、Ⅱ回线是一样的状态吗?调度员也不能从现场的信息中把握现场断路器两侧隔离开关的位置吗?

根据规范的调度术语根本不存在此种断路器断开状态,除非调度员明确的问断路器本体在什么位置,这才能答复为断开位置。如果问什么状态,那么只能回复冷备用或者热备用。另外还要说明的是,一次设备状态的规定是对二次有要求的,比如断路器的热备用状态是指其本身在断开位置、各侧隔离开关在合闸位置,而且设备继电保护及自动装置满足带电要求。

混淆调度业务联系与调度下令

第二大类的第7个风险点:混淆调度业务联系与调度下令。

检查的对象是:运行人员和调度员。说明这个双方都存在问题或风险,双方都注意。

区分调度命令和调度业务联系,目的避免一般调度业务联系被现场误认为是调度下令,防止沟通不到位或者现场误解调度意思,发生误操作。我们还是来举个例子,看看地调调度员如何落实和下令。

左侧为调度业务联系的落实工作,现场工作完工后,地调调度员进行落实工作完工,然后让现场做好操作准备,并没有下令。(然后听下录音)右侧是调度下令,下令时须明确发令时间,作为发令开始标志,表述方式为:“XX点XX分,现在下令给你:XXXX”或者“我下令给你操作:XXXXXX”(然后听下录音)

从上面两个例子可以看出,业务联系时目的是互通信息,基本上是一个单向流程。而下令是要操作设备状态的变化,业务联系是为了下令做准备。而调度下令:带有有下令标识,关键词(现在下令给你操作,我下令给你)。一旦有下令操作就要完成操作的“接令-记录-复诵-回令”整个流程,他是一个闭环流程。

可见成果:本单位的接受调度指令管理流程。

调度运行操作管理制度执行不到位

分为3个部分,操作准备,操作票规范、操作执行。检查运行人员是否熟练掌握电气操作术语,操作前是否按照要求规范填写电气操作票,操作中是否能够将调度指令或操作票正确执行到位,是否严格执行调度指令记录复诵回令制度。核心就是能够将调度指令或操作票正确执行到位。

误将操作准备、调度预令当调度指令进行操作。

举电网中实际发生的事件。大理供电局xxxxxx 介绍:大理供电局按计划进行荷花变新荷线线路及162断路器间隔定检预试等工作。18时46分,大理地调开始指挥进行新荷线复电操作。19时12分,荷花变新荷线162断路器由检修转为热备用。(按照正常操作流程,下一步操作是将荷花变新荷线162合环,再将古城变古荷线141断路器解环,即恢复原方式运行。)

看看调度员和运行人员的对话。因为运行人员误将操作准备当成调度指令进行操作,最后导致110kV荷花变全站失压。

(一)直接原因

操作人员苏某某误将操作预令(工作联系)当作调度指令执行。

(二)间接原因

本应起到把关作用的流程未得到执行。在调度预令被操作人员当作正式指令执行的情况下,操作人、监护人操作前未对照操作任务、未核对调度操作指令记录

防范措施:从两个角度,一方面是调度员,调度员在设备操作权,应预先向有关单位说明操作目的,明确是操作指令还是预令。第二是,如果要下令一定要带有发令标识。一方面是现场运行人员,现场人员对于拿不准的情况,不能确定的情况,现场多与调度沟通。

也印证的前述的为什么要标志用语规范化示例的原因了。

上个部分讲了业务联系与调度下令的关系,这里重点讲下预令票。调度操作指令票

在前面已经讲解了调度业务联系与调度下令之间的区别和关系,这里主要讲解调度预令票和调度指令票。

上图是地调的预令票,这个预令票在运行指挥平台中每次操作之前是可以收到的,目的是让现场做好操作准备,按照地调预令的步骤准备好现场的电气操作票。预令票中有个很显著的标识:“预令票不具备XXXXX”。现场看到预令票后没有疑问,准备好操作准备就可以向地调申请开始操作了。

下面的这张票是调度操作指令票,需要注意的是,现场运行人员不能将指令票视为调度下令,不能根据已执行票上的时间,未得到调度员下令就进行操作,操作的唯一前提是:地调下令。

指令票只是给现场人员查看操作时间用,在指令票的最后一行已经告知。

未按照接到的调度指令按步骤操作执行,多操作或者少操作

操作票拟好,审核过后,就进入了执行流程,操作执行阶段是将调度操作票和电气操作票实际运用阶段,体现操作执行力是否到位,操作是否正确的问题,是操作最重要阶段。

来看第2个风险点:未按照调度指令步骤进行操作

误解调度指令术语和电气设备状态、操作术语,不能正确执行调度指令

继续看下一个风险点:误解XXXX。

在受令资格培训中电气设备状态、电气术语都会详细讲解。特别是断路器的解环、同期合环、同期并列这些关键术语。地调下达的不同的操作术语,对设备操作要求是不同的,现场对应准备的电气操作票和操作步骤也是不同的。操作术语决定了现场的操作方式。比如同期合环和合环,调度下令“同期合环”那么要求现场必须使用同期装置进行操作,如果使用“合环”可以不不经同期装置。而且我这里仅仅列出了常用的电气操作术语,在《变电站电气操作实施细则》、《调规》中还有更多的调度术语的定义,如果对这些基本术语都不理解,那就要给自己多补补课了。

举例:XX供电局发生的实际案例

2010年04月,110kVXX线因计划工作需要停处检修。当时地调下令一侧变电站,操作任务为:将110kXX线171断路器解环操作。接令后,值班长将指令理解为:将110kVXX线171断路器由运行转冷备用,并将110kV171断路器至冷备用状态。

从这个事件暴露出现场对于基本的调度操作术语不理解,根据自身理解,未按地调要求进行操作,其中有疑问也没有和地调沟通,不能正确执行调度指令。

如果对调度指令和设备状态都拿不准,就容易发生误操作时间,错误改变设备的状态。防范措施:

1、首先要熟悉调度术语和操作术语。

2、这里再强调下“同期”,如果在集控站模式下,断路器的操作大部分都是远方操作,集控站是否存在某些断路器没有同期装置,导致非同期合环的风险呢,那么现场运行人员和调度员出就应该梳理出这些风险点来,形成文档备案。特别是事故情况下,要形成意识,不能为了尽快恢复电网而直接远方操作,忽视同期的问题。

第三大类风险都是在讲的调度执行力

调度执行力不仅是一个结果,是一个过程。

调度指令的执行包括调度指令发布前调度和现场的沟通、调度指令的发布与接令、调度指令的理解与执行、执行结果的回复与沟通等一系列的过程。

在调度指令执行过程中,需要遵守一定的规则:双方必须严格执行报名、复诵、记录、录音和回令制度,使用标准调度术语,设备应冠以电压等级和双重命名(设备名称和编号)。

发布调度指令前,调度与就调度指令发布前的准备与沟通。

记录环节不认真执行,后续操作可能是错误的。记录虽然占用整个操作时间最少,但是对于整个流程来说是比较关键的。(调度指令记录格式)

复诵:有时候调度下令时,心口不一,下令出现纰漏,需要现场人员和调度员相互监督的过程,调度员下错令现场提出疑问;现场复诵错了,调度可以对现场进行纠正。整个是操作前的最后一道把关。

复诵正确之后,现场按照厂站的电气操作票进行操作,操作过程、操作安全、操作结构由值班运行运行人员负责了。操作需要考虑安全性和时效性,在保证操作安全、操作质量的前提下缩短操作时间。

回令:便于调度掌握现场操作进度,保证设备处于在控的状态,避免出现设备状态的不一致。(格基河违调事件,导致设备状态失控)

措施:在电气操作票中增加回令的提示,对需要回令的环节做好标识、提醒。可见成果1.规范的现场接令记录本2.电气操作票中是否还有回令环节3电气操作执行流程图

第四类问题:设备紧急缺陷和故障处理时与调度联系不规范,此类是防止出现擅自改调度管辖设备状态的另一个一类大风险,一旦不清楚缺陷的后果就容易发生。

来看第一个风险点:设备出现缺陷不汇报,擅自进行处理。

调规的规定是事故,《检修管理标准》中的规定是缺陷。两个制度都要出现缺陷向调度汇报。

运行人员的职责的一大职责就是监视设备的正常运行,但设备出现了缺陷或者故障时,设备如果不能正常运行,就需要将故障的设备隔离,防止对其他运行设备造成影响。有些是特例。事故扩大和减少事故损失,下列情况的操作可以不待调度指令,由现场人员先按有关规定处理。比如:将直接威胁人身安全的设备停电,解除对运行设备安全的威胁。但是处理后应立即向值班调度员汇报

江边电厂的示例。

衡量缺陷是否要汇报的关键就是:出现的缺陷会不会导致管辖设备或许可设备状态、参数、性能的变化。

江边电厂这个例子是缺陷导致机组失备,不处理机组就不能正常并网,需要向调度汇报的。

措施:结合设备调管范围对厂站调管和许可设备的缺陷进行清理,明确出现缺陷需要汇报的设备。

可见成果:XXXX

故障汇报的两个方面。

调规的265条的规定:XXXX 对于调度员来说,事故处理是争分夺秒的事情,特别是遇到大的电网故障,电网故障后瞬息万变,得不到相关的故障后的一二次信息就无从下手。

这就要求:运行人员对本厂站设备典型故障后保护和安自装置动作现象有相关的预案,而且模拟演练。出现实际的跳闸那么速度就能保证。

另一个就是信息的准确性,事故后信息量非常大。此时调度员及时获得电网信息对于后续故障处理极为关键。从目前实际的情况来看,有些厂站运行人员一股脑的将所有看到的信息汇报给地调,从来不对保护动作信息进行加工,完全变成了监控机的传声器。电网中的设备千差万别,调度员不能熟悉现场的监控上的信息,所以运行人员需对数据进行加工后汇总上报,调度员才能把握关键点。

地调的运行平台上实现了模块化的上报方式,一方面能减少现场人员的工作量,明确哪些信息是必须上报的,另一方面能够让调度获得关键的信息。

要求:厂站人员明确故障后汇报要点,准确、简要向相关调度汇报,格式化汇报的信息(参照省调指挥平台故障记录模块功能)。

缺陷、故障记录的问题

一个是现场的故障记录,一个是调度的记录。

是否在处理后填写了记录,是否有快速方式可查,在后续是否有归档? 后续追溯、学习、总结经验的重要资料。

第五大类风险是:人员业务技能低,模拟演练、制度学习不足。

技能低的几个方面:心理素质不过硬,和调度业务联系是不要存在惧怕心理,调度员不会刻意为难,大家双方的目的都是为了保障安全。不熟悉二次设备,一次设备接线接单较为好掌握,二次设备接线复杂,需要加强学习,把常见的操作纳入规程。

规程制度学习不足的几个方面:

现在电厂只顾生产,不顾制度建设、制度管理,认为人员参加完省调培训就可以上岗做事,受令资格培训所讲内容非常有限,要知其所以然必须通过规程制度的学习。上岗之后运行人员也不进行规程制度的学习。

另一个方面是没有考虑到规程、制度的制定和修编也是随着电网的变化而变化的,导致对规程学习不够。

接地开关的管理是调度时常强调和重视的一个问题,现场人员不熟悉有关接地开关管理规定就会反复与调度询问,要求调度下令,就是没有分清楚那些接地开关是省调操作管理,那些是厂、站值班人员操作管理,那些是检修人员操作管理。

希望大家从《云南电网调度管理规程》中有关接地开关管理规定的释义文件中找找答案,形成自己《厂站接地开关(接地线)管理示意图》。

模拟演练、预案的不足:

平时的演练是为真正出现事故时做准备,能够游刃有余,处变不惊。

第四篇:故障的统计分析与典型的故障率分布曲线

题目:故障的统计分析与典型的故障率分布曲线

学号:120606325

姓名:王逢雨

[摘 要] 机械故障诊断是一门起源于 20 世纪 60 年代的新兴学科,其突出特点是理论研究与工程实际应用紧密结合。该学科经过半个世纪的发展逐渐成熟,在信号获取与传感技术、故障机理与征兆联系、信号处理与诊断方法、智能决策与诊断系统等方面形成较完善的理论体系,涌现了如全息谱诊断、小波有限元裂纹动态定量诊断等原创性理论成果,在机械、冶金、石化、能源和航空等行业取得了大量卓有成效的工程应用。统计分析工作是机械故障诊断中的核心环节,统计分析工作的质量和水平将会对机械设备的检修工作产生重要影响,关系到机械设备的安全与可靠运行。本文在对机械故障的特性等问题进行阐述的基础上,重点就机械故障统计分析工作中数据的收集和统计分析的方法进行重点探讨,希望对提高机械故障的管理水平能够有所帮助。

[关键词] 机械故障;统计分析;数据收集;方法

一、统计分析工作中机械故障的特性 机械设备在使用过程中,由于会受荷载应力等环境因素的影响,随着机械设备部件之间磨损的不断增加,结构参数与随之变化,进而会对机械功能的输出参数产生影响,甚至使其偏离正常值,直至产生机械故障。概括说来,主要有以下几方面的特性。

(一)耗损性

在机械设备运行过程中,不断发生着质量与能量的变化,导致设备的磨损、疲劳、腐蚀与老化等,这是不可避免的,随着机械设备使用时间延长,故障发生的概率也在不断增加,即使可以采取一定的维修措施,但是由于机械故障的耗损性,不可能恢复到原先的状态,在经过统计分析工作后,必要时需要对设备进行报废。

(二)渐损性

机械故障的发生大多是长期运行的老化或疲劳引起的,所以具有渐损性,而且与设备的运行时间有一定的关系,所以做好机械设备的统计分析工作是很有必要的,当掌握了设备故障的渐损规律后,可以通过事前监控或测试等手段,有效预防机械故障的发生。

(三)随机性

虽然有的机械故障具有一定的规律性,但这并不是绝对的,因为机械故障的发生还会受到使用环境、制造技术、设备材料、操作方式等多种因素的影响,因此故障的发生会具有一定的分散性和随机性,这在一定程度上增肌了机械设备预防维修与统计分析工作的难度。

(四)多样性

随着科学技术的发展与应用,机械设备的工作原理日趋复杂,零部件的数量在不多增多,这就使得机械故障机理发生的形式日趋多样化。机械故障的发生不仅存在多种形式,而且分布模型及在各级的影响程度也不同,在统计分析工作中需要引起足够的重视。

二、机械故障管理中统计数据的收集

在对机械故障的统计分析工作中,数据的收集是最基础的环节,因此必须保障数据收集的及时性、准确性和规范性,这样才能为接下来的数据分析工作奠定良好的基础。

(一)做好日常检点数据的收集 机械设备的操作人员和统计人员要重视对日常点检记录数据的收集,只有这样才能保证统计数据收集的全面性。对此,相关人员要严格按照点检表对设备进行检查和记录,对于发生的问题或故障要在第一时间记录在《 设备故障报修单 》 上,并及时上交机械故障管理部门。

(二)安装调阶段相关数据的统计与处理

对于机械设备在安装调试阶段发生的故障,统计人员要引起高度重视,并详细记录在案,以备后期的参考与分析,对于搜集到的同行业相同设备的故障数据,在确保其真实性的基础上,也可以将其纳入到统计范围之内。

(三)确保采集与整理的规范性

为了保证故障数据分析的准确性和规范性,统计人员及设备检修人员在日常工作中必须详细、规范地填写 《 设备故障分析报告》、《 设备故障处理单》 等资料,对机械故障发生的部位、原因、时间、表现以及后期的处理与改进等详细记录在案。

三、机械故障管理中统计数据的分析方法

(一)焦点分析法

焦点分析法是一种最直接、最简单的方式,是以机械故障问题点为中心的分析方法,其分析结果简单明了,实用性比较强。首先,我国要根据需要把一个圆分成等分成若干块,每一块分别代表着生产线机械设备有标准化问题点的一部分,分别记录着该部分发生故障的次数,然后用有量线段进行表示,最后将这些点进行连接,所形成的多边形就是带有评价性质的焦点分析图。

(二)直方图对比分析法

该方法要求预先对计划指标数值进行设定,然后按照机械故障发生的实际录入实绩值,然后将实绩值与计划值进行对比,看其差距之间的大小,并参照历史实绩值进行分析,这可以反映出机械故障发生时计划值与实绩值的科学性,以及设备故障发生概率的大小,便于及时采取相应的检修措施。

(三)排列图分析法

排列图分析法也被称为帕洛特图法、主次因素分析法,它是找出造成设备故障并进行分析的一种简便有效的图表分析方法。排列图是根据“关键的少数和次要的多数”的原理而制作的。即对影响机械设备故障的因素按照影响程度的大小用直方图进行排列,找出最主要的因素,其结构包括一个横坐标和两个纵坐标,若干个直方形和一条折线构成,通常将影响因素分为三类: A类因素(占比 80%以下)、B 类因素(占比 80%~90%)、C 类因素(占比 90%以上)。其中,A类因素为主要因素,也是设备故障管理中需要重点解决的因素。

四、典型的故障率分布曲线

现代的设备管理中,典型的故障率分布曲线——浴盆曲线仍然占有很重要的地位。很多故障的分析都是基于浴盆曲线发展的。

无故障工作期就是在浴盆曲线上发展而来的。与传统可靠性指标中假设产品的随机失效不可避免不 同,无 故 障 工 作 期(FFOP)内 产 品 不 会 发 生 任 何 故 障(即零故障)。首先阐述了 FFOP的概念内涵、与平均故障间隔时间(MTBF)的区别和联系,提出了一种 FFOP 的预计方法。该方法假设产品的故障率函数具有浴盆曲线特征、故障发生过程为泊松过程、产品具有固定的免维修工作期。然后以一种改进的 Weibull分布函数描述具有浴盆曲线函数特征产品的故障率。基于泊松过程理论,给出了 FFOP 的预计算法、流程和仿真验证手段。最后以某型无人机舵机为 案 例 对 研 究 方 法 的 可 用 性 进 行 了 验 证。结 果 表 明: FFOP 与 免 维 修 工作期(MFOP)、置信度水平密切相关,及时维修的产品能够保证较长的 FFOP。在工程应用时,FFOP 的确定应综合考虑运行维护费用进行权衡。

无故障工作期(FailureFreeOp eratin gPeri -od,FFOP)定义为产品不会 发 生 任 何 故 障(即 零故障)的时间。对于符合设计要求、质量合格的产品,往往都要求其具有一定的无故障工作期,尤其是具有高 可 靠 性/安 全 性 需 求 的 系 统,如 武 器 装备、核能系统、载人航空航天器、高速列 车 等。作为耐久性度量指标,FFOP 的长短与维修费用、保障费用紧密 相 关。准 确 预 计 FFOP,结 合 合 理 的维修策略,能够实现对产品的充分使用,降低运行成本。

FFOP概念最早在美国空军颁布的军用规范MIL-A-87244《 航空电子设备完整性大纲要求》 中提出[ 1],其中 FFOP 作 为 耐 久 性 参 数,对 传 统 的可靠性参数进行了补充,并指导设计和生产。后来美国又颁布了一系列规范和指南,都对装备的FFOP指标有了明确的要求[ 2 -3]。在1996年英国国防部(Ministr yofDefence,MOD)提出免维修工作期(MaintenanceFreeOp -eratin gPeriod,MFOP)的 概 念 以 后[,FFOP 就通 常 与 MFOP 结 合 度 量 产 品 的 耐 久 性。MFOP概 念 比 FFOP 严 格,在 MFOP 内,产 品不 允 许 出 现 任 何 影 响 性 能 和 任 务 的 失 效 事 件;而 FFOP 内 不 允 许 故 障 但 允 许 维 修 活 动,FFOP是 一 系 列 免 维 修 工 作 期 的 集 合。文 分 析 了 英 国 国 防 部 为 新 一 代 战 机 提 出 的MFOP概 念,与平均 故 障 间 隔 时 间(MeanTimeBetweenFailures,MTBF)进 行 了 对 比,并分 别研 究 了 基 于 任 务 可 靠 度 和 更 新 理 论 的 MFOP预 计 方 法,于 英 国 的 超 高 可 靠 飞 行 器(UltraReliableAir -craft,URA)和 未 来 攻 击 飞 行 器(FutureOffen -siveAircraft,FOA)项 目。当前国内外的研究大多集中在对无故障工作期/免维修工作期(F /M-FOP)概念的阐述以及适场合 分 析 等 方 面[ 7 -11],证 明 了 基 于 F /M-FOP维修策略的有效性。文献[ 12] ~文献[ 14] 假设产品故障为有限时间区间内的离散事件,基于统计方法估计了产品存在某固定长度 MFOP 的概率。文献[ 15] 以典型机电产品为案例,研究故障事件为齐次泊松过程情况下 FFOP 的评估方法,并对结果进行了合理性分析。文献[ 16] 和文献[ 17] 基于 Petri网络,使 用 仿 真 方 法 分 析 了 固 定 MFOP系统的可靠 度。以 上 研 究 集 中 在 MFOP 预 计 方法方面,没有考虑维修策略对 FFOP 的影响。然而,为 促 进 基 于 FFOP 维 修 策 略 的 应 用,需 要 进一步研究 FFOP的预计方法与模型。在很多 情 况 下,产 品(系 统)的 F /M-FOP 大多由运行 过 程 中 随 机 故 障 事 件 之 间 的 相 对 位 置(时间、空间距离)决定,相对位置的远近直接影响产品的 FFOP。以 图 1 所 示 的 时 间(空 间)区 间[ 0,L] 为例,假设系统是一个客户服务系统,为一个客户服务的免维修周期为s。如果两个或者更多的客户集中在s内出现,如图1(a)所示,则系统会出现过载(故障),此系统的 FFOP 为s的 概 率就是P{ n[ t,t+s] ≤1},n[ t,t+s] 为[ t,t+s] 区间内的客户数量。类似的方法也可以用于分析交通处理系统,如图1(b)所 示,如 果 一 个 交 通 意 外 的恢复 周 期 为s,在 这 段 周 期 内 出 现 的 其 他 意 外 则会导致拥堵(故障); 如果把事件区间换作一段钢结构(见图1(c))或者电缆(见图1(d)),也存在一个极 限 区 间s,在 这 个 区 间 内 应 力 集 中 点 或 缺 陷次数要低于某一确定数量,否则会出现故障。以上案例中,客户出现与事故发生时刻

泊松过程是描述随机事件发生的基本数学模型之一,实际生活或自然世界中的随机事件,大多可以用泊 松 过 程 描 述[ 18]。对 于 寿 命 服 从 指 数 分布的产品,故障率是一个常数,寿命周期内随机故障事件可以用齐次泊松过程描述。然而,实践证明,大多数产品的故障率随时间变化的曲线是浴盆曲线[ 19],故障 率 是 时 变 函 数,故 障 事 件 需 要 用非齐次泊松过程描述。本文首先阐述 FFOP 与 MFOP 之 间 的 区 别与联系,然 后 提 出 一 种 FFOP 预 计 方 法,预 计 故障率函数为浴盆曲线的产品的无故障工作期。该方法作了如下假设: ① 故障事件服从泊松过程;② 故障率函数为浴盆曲线; ③ FFOP内允许固定周期的计划维修,产 品 修 复 如 新; ④ 一 个 MFOP内不允许有任何影响产品正常运行的故障事件,一个维修恢复期(MaintenanceRecover yPeriod,MRP)只能处理一次随机故障。在以上假设的基础上,给出了 FFOP 的预计方法、模型和预计步骤,并通过某型无人机舵机对所提方法进行了应用验证。1 FFOP概念与内涵

在 MIL-A-87244中,FFOP 被定义为故障概率达到2% 的 时 间。图 2 描 述 了 概 率 密 度 函 数(Probabilit y Densit y Function,PDF)、FFOP这3者之间的区别与联系。

根据 FFOP和 MTBF的定义,有

∫ 0 FFOPf(t)d t=2%(1)MTBF=∫ 0 ∞R(t)d t=∫ 0∫ ∞ t ∞f(τ)d τ d t(2)

式中: f(t)为故障密度函数; R(t)为可靠度函数。对于大多数产品来说,由于不可避免 的 随 机失效,图2所示时间t 0 通常为0,这样就导致产品的 FFOP很短。然而对于具有高可靠性/安全性需求的系统,又 需 要 具 有 一 定 长 度 的 FFOP。这个要求既可以通过设计手段降低产品的故障率实现,对 于 可 修 复 产 品,又 可 以 通 过 固 定 周 期 的 维护,使产品始终工作在比较“ 新” 的状态,进而降低随机故障事件发生的概率来实现。对于可修复的产品,FFOP 与 MFOP 密切相关[ 10]。如果维护频繁,并且能够保证修复如新的话,FFOP会比维护不力的设备要长。建立 FFOP 预 计 模 型 是 预 计 FFOP 的 关 键步骤。若要使产品在整个工作周期[ 0,L] 内无故障运行,则要求在每次故障发生前进行维护并恢复到完好状态。由于一个维修恢复期只能处理一次随机故障,所以要求维修次数要和随机故障的次数一致,并且在故障事件实际发生之前就已经得到维修并完全修复,即第i次和第i+1次维修之间的间隔时间s i,i+1小于第i次 和第i+1次实际故障间隔时间S i,i+1。若在整个寿命周期[ 0,L]内出现k 次故障,设定免维修工作期 MFOP i,i+1=s i,i+1,那么 存 在 长 度 为 L 的 FFOP 的 概 率 PFFOP(故障发生前都能被完全修复以避免故障实际发生的概率)为[ 15]PFFOP =P(s 0,1 ≤S 0,1 ∩s 1,2 ≤S 1,2 ∩ „ ∩·s k-1,k ≤S k-1,式中: k 为故障次数。

2 FFOP的预计模型

研究对象 为 故 障 率 函 数 类 似 浴 盆 曲 线 的 产品,并且故障事件具有泊松过程特性。由于寿命分布不是指数分布,故障率随时间变化,寿命周期内随机故障事件必须用非齐次泊松过程描述。2.1 泊松过程

泊松过程具有以下特性:

1)令 N(t)为(0,t] 中随机事件出现的次数,则有 P(N(t)=m)=()λ t mm!e - λ t(4)式中: λ为故障率/故障强度函数。

2)随机事件之间的间隔时间 T 互相独立并且服从指数分布特征,即 P(T >t)=e - λ t(5)

假设随机事件是故障事件,在t时刻,随机故障事件导致的系统不可靠度为 F(t)=P(T <t)=1-e - λ t(6)2.2 浴盆曲线的故障率函数

已有的研究成果表明,基于浴盆曲线 的 故 障密度函数有如下形式[ 20]: f(t)=γ β(t / α)β -1ex p((t / α)β + γα(1-ex p((t / α)β)))(7)对应的可靠度函数为

R(t)=ex p(γα(1-ex p((t / α)β)))(8)故障率函数为

λ(t)=γ β(t / α)β -1ex p((t / α)β)(9)式中: α、β、γ 均 为 分 布 函 数 中 的 参 数。绘 制 故 障率函数曲线,如图3所示

从图3可以看出,产品的故障率明显 呈 浴 盆曲线特性,可以描述分布特征为浴盆曲线的产品故障率。2.3 FFOP的预计步骤

研究具有浴盆曲线故障率函数的产 品,与 指数分布不同,其故障率为非常值,且导致故障发生为非齐次泊松过程,对比文献[ 15] 中PFFOP的计算公式,可以得到

式中: r为允许的维护次数。在进行 FFOP 预计之前,需要根据式(7)~式(9)确定产品的λ(t)。FFOP的预计步骤如图4

首 先,设 置 FFOP 为 L 的 置 信 度 PFFOP * 和设置初始维护次数r=1。

按照图4所示的流程,对维护次数递增,得到满足式(11)的最大维护次数r。

[ ] rs,(r+1)s(12)

对于 大 多 数 工 程 应 用,式(12)所 描 述 的FFOP区间已经足够。更精确的预计结果可以通过在区间内多点取值,由式(11)反复校验的方式获取。

基于浴盆 曲 线 故 障 率 函 数 的 FFOP 预 计 方法,能够预计失效过程为泊松过程,并且故障率函数服从浴 盆 曲 线 特 征 情 况 下 的 产 品 无 故 障 工 作期。将 FFOP作为设备耐久性参数之一,可以为产品的寿命评估和维护策略制定提供依据。

四、总结

综上所述,机械故障诊断中的统计分析工作,对延长机械设备的使用寿命、提高企业的经济效益具有十分重要的作用和意义,尤其是随着设备检修工作的日趋复杂化,我们只有重视机械设备日常运行过程中的数据收集和先进统计分析方法的运用,做好机械故障的统计分析工作,才能对机械设备采取有针对性的维护措施,延长机械设备的使用寿命,不断提高设备生产的经济效益。

在今天现代设备管理中设备的零件变得越来越多,有的时候机械的故障不再某个单一的轴承、齿轮或转子等,而是几个或者几组零件。机械系统的相互作用才是故障产生的本质原因。针对关键零件的故障诊断分析往往只能诊断出诱发性故障,不能从根本上解决问题。因此,我们应针对机械的故障的多样性整体分析,从多层面,多角度分析,深入研究系统内部各组成部分的动力特性、相互作用和依赖关系,得出零部件故障的初步结论,接着探索系统故障的根源,找出原发性故障,从而根除机械设备故障隐患。

在现代设备管理中,大多数故障的原因是人为的,对于这个我们应建立相关的管理规章制度,做好人员的培训,尽量避免,做好设备的日常维护。人人都养成维护企业或公司利益思想。

参考文献:

1、基于浴盆曲线故障率函数的FFOP预计方法_马纪明

2、机械故障管理中的统计分析探讨_吴文萍

3、机械故障诊断基础研究_何去何从_王国彪

4、数控车床故障分布规律及可靠性_张英芝

5、《现代设备管理》 姜金三

第五篇:水电厂典型故障与事故处理练习题

水电厂典型故障与事故处理练习题

一. 填空题:

1.当值值长是事故处理的领导者,他的任务是领导当值值班人员处理事故,指挥参加事故处理的人员,相互配合,处理事故。

2.如果在交接班时发生事故,应暂停交班,交班人员应留在自己的工作岗位上,由接班人员协助处理事故,交接班手续可根据具体情况,双方协商确定。

二. 选择题:

1.调速器控制导叶的开度以改变进入水轮机的流量而实现。

2.正常运行的发电机,在调整有功负荷时,对无功负荷有一定影响。

3.发电厂发生事故时,值长是事故的指挥人。

4.系统震荡时,定子电流表的指针向两侧剧烈摆动。

5.如果发电厂机组失磁引起系统震荡,则发电厂运行人员应不待调度指令,将失磁机组解列。

6.压油槽充气的目的是保证操作中油压平稳。

三. 判断题:

1)发电机定子一点接地时一般出现事故停机。(错)

2)当油管道或液压阀中有空气时,调速器在运行时会发生高频震荡或振动。(对)

3)调度员是发电厂事故处理的直接负责人。(错)

4)电网频率标准是50赫兹,其偏差不得超过±0.5赫兹。(错)

5)为了防止事故扩大,必须进行的紧急操作可以由值班人员先执

行后在汇报值班调度员。(对)

四. 问答题:

1.引起剪断销剪短的主要原因有哪些?

1)导叶间被杂物卡住。

2)导叶开关过快,使剪断销受冲击剪切力面剪断。

3)各导叶连臂尺寸调整不当或锁紧螺母松动。

4)导叶尼龙套吸水膨胀将导叶轴抱的过紧。

2.发电机运行中发生推力冷却水中断信号,如何处理?

1)检查推力冷却水进水阀开度,并调整至适当位置。

2)检查总水压是否正常,若总水压正常,检查减压阀后压力。若减压阀后压力低,应调整至正常。

3)若判断为滤过器杂物堵塞,可手动启动排污装置进行排污,排污应防止水压继续降低,可开启旁通阀供水。

4)同时监视推力轴承温度上升情况,必要时联系调度降低机组负荷运行,并做好事故预想。

5)若供水管路有漏水之处,应设法堵塞使水压恢复正常,无法堵塞和无法保证机组的正常供水应立即停机处理。

6)若各水压正常,管路又无漏水之处,可判定为推力冷却水示流继电器误动。通知检修班组处理。

下载直放站与分布系统典型故障处理案例(5篇材料)word格式文档
下载直放站与分布系统典型故障处理案例(5篇材料).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    APG典型故障处理小结

    APG典型故障处理小结 1、故障:intelligent networks management interface 分析:此告警表明文件系统在处理intelligent networks management interface(INM)接口连接时出错。 此......

    近期典型故障处理情况通报

    近期典型网络故障情况通报近期处理网络故障较多,综合处理情况,现将几起典型故障处理情况过程通报如下,请各县市分公司能加强管理,提高维护人员的故障处理能力和责任心。 一、......

    直流系统典型故障分析与对策

    直流系统典型故障分析与对策 设备工程部 张建全 【摘要】本文介绍了直流系统的常见配置、绝缘监察装置的原理和数学模型,针对发电厂直流系统的接地、交流窜入直流、寄生回路......

    电务系统LKJ故障处理范文合集

    一、LKJ2000型监控装置显示器方面故障: 故障现象一:监控装置开机显示器黑屏 处理方法: 1.检查显示器后X7、X9插头、插座插针状态,并重新紧固X7、X9; 2.用万用表直流电压挡测量显......

    电力机车典型故障案例-4

    1、电力机车SS3机车II端(成端)司机室学习司机侧的侧窗玻璃坏。通知技术科,技术科安排成都检修人员在江油将I端侧窗玻璃取下装至II端,I端侧窗用纸板封闭 2、电力机车SS4(1)机车B节......

    电梯典型故障分析及处理方案

    电梯典型故障分析及处理方案 摘要:当今社会发展迅速,高层建筑早已走上时代舞台,而高层建筑离不开电梯的使用,为了确保电梯的安全、有效运行,完善高层建筑功能,本文总结分析了时下......

    电梯典型故障分析及处理方案

    电梯典型故障分析及处理方案 摘要:伴随我国社会经济与科学技术水平的不断发展,城市化大力推进,人们的生活水平货的普遍提高。随着大量人口向城市的不断涌入,高层建筑也越来越普......

    燃气轮机运行典型故障分析及其处理

    燃气轮机运行故障及典型事故的处理 1 燃气轮机事故的概念及处理原则 111 事故概念 燃气轮机事故指直接威胁到机组安全运行或设备发生损坏的各种异常状态。凡正常运行工况......