第一篇:八年级数学经典压轴题:一次函数注水问题
八年级数学经典压轴题(内部辅导材料)
第13讲:一次函数注水问题
第13讲:一次函数注水问题
13-1
八年级数学经典压轴题(内部辅导材料)
第13讲:一次函数注水问题
13-2
第二篇:初二一次函数压轴题复习精讲
初二一次函数压轴题复习精讲
1.如图,直线l1的函数解析式为y=1/2x+1,且l1与x轴交于点D,直线l2经过定点A,B,直线l1与l2交于点C.
(1)求直线l2的函数解析式;(2)求△ADC的面积.
2.如图,在平面直角坐标系中,点A的坐标为(2,3),点B在x轴的负半轴上,△ABO的面积是3.
(1)求点B的坐标;(2)求直线AB的解析式;
(3)在线段OB的垂直平分线m上是否存在点M,使△AOM得周长最短?若存在,直接写出点M的坐标;若不存在,说明理由.
(4)过点A作直线AN与坐标轴交于点N,且使AN=OA,求△ABN的面积.
3.如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.(1)求点C的坐标,并回答当x取何值时y1>y2?(2)求△COB的面积;
(3)是否存在点P,使CP将△COB分成的两部分面积之比为1:2?若存在,请求出点P的坐标;若不存在,请说明理由.
(4)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.
4.如图,在平面直角坐标系xOy中,长方形OABC的顶点A、C的坐标分别为(3,0),(0,5).(1)直接写出点B的坐标;
CyB(2)若过点C的直线CD交AB边于点D,且把长方形OABC的周长分为1:3两部分,求直线CD的解析式;(3)设点P沿OABC的方向运动到点C(但不与点O、C重合),求△OPC的面积变量x的取值范围
y与点P所行路程x之间的函数关系式及自
OAx
22125.已知直线ykxb经过点M3,、N0,.(1)求直线MN的解析式;
55(2)当y0时,求x的取值范围;
(3)我们将横坐标、纵坐标均为整数的点称为整数点.直接写出此直线与两坐标轴围成的三角形的内部(不包含边界)的整数点的坐标.
6.在平面直角坐标系xoy中,直线yxm经过点A(2,0),交y轴于点B,点D为x轴上一点,且SADB1
(1)求m的值(2)求线段OD的长(3)当点E在直线AB上(点E与点B不重合),BDOEDA,求点E的坐标
7.已知一次函数y=kx+b,y随x增大而增大,它的图象经过点(1,0)且与x轴的夹角为45°,(1)确定这个一次函数的解析式;
(2)假设已知中的一次函数的图象沿x轴平移两个单位,求平移以后的直线及直线与y轴的交点坐标.
8.如图①所示,直线l1:y=3x+3与x轴交于B点,与直线l2交于y轴上一点A,且l2与x轴的交点为C(1,0).
(1)求证:∠ABC=∠ACB;
(2)如图②所示,过x轴上一点D(-3,0)作DE⊥AC于E,DE交y轴于F点,交AB于G点,求G点的坐标.
(3)如图③所示,将△ABC沿x轴向左平移,AC边与y轴交于一点P(P不同于A、C两点),过P点作一直线与AB的延长线交于Q点,与x轴交于M点,且CP=BQ,在△ABC平移的过程中,线段OM的长度是否发生变化?若不变,请求出它的长度;若变化,确定其变化范围.
9.设关于x一次函数y=a1x+b1与y=a2x+b2,我们称函数y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)为这两个函数的生成函数.
(1)请你任意写出一个y=x+1与y=3x-1的生成函数的解析式;(2)当x=c时,求y=x+c与y=3x-c的生成函数的函数值;
(3)若函数y=a1x+b1与y=a2x+b2的图象的交点为P(a,5),当a1b1=a2b2=1时,求代数式m(a12a2+b12)+n(a22a2+b22)+2ma+2na的值.
第三篇:小升初数学压轴题
经常要做数学压轴题
1.辆车从甲地开往乙地,如果把车速提高25%,可以比原定时间提前24分钟到达.如果以原速行驶80千米后,再将速度提高1 /3,则可以提前10分钟到达乙地.甲、乙两地相距多少千米?
2.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有35米,丙离B还有68米;当乙跑到B时,丙离B还有40米.(1)A,B相距多少米?(2)如果丙从A跑到B用24秒,那么甲的速度是多少?
3.小红在上午将近11点时出家门,这时挂钟的时针和分针重合,当天下午将近
5点时,她回到家,这时挂钟的时针与分针方向相反(在一条直线上),则小红共出去了多少小时?
4有两组数,第一组的平均数是15,第二组的平均数是9;而这两组数总的平均数是11.那么,第二组的数的个数是第一组数的几倍?
5.如图,△ABC是边长为108厘米的等边三角形,虫子甲和乙分别从A点和C点同时出发,沿△ABC的边爬行,甲顺时针爬行,乙逆时针爬行,速度比是4:5.相遇后,甲在相遇点休息10秒钟,然后继续以原来的速度沿原方向爬行;乙不休息,速度提高20%,仍沿原方向爬行,第二次恰好在BC的中点相遇.求开始时,虫子甲和乙的爬行速度.
6.12013+22013+32013+42013除以5,余数是_________
7.甲、乙两个工程队分别负责两项工程.晴天,甲完成工程需10天,乙完成工程需16天,雨天,甲和乙的工作效率分别是晴天时的30%和80%.实际情况是两队同时开工、完工.在施工期间下雨的天数是______.
8纯循环小数0.abcabcabc„„写成最简分数时分子与分母的和为58,请问这个纯循环小数是多少?
9.如图,在三角形ABC中,已知三角形ADE、三角形DCE、三角形BCD的面积分别是89、28、56,求三角形DBE的面积.10张老师带领6(1)班的学生去种树,学生恰好可以分成5组.已知师生每人种的树一样多,共种527棵,则6(1)班有学生多少人?
11.新年联欢会共有8个节目,其中有3个非歌唱类节目.排列节目单时规定,非歌唱类节目不相邻,而且第一个和最后一个节目是歌唱类节目.则节目单有______种不同的排法.
12.修一条高速公路.若甲、乙、丙合作,90天可完工;若甲、乙、丁合作,120天可完工;若丙、丁合作,180天完工.若甲、乙合作36天后,剩下的工程由甲、乙、丙、丁合作,还需要多少天完工?
13.已知长方形的长是宽的2倍,对角线的长是9,则长方形的面积是_________
14.用4根火柴,在桌面上可以拼成一个正方形;用13根火柴,可以拼成四个正方形;„如图,拼成的图形中,若最下面一层有15个正方形,则需要火柴______根.
.
15.十进制计数法,是逢10进1,如2410=2×10+4×1,36510=3×102+6×10+5×1;计算机使用的是二进制计数法,是逢2进1,如1112=1×22+1×2+1×1=,11002=1×23+1×22+0×2+0×1=,如果一个自然数可以写成m进制数45m,也可以写成n进制数54n,那么最小的m= n=
16.甲、乙、丙三人同时从A地出发到B地,他们的速度的比是4:5:12,其中甲、乙两人步行,丙骑自行车,丙可以带一人同行(速度保持不变).为了使三人在最短的时间内同时到达B地,则甲、乙两人步行的路程之比是______.
17如图,在一个棱长为20厘米的正方体密闭容器的下底固定了一个实心圆柱体,容器内盛有m升水时,水面恰好经过圆柱体的上底面.如果将容器倒置,圆柱体有8厘米露出水面.已知圆柱体的底面积是正方体底面积的 1/8,求实心圆柱体的体积.
18.甲、乙二人分别在A、B两地同时相向而行,于C处相遇,甲继续向B地行走,乙则休息了14分钟,再继续向A地行走.甲和乙到达B和A立即折返,仍在E处相遇,已知甲每分钟行走60米,乙每分钟行走80米,则A和B两地相距______米.
19.在如图所示的九宫图中,不同的汉字代表不同的数,每行,每列和两条对角线上各数的和相等.已知中=21,学=9,欢=12,则希、望、杯的和是______.
20.A、B两人同时从700米长的山坡坡底出发向上跑,跑到坡顶立即返回.他们俩的上坡速度不同,下坡速度则是两人各自上坡速度的二倍.B首先到达坡顶,立即沿原路返回,并且在离坡顶70米处与A相遇.当B到达坡底(起点)时,那么A落后B______米. 天天、Cindy、Kimi、石头、Angela 五人按顺序依次取出21 个小球.Kimi:“我取了剩下的小球的个数的三分之二”,Cindy:“我取了剩下的小球的个数的一半”,天天:“我取了剩下的小球的个数的一半”,石头:“我取了剩下的全部小球”,Angela:“大家取小球的个数都不同哎!” 请问:Kimi 是第____个取小球的,取了____个
22.某班46名学生都参加了兴趣小组.共有四个项目,每人可以参加其中的一个,两个,三个 ,或者四个兴趣小组.求该班至少有几名学生参加的项目完全一样?
23.甲乙两人同时从山脚出发开始爬山,两人下山速度都是上山速度的两倍,甲到山顶时,乙离山顶400米.甲回到山脚时,乙下山刚走完1/2,山脚到山顶的距离有多少米?
24.甲、乙、丙三人行走的速度分别为每分钟40米、50米、60米。甲、乙两人从A地,丙一人从B地他们同时相向出发,丙遇到乙后5分钟再遇到甲。A、B两地的距离是多少米?
25.甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转4圈,丙轮转6圈,这三个齿轮齿数最少应分别是多少齿
26.将3~10这八个数分别填入如图的小圆圈里,使两个大圆上的五个数的和相等,并且最小.
27.若干件商品分给100家商店,每家至少得一件,没有四家商店的商品数相同,那么最少有多少件商品?
(利润问题)
28.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应当提高售价多少元?
29.某品牌牙膏每盒15元,但销晕不大,为了促销,商店降价销售,后来销量增加2倍,收入增加了五分之三,一盒牙膏降低了多少元?
30.某商品按定价出售,每个可获得45元的利润,现在按定价的八五折出售8个所获得的利润,与按定价每个减价35元出售12个获得的利润一样,这一商品每个定价是多少元?
31.一批商品降价出售,如果减去定价的10%出售,可赢利215元,如果减去定价的20%出售,亏损125元,此商品的购入价是多少元?
液体浸物问题
32有一个圆柱形的桶(有盖)它的底面积与侧面积正好相等,如果这个圆柱形的底面不变,高增加3厘米,它的表面积就增加1130.4平方厘米,求原来圆柱体的表面积
33.有一个高8厘米容积是50毫升的圆柱体容器A,里面装满了水,现把长17厘米的圆柱体棒B垂直放入,使B的底面和A的底面接触。这时一部分水从容器A中溢出。当把B从A拿走后,A中拿走后,A中水的高度只有6厘米求圆柱体棒的体积
34.在一只底面半径是10cm的圆柱形瓶中,水深是8cm,要在瓶中放入长和宽都是8cm,高是15cm的铁块,把铁块竖放在水面上升了几厘米?
35.一个底面积为3600平方厘米的圆柱形容器,容器里直立着一个高1米、底面积是225平方厘米的长方体铁块,这是容器里的水深50厘米.现在把铁块轻轻垂直向上提起24厘米,那么露出水面的铁块上被水浸湿的部分长多少厘米?
36如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体术块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降______厘米
37.一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?
38.如图所示,厚度为0.04厘米的铜版纸被卷成一个空心圆柱,(纸卷的很紧,没有空隙),它的外直径是20厘米,内直径是8厘米.这卷铜版纸的总长是多少米
39.如图,abcd是矩形,bc=6厘米,ab=10厘米,对角线ac、bd相交o,cd旋转一周,则阴影部分扫出的立体图形的体积是多少立方厘米【π取3】
40.有一个高8厘米容积是50毫升的圆柱体容器A,里面装满了水,现把长17厘米的圆柱体棒B垂直放入,使B的底面和A的底面接触。这时一部分水从容器A中溢出。当把B从A拿走后,A中拿走后,A中水的高度只有6厘米求圆柱体棒的体积
浓度问题
42.甲桶有糖水60千克,含糖率40%,乙桶有含糖率为20%的糖水40千克,要使两桶糖水的含糖率相等,需把两桶的糖水互换多少千克?
43.从装满100克80%的盐水中倒出40克盐水后,再用清水将杯加满,搅拌后再倒出40克盐水,然后再倒出40克盐水,然后再用清水将杯加满,如此反复三次后。杯中盐水浓度是多少?
44林林倒满一杯纯牛奶,第一次喝了4分之1,然后加入豆浆,将杯子斟满并搅拌均匀,第二次,林林又喝了4分之1,如此重复,那么第3次后,林林共喝了一杯纯牛奶的总量的几分之几
45一只猴子摘一些桃子,第一天吃了这些桃子的1/7,第二天吃了余下的1/6,以后4天分别吃了余下桃子个数的1/5,1/4,1/3,和1/2,这时还余下桃子12个,那么则批桃子共有多少个?
46一杯盐水,第一次加入一定量的水后,盐水的含盐百分比变为15%;第二次又加入同样多的水,盐水的含盐百分比变为12%,第三次在加入同样多的水,盐水的含盐百分比将变为_______%.时钟问题
47从四点钟开始的一个小时内,分针与时针成60度角的时间是四点几分?
48.钟面上4点过几分,时针和分针离“3”的距离相等。
49.四点几分时,分针与4的距离是时针与4的距离的2倍。
50从4点整开始多少分钟后时针和分针夹角成90°
猎狗追兔火车过桥和间隔发车
50.猎狗前面26步远有一只野兔,猎狗追之。兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离。问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少步?
51.某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来。假设两个起点站的发车间隔是相同的,求这个发车间隔?
52.小峰骑自行车去小宝家聚会的路上注意到,每隔9分钟就有一辆公交车从后方超越小峰,小峰骑车到半路,车坏了,于是只好坐出租车去小宝家,这时小峰又发现出租车也是每隔9分钟超越一辆公交车,已知出租车的速度每小峰骑车速度的5倍,那么如果这三种车辆在行驶过程中都保持匀速,那么公交车站每隔多少分钟发一辆车?
53铁路与公路平行.公路上有一个人在行走,速度是每小时4千米,一列火车追上并超过这个人用了6秒.公路上还有一辆汽车与火车同向行驶,速度是每小时60千米,火车追上并超过这辆汽车用了54秒,则火车速度为______,长度为______.
比例行程
54甲乙两人同时从a,b两点出发,甲每分钟行80米乙每分钟行60米,出发一段时间后,两人在距中心点的c点处相遇,如果甲出发后在途中某地停留了7分钟,两人将在距中点的d处相遇,且中点距c,d距离相等,问ab两点相距多少米?
55.小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.已知小明步行的速度为每小时5千米,乘车速度为每小时15千米,结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?
56.小明家到学校,前一半路程步行,后一半路程乘车;他从学校回家时,前1 /3 时间乘车,后2 /3 时间步行.结果去学校的时间比回家所用的时间多20分钟,已知小明步行每分钟行80米.乘车每分钟行240米.小明从家到学校的路程是多少千米?
57.一只小船从甲地到乙地往返一次共用2小时.回来时顺水,比去时每小时多行驶8千米因此第2小时比第1小时多行驶6千米,求甲乙两地距离.58.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,那么摩托车的速度应是多少?
59..同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?
60红光农场原定9时来车接601班同学去劳动,为了争取时间,8时同学们就从学校步行向农场出发,在途中遇到准时来接他们的汽车,于是乘车去农场,这样比原定时间早到12分钟。汽车每小时行48千米,同学们步行的速度是每小时几千米?
61.小李现有一笔存款,他把每月支出后剩余的钱都存入银行。已知小李每月的收入相同,如果他每月支出1000元,则一年半后小李有存款8000元(不计利息);如果他每月支出800元,则两年后他有存款12800元(不计利息).小李每月的收入是______元,他现在存款_______元。
62.一次运动会上,有18名游泳运动员中,有8名参加了仰泳,有10名参加了蛙泳,有12名参加了自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加,这18名运动员中只参加1个项目的人有多少?
37.某校有一道笔直的围墙,该校准备以围墙为一边用一道长36米的铁丝网,围成一块长方形菜地,这块地的面积最大是多少平方米
工程问题
63.某工程,甲独做要30天完成,乙独做要20天完成,现在甲乙合做,中途甲乙各休息了若干天,因此比计划推迟了8天,乙工作的天数是甲工作天数的2/3,甲乙各休息了几天?
64.甲组6人15天能完成的工作,乙组5人12天也能完成;乙组7人8天能完成的工作,丙组3人14天也能完成.现在一项工作需要甲组9人14天完成,如果丙组派人10天内完成,那么丙组至少应派多少人?
65.搬运一个仓库的货物,甲需10小时,乙需12小时,丙需15小时。有同样的仓库A和B,甲在A仓库,乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运,最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?
66.甲乙两人同时加工一批零件,完成任务时,甲做了全部零件的5/8,乙每小时加工12个零件,甲单独加工这批零件要12小时,这批零件有多少个?
67.单独完成一项工程,甲独做可比规定时间提前一天完成,乙独做则要超过规定时间2天才能完成.甲乙两人合作一天后,剩下的由乙单独做,那么刚好在规定时间完成.这项工程如果甲乙两人合作,需多少天完成?
68两列火车同时从甲、乙两地相对开出.快车行完全程需要20小时,慢车行完全程需要30小时.开出后15小时两车相遇.已知快车中途停留4小时,慢车停了几小时?
百分数问题 69.金放在水里称,重量减轻了十九分之一;银放在水里称,重量减轻十分之一,有一块770重的金银合金,若把它放在水称,只有720千克.这块合金中金和银各有多少克
70.我校图书室去年买了科技书与文艺书共475本,今年又买了科技书与文艺书640本,其中科技书比去年增加48%,文艺书比去年增加20%,今年买的新书中科技书与文艺书各多少本?
71小玲原有图书的本数是小芳的1/5.今年“六一”儿童节,老师买来20本书平均分给两人后,这时小玲图书的本数是小芳的1/3.小玲现在有图书多少本?
72.某种童装的平均价是115元,其中男装比女装多1/5,女装平均每套比男装贵10%,这些童装中的男装平均价是多少元?
73有黑白棋子共150颗,分成50堆,每堆3颗,其中只有白棋子的有15堆,不少于2颗白棋子的有25堆,只有白棋子的堆数的2倍。问:这150颗棋子中有多少颗黑棋子?
第四篇:中考数学压轴题整理
【运用相似三角形特性解题,注意分清不同情况下的函数会发生变法,要懂得分情况讨论问题】
【分情况讨论,抓住特殊图形的面积,多运用勾股定理求高,构造梯形求解】
【出现边与边的比,构造相似求解】
【当图形比较复杂的时候,要学会提炼出基础图形进行分析,如此题中可将两个三角形构成的平行四边形提取出来分析,出现两个顶点,结合平行四边形性质和函数图像性质,找出不变的量,如此题中N点的纵坐标不变,为-3,为突破口从而求解】
已知△ABC是等边三角形.
(1)将△ABC绕点A逆时针旋转角θ(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O.
①如图a,当θ=20°时,△ABD与△ACE是否全等?(填“是”或“否”),∠BOE=度;
②当△ABC旋转到如图b所在位置时,求∠BOE的度数;
【旋转,平移,轴对称的题目,要将动态转化为静态求解,运用全等和相似的方法】
【通过旋转把条件进行转移,利用与第一题相同的方法做辅助线,采用构造直角三角形的方法求解】
如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.
(1)表中第8行的最后一个数是_________,它是自然数_______的平方,第8行共有________个数;
(2)用含n的代数式表示:第n行的第一个数是_______,最后一个数是_________,第n行共有个数__________;
(3)求第n行各数之和.
【利用三角函数求解】
如图所示,已知A点从(1,0)点出发,以每秒1个单位长的速度沿着x轴的正方向运动,经过t秒后,以O、A为顶点作菱形OABC,使B、C点都在第一象限内,且∠AOC=60°,又以P(0,4)为圆心,PC为半径的圆恰好与OA所在的直线相切,则t=_____________.
【提取基础图形,此题将三角形提取出来,构造直角三角形,利用30°所对的边是斜边的一半,设未知数求解】
【要求是否能构造成直角三角形,构造包含欲求三角形的三边的另外三个直角三角形,利用勾股定理求出三条边,再运用勾股定理,分三种情况求解】
如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是___________.
当遇到求是否构成等腰三角形,等边三角形,等腰直角三角形,直角三角形时,在坐标轴中,设未知数求解;如设点A为(x,y)或设点A为(0,m),多寻找可用相似表示的边,运用相似的面积比,周长比,高之比,边之比求解
求坐标轴上有多少个图形能够构成面积为多少,周长为多少的三角形四边形等时,注意坐标点可能在正半轴或负半轴,注意加绝对值符号,计算多边形面积可采用割补法
第五篇:2017八年级数学一次函数教案
§11.2.2 一次函数(一)教学目标
(一)教学知识点
1.掌握一次函数解析式的特点及意义.
2.知道一次函数与正比例函数关系.
3.理解一次函数图象特征与解析式的联系规律.
4.会用简单方法画一次函数图象.
(二)能力训练要求
1.通过类比的方法学习一次函数,体会数学研究方法多样性.
2.进一步提高分析概括、总结归纳能力.
3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.
教学重点
1.一次函数解析式特点.
2.一次函数图象特征与解析式联系规律.
3.一次函数图象的画法.
教学难点
1.一次函数与正比例函数关系.
2.一次函数图象特征与解析式的联系规律.
教学方法:合作─探究,总结─归纳.
教具准备:多媒体演示.
教学过程
Ⅰ.提出问题,创设情境
问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.
这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.
Ⅱ.导入新课
我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?
1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(℃)有关,即C•的值约是t的7倍与35的差.
2.一种计算成年人标准体重G(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值.
3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).
4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.
一般地,形如y=kx+b(k、b是常数,k≠0•)的函数,•叫做一次函数(•linearfunction).当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数.
练习:
1.下列函数中哪些是一次函数,哪些又是正比例函数?
8(1)y=-8x.(2)y=x.
(3)y=5x2+6.(3)y=-0.5x-1.
2.一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米.
(1)一个小球速度v随时间t变化的函数关系.它是一次函数吗?(2)求第2.5秒时小球的速度.
3.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(升)随行驶时间x(时)变化的函数关系式,并写出自变量x的取值范围.y是x的一次函数吗? [活动一] 活动内容设计:
画出函数y=-6x与y=-6x+5的图象.并比较两个函数图象,探究它们的联系及解释原因.
活动设计意图:
通过活动,加深对一次函数与正比例函数关系的理解,认清一次函数图象特征与解析式联系规律.
教师活动:
引导学生从图象形状,倾斜程度及与y轴交点坐标上比较两个图象,•从而认识两个图象的平移关系,进而了解解析式中k、b在图象中的意义,体会数形结合在实际中的表现. [活动二] 活动内容设计:
画出函数y=x+
1、y=-x+
1、y=2x+
1、y=-2x+1的图象.由它们联想:一次函数解析式y=kx+b(k、b是常数,k≠0)中,k的正负对函数图象有什么影响?
活动设计意图:
通过活动,熟悉一次函数图象画法.经历观察发现图象的规律,并根据它归纳总结出关于数值大小的性质.体会数形结合的探究方法在数学中的重要性,进而认识理解一次函数图象特征与解析式联系.
目的:引导学生从函数图象特征入手,寻求变量数值变化规律与解析式中k•值的联系.
Ⅲ.随堂练习
1.直线y=2x-3与x轴交点坐标为_______,与y轴交点坐标为_________,•图象经过第________象限,y随x增大而_________.
2.分别说出满足下列条件的一次函数的图象过哪几个象限?
(1)k>0 b>0(2)k>0 b<0(3)k<0 b>0(4)k<0 b<0 小结
本节学习了一次函数的意义,知道了其解析式、图象特征,并学会了简单方法画图象,进而利用数形结合的探究方法寻求出一次函数图象特征与解析式的联系,这使我们对一次函数知识的理解和掌握更透彻,也体会到数学思想在数学研究中的重要性.
课后作业
习题11.2─3、4、8题.
§11.2.2 一次函数(二)教学目标
(一)教学知识点
1.学会用待定系数法确定一次函数解析式.毛 2.具体感知数形结合思想在一次函数中的应用
(二)能力训练目标
1.经历待定系数法应用过程,提高研究数学问题的技能.
2.体验数形结合,逐步学习利用这一思想分析解决问题. 教学重点
待定系数法确定一次函数解析式. 教学难点
灵活运用有关知识解决相关问题. 教学方法
归纳─总结 教具准备
多媒体演示.
教学过程
1.提出问题,创设情境
我们前面学习了有关一次函数的一些知识,掌握了其解析式的特点及图象特征,并学会了已知解析式画出其图象的方法以及分析图象特征与解析式之间的联系规律.如果反过来,告诉我们有关一次函数图象的某些特征,能否确定解析式呢? 这将是我们这节课要解决的主要问题,大家可有兴趣?
Ⅱ.导入新课
有这样一个问题,大家来分析思考,寻求解决的办法. [活动] 活动设计内容:
已知一次函数图象过点(3,5)与(-4,-9),求这个一次函数的解析式.
联系以前所学知识,你能总结归纳出一次函数解析式与一次函数图象之间的转化规律吗?
活动设计意图:
通过活动掌握待定系数法在函数中的应用,进而经历思考分析,归纳总结一次函数解析式与图象之间转化规律,增强数形结合思想在函数中重要性的理解.
教师活动:
引导学生分析思考解决由图象到解析式转化的方法过程,从而总结归纳两者转化的一般方法.
学生活动:
在教师指导下经过独立思考,研究讨论顺利完成转化过程.概括阐述一次函数解析式与图象转化的一般过程.
活动过程及结论:
分析:求一次函数解析式,关键是求出k、b值.因为图象经过两个点,所以这两点坐标必适合解析式.由此可列出关于k、b的二元一次方程组,解之可得.
设这个一次函数解析式为y=kx+b.
3kb54kb9 因为y=k+b的图象过点(3,5)与(-4,-9),所以 k2b1 解之,得故这个一次函数解析式为y=2x-1。结论:
函数解析式 选取 满足条件的两定点 画出 一次函数的图象 y=kx+b 解出(x1,y1)与(x1,y2)选取 直线L
像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法. 练习:
1.已知一次函数y=kx+2,当x=5时y的值为4,求k值. 2.已知直线y=kx+b经过点(9,0)和点(24,20),求k、b值. 3.生物学家研究表明,某种蛇的长度y(CM)是其尾长x(CM)的一次函数,当蛇的尾长为6CM时, 蛇的长为45.5CM;当蛇的尾长为14CM时, 蛇的长为105.5CM.当一条蛇的尾长为10 CM时,这条蛇的长度是多少? 4.教科书第35页第6题.解答:
1.当x=5时y值为4. 即4=5k+2,∴k=5
09kb2024kb 2.由题意可知:4k3b12 解之得,
作业: 教科书第35页第5,7题.备选题: 1.已知一次函数y=3x-b的图象经过点P(1,1),则该函数图象必经过点()A.(-1,1)B.(2,2)C.(-2,2)D.(2,-2)2.若一次函数y=2x+b的图像与坐标轴围成的三角形的面积是9,求 b的值. 3.点M(-2,k)在直线y=2x+1上,求点M到x轴的距离d为多少?
§11.2.2 一次函数(三)
教学目标
(一)教学知识点: 利用一次函数知识解决相关实际问题.
(二)能力训练目标:体会解决问题方法多样性,发展创新实践能力。
教学重点:灵活运用知识解决相关问题.
教学难点:灵活运用有关知识解决相关问题.
教学方法:实践─应用─创新.
教具准备: 多媒体演示.
教学过程
1.提出问题,创设情境
我们前面学习了有关一次函数的一些知识及如何确定解析式,如何利用一次函数知识解决相关实践问题呢?这将是我们这节课要解决的主要问题.Ⅱ.导入新课
下面我们来学习一次函数的应用.
例1 小芳以200米/分的速度起跑后,先匀加速跑5分钟,每分提高速度20米/分,又匀速跑10分钟.试写出这段时间里她跑步速度y(米/分)随跑步时间x(分)变化的函数关系式,并画出图象.
我们把这种函数叫做分段函数.在解决分析函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.
例2 A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料费用分别为每吨20元和25元;从B城往C、D两乡运肥料费用分别为每吨15元和24元.现C乡需要肥料240吨,D乡需要肥料260吨.怎样调运总运费最少?
通过这一活动让学生逐步学会应用有关知识寻求出解决实际问题的方法,提高灵活运用能力.
教师活动:
引导学生讨论分析思考.从影响总运费的变量有哪些入手,进而寻找变量个数及变量间关系,探究出总运费与变量间的函数关系,从而利用函数知识解决问题.
学生活动:
在教师指导下,经历思考、讨论、分析,找出影响总运费的变量,并认清它们之间的关系,确定函数关系,最终解决实际问题.
活动过程及结论:
通过分析思考,可以发现:A──C,A──D,B──C,B──D运肥料共涉及4个变量.它们都是影响总运费的变量.•然而它们之间又有一定的必然联系,只要确定其中一个量,其余三个量也就随之确定.这样我们就可以设其中一个变量为x,把其他变量用含x的代数式表示出来:
若设A──Cx吨,则:
由于A城有肥料200吨:A─D,200─x吨.
由于C乡需要240吨:B─C,240─x吨.
由于D乡需要260吨:B─D,260─200+x吨.
那么,各运输费用为:
A──C 20x A──D 25(200-x)
B──C 15(240-x)B──D 24(60+x)
若总运输费用为y的话,y与x关系为: y=20x+25(200-x)+15(240-x)+24(60+x).
化简得:
y=40x+10040(0≤x≤200).
由解析式或图象都可看出,当x=0时,y值最小,为10040.
因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,•运往D乡60吨.此时总运费最少,为10040元.
如何确定自变量x的取值范围是40≤x≤300的呢?
由于B城运往D乡代数式为x-40吨,实际运费中不可能是负数,而且A城中只有300吨肥料,也不可能超过300吨,所以x取值应在40吨到300吨之间.
总结: 解决含有多个变量的问题时,可以分析这些变量间的关系,选取其中某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.这样就可以利用函数知识来解决了.
在解决实际问题过程中,要注意根据实际情况确定自变量取值范围.就像刚才那个变形题一样,如果自变量取值范围弄错了,很容易出现失误,得到错误的结论.
Ⅲ练习
从A、B两水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A、B两水库各可调出水14万吨.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.设计一个调运方案使水的调运量(万吨·千米)最少.
解答:设总调运量为y万吨·千米,A水库调往甲地水x万吨,则调往乙地(14-x)万吨,B水库调往甲地水(15-x)万吨,调往乙地水(x-1)万吨.
由调运量与各距离的关系,可知反映y与x之间的函数为: y=50x+30(14-x)+60(15-x)+45(x-1).
化简得:y=5x+1275(1≤x≤14).
由解析式可知:当x=1时,y值最小,为y=5×1+1275=1280.
因此从A水库调往甲地1万吨水,调往乙地13万吨水;从B水库调往甲地14•万吨水,调往乙地0万吨水.此时调运量最小,调运量为1280万吨·千米.
Ⅳ.小结
本节课我们学习并掌握了分段函数在实际问题中的应用,特别是学习了解决多个变量的函数问题,为我们以后解决实际问题开辟了一条坦途,使我们进一步认识到学习函数的重要性和必要性.
Ⅴ.课后作业
习题11.2─7、9、11、12题.