太阳能电池材料的制作是近些年来发展最快

时间:2019-05-13 12:24:13下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《太阳能电池材料的制作是近些年来发展最快》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《太阳能电池材料的制作是近些年来发展最快》。

第一篇:太阳能电池材料的制作是近些年来发展最快

摘要

太阳能电池材料的制作是近些年来发展最快、最具活力的研究领域,是最受瞩目的项目之一。制作太阳能电池材料主要是以半导体材料为基础,根据所用材料的不同,太阳能电池可分为:硅太阳能电池;以无机盐如砷化镓ⅲ-v化合物、硫化镉等多元化合物为材料的电池;功能高分子材料制备的太阳能电池;纳米晶太阳能电池等。但是。目前全世界已经大规模产业化生产的太阳能电池是硅太阳能电池。硅太阳能电池主要是由单晶硅太阳能电池和多晶硅太阳能电池构成的晶体硅太阳能电池,其产量占到当前世界太阳能电池总产量的90%以上。它们工艺技术成熟,性能稳定可靠,光电转换效率高,使用寿命长。此外还有非晶体太阳能电池。

第1章 太阳电池简介

1.1 晶体硅太阳电池

晶体硅太阳电池是PV(Photovoltaic)市场上的主导产品,优点是技术、工艺最成熟,电池转换效率高,性能稳定,是过去20多年太阳电池研究、开发和生产主体材料.缺点是生产成本高.在硅电池研究中人们探索各种各样的电池结构和技术来改进电池性能,进一步提高效率.如发射极钝化、背面局部扩散、激光刻槽埋栅和双层减反射膜等,高效电池在这些实验和理论基础上发展起来的。本节主要介绍单晶硅太阳电池与多晶硅太阳电池。1.1.1单晶硅太阳电池

单晶硅太阳电池制备和加工工艺:一般以高纯度单晶硅棒为原料,有些也用半导体碎片或半导体单晶硅的头尾料,经过复拉制成太阳电池专用单晶硅棒。在电弧中用炭还原石英砂制成纯度约为99%冶金及半导体硅,然后将它在流化床反应器中进行化学反应,达到电子及半导体硅要求。

将硅棒切成厚度约 300um 硅片做为太阳电池原料片,通过在硅片上掺和扩散,硅片上形成了pn结,然后采用丝网印刷法,将银浆印在硅片上做成删线,经过烧结,同时制成背电极,并在有删线的面上涂减反射膜,这样,单晶硅电池片就制成了。经检验后的单体片按需要规格组装成太阳电池组件(太阳电池板),用串联和并联方法构成一定输出开路电压和短路电流[1]。1.1.2多晶硅太阳电池

目前,太阳能电池使用的多晶硅材料,多半是含有大量单晶颗粒的集合体,摘要

或用废次单晶硅料和冶金级硅材料熔化浇铸而成。其工艺过程是:选择电阻率为100~300Q ·cm的多晶块料或单晶硅头尾料,经破碎,再用1:5的氢氟酸和硝酸混合液进行适当的腐蚀,然后用去离子水冲洗呈中性,并烘干。用石英坩埚装好多晶硅料,加人适量硼硅,放人浇铸炉,在真空状态中加热熔化。熔化后再保温约20min,然后注入石墨铸模中,待慢慢凝固冷却后,即得多晶硅锭。这种硅锭可铸成立方体,以便切片加工成方形太阳电池片,可提高材制利用率和方便组装。

多晶硅太阳能电池的制作工艺与单晶硅太阳电池差不多,其光电转换效率约12% 左右,稍低于单晶硅太阳能电池,但是材料制造简便,节约电耗,总的生产成本较低,因此得到快速的发展。

1.2 薄膜太阳电池

目前薄膜太阳能电池按材料可分为硅薄膜型、化合物半导体薄膜型和有机薄膜型。本节主要介绍了非晶硅薄膜电池与多晶硅薄膜电池。1.2.1非晶硅薄膜电池

非晶硅有较高的光吸收系数。特别是在0.3~0.75μm 的可见光波段,它的吸收系数比单晶硅高出一个数量级,对太阳辐射的吸收效率要高40 倍左右,用很薄的非晶硅膜(约1μm厚)就能吸收90%有用的太阳能。与单晶硅与多晶硅材料相比,非晶态硅的原子在空间排列上失去了长程有序性,但其组成原子也不是完全杂乱无章地分布。由于受到化学键,特别是共价键的束缚,在几个原子的微小范围内,非晶态与晶体的硅具有非常相似的结构特征。由于非晶硅没有晶体所要求的周期性原子排列,可以不考虑制备中晶体与衬底间的晶格失配问题。因而非晶硅薄膜几乎可以淀积在任何衬底上,包括玻璃衬底,易于实现大面积化。1.2.2多晶硅薄膜电池

多晶硅材料是许多单晶颗粒(颗粒直径为数微米至数毫米)的集合体,各单晶颗粒的大小、晶体取向彼此各不相同。尽管多晶硅存在晶粒间界,不利于太阳能电池转换效率的提高。但因制备多晶硅材料比制备单晶硅材料要便宜得多,研 摘要

究人员正致力于减少晶粒间界的影响以期得到低成本多晶硅太阳能电池。

多晶Si薄膜电池是兼具单晶Si和多晶Si电池的高转换效率和长寿命以及非晶Si薄膜电池的材料制备工艺相对简化等优点的新一代电池。在不太遥远的将来,多晶Si薄膜电池技术可望使太阳电池组件的成本降低至1美元左右,从而使得光伏发电的成本能够与常规能源相竞争。因此,近些年来,多晶Si薄膜材料和相关的电池工艺方面的工作引起了人们极大的关注。

1.3 GaAs太阳电池

1.3.1 GaAs 基单结太阳电池

由于太阳光谱的能量分布较宽,而半导体材料的带隙Eg都是确定的,因此只能吸收其中能量比其禁带宽度值高的光子,太阳光中能量小的光子则透过电池被背面电极金属吸收转化成热能,而高能光子超出禁带宽度的多余能量,通过光生载流子的能量热释作用传递给电池材料本身使其发热。这些能量最终都没有变成有效电能,因此对于单结太阳能电池,即使是晶体材料制成的,理论最高转换效率也只有25%左右。单结GaAs电池只能吸收特定光谱的太阳光,实验室实现的转换效率最高25.8%,高于晶体硅的23% [2]。1.3.2 GaAs 基多结太阳电池

采用不同禁带宽度的III—V族材料制备的多结叠层GaAs太阳能电池,通过禁带宽度由大到小组合,使得这些III—V族材料可以分别吸收和转换太阳光谱中不同波长的光,能大幅提高太阳能电池的转换效率,更多地将太阳能转变成电能。叠层太阳能电池可以外延生长技术制备,在具有一定结晶取向的衬底上延伸并按一定晶体学方向生长薄膜,每层薄膜都称为外延层。在衬底上逐层生长各级子电池,最终得到多结叠层结构电池。目前主要采用的有金属气相外延(MOCVD)和分子束外延(MBE)等外延生长技术[3]。

1.4 染料敏化电池

摘要

1991 年, 瑞士洛桑高等工业学院的Michael Gr¾ tzel教授领导的研究小组将纳晶多孔薄膜引入染料敏化太阳能电池(DSCs)中,使得这种电池的光电转换效率有了大幅度的提高, 逐渐成为最有希望得到应用的新型太阳能电池之一。相比于硅基太阳电池, DSC电池以其低廉的成本、简单的工艺和相对较高的光电转换效率而引起了全世界的广泛关注, 并迅速掀起了研究热潮。

染料敏化电池主要包括三个部分:附了染料的多孔光阳极、电解质和对电极。染料吸收光子后发生电子跃迁, 光生电子快速注入到半导体的导带并经过集流体进入外电路而流向对电极。失去电子的染料分子成为正离子, 被还原态的电解质还原再生。还原态的电解质本身被氧化, 扩散到对电极, 与外电路流入的电子复合, 这样就完成了一个循环。在DSC电池中,光能被直接转换成了电能, 而电池内部并没有发生净的化学变化。

摘要

第二篇:太阳能电池的优势及其发展

太阳能电池的优势及其发展

太阳能电池这个名词相信大家都略有所闻,但是对它的了解程度相信大家都不高,相信此文会带给大家更深认识。

其实早在50年前,太阳能电池就被发明出来,但是当时的太阳能电池的转换效率低下,并且价格极其昂贵,主要用作卫星、灯塔和电子计算器等的电源;直到90年代,太阳能电池的效率才有了一定的提高,开始应用进入家庭和大楼;而现在,太阳能电池正向全球扩展。

太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。一光电效应工作的薄膜式太阳能电池为主流,它是一种能将太阳光直接转化为电能的器件,算是一种特别的小型电源。太阳能电池大有前途,可以长期使用,具有永久性、清洁性和灵活性三大优点。它可以只靠太阳光转化成电能,相对于火力发电、核能发电来说,它不会引起环境污染;而相对于水力发电、风力发电来说,它所需要的金钱是较少,所消耗的资源也是无限的,对于普通城市的人来说更加方便,它也减少了电在导线上的消耗;相对于普通太阳能板来说,它能够直接应用到各种的生活家用电器,在国外甚至还有以太阳能电池作为电源的特种跑车竞赛活动,所应用的范围比太阳能板广泛;而对于普通干电池来说,它所能提供的电是普通干电池无法攀比的,并且它的使用期叫、较长,不会在短时期内丢弃或消耗完电能,从客观方面看是减少了垃圾排放,更加环保;所以,综合以上全部,太阳能电池无论在哪一个方面都占有一定优势。

2009年哥本哈根联合国气候变化大会呼吁全球节能减排,走“低碳经济”的道路。而太阳能是一种取之不尽,没有噪声,还不排放二氧化碳的资源,我们使用太阳能电池正正是符合“低碳经济”这一点。使用太阳能电池,不用消耗煤消耗石油消耗天然气,就能使用各类电器,减少了极大部分的二氧化碳排放,实现减排,即保护了环境,保护了人类,也能间接地“保护”我们的钱包,相信这点还是很多人看重的!

其实在未来,太阳能电池也是大有市场的,因为它可以应用于各个范围:

1、家庭发电系统;

2、无线通讯;

3、各类电子产品,如计算机、收音机等;

4、交通运输,如汽车、灯塔等;

5、农业生产;

6、其它。并且迈入21世纪,科技日新月异,各类新型的电子产品被研发出来,并进入平民百姓的生活,但是这些产品都需要有电源供应,缺了电源,这些新产品还是“英雄无用武之地”!而在我们的太阳能电池被不断推广到全球后,这个问题将会成为历史。其实太阳能电池可以应用于各方面,例如:作为一种特别电源,可以用在半导体收音机上,变成有阳光就可以听广播,这个使用于物资贫乏的西北部贫瘠地区;它还可以用与手机上,就像在为手机进行慢性充电,延长普通手机电池的使用期;还有,对于几个月才换一次电池的手表之类的,如果用的是太阳能电池,那么可以说是彻底免去了更换电池的麻烦„„如果有厂家研发出类似这样的产品,那么相信其市场肯定是十分的大!

太阳能电池已经经历了过去“被研发”与现在“被提高,被推广”两个阶段,相信到未来“被广泛使用”这一阶段不会再遥远,它在将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体!

第三篇:旅游业是现代发展得最快的产业之一

旅游业是现代发展得最快的产业之一。确实如此,旅游业的增长率通常已超过全球经济的增长率。有时在那些有阳光和大海的地方,似乎每天都会蹦出来一个新的度假胜地。地中海和加勒比海滨以及墨西哥,佛罗里达和夏威夷的太平洋海岸线,只是近年来被大力开发成旅游区中的少数几个。

旅游的目的多种多样。有些人旅游完全是为了娱乐或愉快,他们是度假者,有些人是出于健康原因,有些人是去走亲访友,这显然是因为世界各地的人口流动性越来越大。还有些人则是为了扩大知识面,他们信奉旅行可拓展视野的传统观念,由于这些人外出旅行的主要目的是娱乐,所以他们通常都可以被视为旅游者。当然,旅游者中还包括那些有公务在身的出差者,他们中有的是赋有具体使命的商务人员或政府官员,有的是参加会议的人士,他们常常劳逸结合,做到工作休闲两不误。

对于旅游者中的娱乐旅游者和公务旅游者这两大类,旅游行业的营销方法有所不同。娱乐旅游者对较为廉价的交通费以及其他低价位的促销活动反应较为积极,并因此而选择自己的旅游目的地。用专业术语来讲,娱乐旅游者组成了旅游业的价格弹性市场,而公务旅游者则属价格无弹性市场的对象。公务旅游者不以价格定旅程,他们预先定下所去之地,费用通常由他们的雇主支付,他们寻求可靠的而不是廉价的服务,他们去的地方多为大城市或工业中心而不是度假胜地。当然,许多会议现在也在度假胜地的酒店里举。然而,应该指出的是,一些大都市自身就是世界上最重要的旅游区,因而很难区分哪些属纯娱乐旅游,哪些属公务旅游。

第四篇:硅基太阳能电池的发展及应用

..硅基太阳能电池的发展及应用

摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。

关键词:硅基

太阳能电池

转换效率

1引言

二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速。中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40%--45%,非化石能源占一次能源消费的比重提高至少15%左右【6】。

目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类)

太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。这样形成的光生载流子由于热运动,向各个方向迁移。光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

图1典型的晶体硅太阳电池结构图【6】

由于太阳能能源有如此优越的特性,因此,大力发展可再生能源成为了当今世界的热门研究领域,从长远角度来看,在各种可再生能源技术光伏发电自20世纪90年代后半期进入了快速发展时期,最近10年和最近5年的太阳电池的年均增长率都达到了爆发性的水平。我国太阳能光伏产业的发展在世界光伏市场的拉动下快速发展起来。2007年我国太阳电池产量达到了1088 MW,占世界总产量的27.2%,超过了日本(920 MW)和欧洲(1062.8 MW),成为世界太阳电池的第一大生产国。到了2010年中国光伏电池产量己超过全球总产量的50%,目前己有数十家公司在海外上市,行业年产值超过3000亿人民币。太阳能光伏发电技术具有可持续发展的特点;最丰富的资源来源(太阳)和最洁净的发电过程【4】。

由于太阳电池研究涉及的学术与技术内容过于广泛,而且据近几年市场数据分析,硅基太阳能电池占太阳能电池总产量的98%,故本文只对当前生产化主要的硅基太阳能电池材料进行论述。

硅基太阳能电池的原理与特点

根据硅片厚度的不同,可分为晶体硅太阳能电池和薄膜硅太阳能电池两大类。本文主要论述以下几种硅基太阳能电池的基本原理:单晶硅太阳能电池,多晶硅太阳能电池,多晶硅薄膜太阳能电池,非晶硅薄膜太阳能电池,微晶硅薄膜太阳能电池。

晶体硅的发电过程大致如下:P型晶体硅经过掺杂磷可得N型 硅,形成P-N结,当光线照射到硅晶体的表面时,一 部分光子被硅材料吸收,光子的能量传递给硅原子,使电子发生跃迁,成为自由电子,在P-N结两侧聚 集,产生电位差。当外部接通电路时,在该电压的作 用下,将有电流流过外部电路产生一定的输出功率。

2.1 单晶硅太阳能电池

硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。

2.1.1 单晶硅的优点和不足

单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,虽然其转换效率高,但是制作单晶硅太阳能电池需要大量的高纯度硅材料,且工艺复杂,电耗很大池工艺影响,且太阳能电池组件平面利用率低,致使单晶硅成本价格居高不下。要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。

2.2多晶硅太阳能电池

目前,太阳能使用的多晶硅材料,多半是含有大量单晶硅颗粒的集合体,或用废弃单晶硅材料和冶金基硅材料熔化浇筑而成,其工艺过程是选择电阻率为100-300cm的多晶块料或单晶硅头尾料,经破碎,用1:5的氢氟酸液混合进行适当的腐蚀,然后用离子水冲洗呈中性,并烘干,用石英坩埚装好许多硅料,加入适当硼硅,放入浇铸炉,在真空状态下加以熔化,熔化后保持约20min,然后注入石墨铸模中,慢慢冷却后即基硅锭,然后切片加工成太阳能电池片,即多晶硅太阳能电池。

2.2.1 多晶硅太阳能电池的优点和不足

它的成本和单晶硅差不多,其转换约为12%左右,稍低于单晶硅太阳能电池,但是材料制造简便,总的生产成本较低,因此得到了大量发展。

2.3 多晶硅薄膜太阳能电池

通常的晶体硅太阳能电池是在厚度350-450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和溅射沉积法也可用来制备多晶硅薄膜电池【3】。2.3.1多晶硅薄膜太阳能电池的优缺点

多晶硅薄膜电池由于所使用的硅远较单晶硅少,又无效率衰退问题,并且有可能在廉价衬底材料上制备,其成本远低于单晶硅电池,而效率高于非晶硅薄膜电池,因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。2.4 非晶硅薄膜太阳能电池

非晶态硅,其原子结构不像晶体硅那样排列得有规则,而是一种不定形晶体结构的半导体。非晶硅属于直接带系材料,对阳光吸收系数高,只需要1 ùm厚的薄膜就可以吸收80%的阳光。非晶硅薄膜太阳能电池于1976年问世,非晶硅薄膜太阳能电池的成本低,便于大规模生产。由于硅原料不足和价格上涨,促进了高效使用硅的技术和非晶硅薄膜系太阳能电池的开发。非晶硅薄膜电池低廉的成本弥补了其在光电转换效率上的不足,未来将在光伏发电上占据越来越重要的位置。但是由于非晶硅缺陷较多,制备的太阳能电池效率偏低,且其效率还会随着光照衰减,导致非晶硅薄膜太阳能电池的应用受到 限制。目前非晶硅薄膜电池研究的主要方向是与微晶硅结合,生成非晶硅/晶硅异质结太阳能电池,这种电池不仅继承了非晶硅电池的优点,而且可以延缓非晶硅电池的效率随光照衰减的速度,目前单结非晶硅薄膜电池的最高转换效率为17.4%【3】。

2.4.1非晶硅薄膜太阳能电池优点与缺陷

非晶硅薄膜太阳能电池与晶体硅太阳能电池相比,具有重量轻、工艺简单、成本低、耗能少和便于大规模生产等优点,因此受到人们 重视,并得到迅速的发展。非晶硅薄膜太阳能电池首先实现商品化,也是目前产业规模最大的薄膜电池。

虽然非晶硅薄膜太阳能电池得到了广泛的研究和应用。但是,依然存在着很多问题需要去解决:y光学禁带宽度为1.7 eV,使得材料本身对太阳辐射光谱的长波区域吸收不敏感,限制了其光电转换效率;(2)光电转换效率随着光照时间的增长而衰弱,即所谓的光致衰退(S W)【2】效应,使得电池性能不稳定;(3)制备过程中,非晶硅的沉积速率较低,影响了非晶硅薄膜太阳能电池的商业化生产;(4)电池组件的后续加工困难,如Ag电极的处理问题;(5)在薄膜沉积过程中存在大量的负面杂质,如Oz , Nz和C等,影响薄膜的质量和电池的稳定性。2.5 微晶硅薄膜太阳能电池

微晶硅薄膜可采用与非晶硅兼容的技术制备,鉴于非晶硅良好的短波响应特性和微晶硅良好的长波响应特性,常用微晶硅作底电池,形成非晶硅/微晶硅叠层结构,可大幅度提高转换效率。通过诸多实验室的努力,微晶硅电池自1994年被报道以来,转换效率得到明显的提高。目前,单结微晶硅电池的效率已超过10%,微晶硅薄膜的制备方法有:基于高氢气稀释比,高功率密度的PECVI〕技术;用氢等离子体退火处理a-Si:H薄膜;电子回旋共振担CR)等离子体淀积技术;用热丝法(VV1J或Cat)技术【1】。2.5.1微晶硅薄膜太阳能电池的优势与不足

微晶硅薄膜太阳能电池具有过渡层结构,几乎没有s-w效应,稳定性好,可拓展太阳光谱范围,使其转换效率高,具有与非晶硅材料相同的低温工艺、工艺简单、便于大面积生产的优点,主要存在的问题就是其生长速率较低的问题,不利于降低制造成本。这将成为今后重点的研究方向。主流太阳能电池材料的比较

单晶硅太阳能电池是开发得最早、使用最广泛的一种太阳能电池,其结构和生产工艺已定型,产品已广泛应用于空间技术和其它方面单晶硅太阳能电池是由高质量的单晶硅材料制成的.目前,商用晶体硅光伏产品的光转化率约为20%左右.由于单品硅材料的制作成木昂贵,而半导体薄膜太阳能电池材料只需几微米厚就能实现光电转换.是降低成本和提高光子循环的理想材料,非晶硅薄膜太阳能电池是用非晶硅半导体材料制备的一种薄膜电池。非晶硅薄膜太阳能电池可以用玻璃、特种塑料、陶瓷、不锈钢等为衬底.多晶硅薄膜太阳电池是将多晶硅薄膜生长在低成本的衬底材料上作为太阳电池的激活层。纳米Ti0:半导体的化学性质稳定.纳米Ti0:半导体用做太阳能电池材料的原理与硅半导体相同.但TiO:是宽禁带(3.2eV)半导体化合物,应用于太阳能电池只有波长较短的太阳光(λ ≥387nm)才能被吸收.而这部分紫外线((300--400nm)只占到达地面上的太阳光能的4%-6%,太阳能利用率很低.提高太阳能吸收效率的途径是缩短Tin:半导体的禁带宽度使其吸收光谱向可见光扩展,可以通过金属离子掺杂、非金属离子注人、半导体复合以及染料敏化等几个方法来缩短Ti0:的禁带宽度。

从20世纪70年代起开始探索一些具有大共扼结构的有机化合物或金属配合物用做太阳能电池材料与无机半导体太阳能电池相比,有机材料制备太阳能电池具有制造面积大、制作简单、廉价、并且可以在可卷曲折叠的衬底上制备具有柔性的太阳能电池等优点.有机太阳能电池材料主要是一些具有大共扼结构的有机小分子花类化合物、有机染料分子、富勒烯及其衍生物等.有机小分子化合物的主要优势是制备和表征比较简单,化学结构很容易修饰,可以根据需要进行设计和改变官能团。

过渡金属配合物是一类新型的光电材料化合物,它可以兼有过渡金属离子的变价特性和有机分子结构的多样性,这类化合物的特点是过渡金属离子被有机配体所环绕,有机配体易于进行分子设计和分子裁剪,而过渡金属离子的d轨道或漱道上具有未成对电子,能形成特有的光电性质。目前用做太阳电池材料的金属配合物主要有菁类化合物和具有共扼结构的联毗啶过渡金属配合物。

染料敏化太阳能电池(Dye-sensitized Soar Cells, DSSCs).以半导体 Ti02薄膜为光阳极,并引入了染料敏化剂,使电池效率达到7.1%,这种电池的出现为太阳能电池的发展带来了新方法,它将带有发色团的染料分子引人到半导体中,大大增强了半导体TiO,捕获太阳光的能力。由于现在对界面电荷的分离机理还不是很明确,当电荷分离形成之后就会发生电荷的迁移电子移向正极而空穴移向负极,从而在两极间形成一定的电势,但在电荷的迁移过程中,也伴随着电荷的重新结合(重合)。电荷重合浪费了界面电荷分离所储存的电势能,极大地降低光电转化的效率.目前染料敏化太阳能电池材料还存在光电转换率低,或是电池材料的寿命短.因此寻找光转换效率高寿命长的光敏染料是染料敏化太阳能电池材料研究的重要方向。硅基太阳能电池的发展和应用前景 4.1 硅基的发展历程

硅基太阳能电池的发展可划分为三个阶段(如图1所示),每一阶段效率的提升都是因为新技术的引入。

图1电池效率发展路程图

1954年贝尔实验室Chapin等人开发出效率为6%的单晶硅太阳能电池到1960年为第一发展阶段,导致效率提升的主要技术是硅材料的制备工艺日趋完善、硅材料的质量不断提高使得电池效率稳步上升,这一期间电池效率在15%。1972年到1985年是第二个发展阶段,背电场电池(BSF)技术、“浅结”结构、绒面技术、密栅金属化是这一阶段的代表技术,电池效率提高到17%,电池成本大幅度下降。1985年后是电池发展的第三阶段,光伏科学家探索了各种各样的电池新技术、金属化材料和结构来改进电池性能提高其光电转换效率:表面与体钝化技术、Al/P吸杂技术、选择性发射区技术、双层减反射膜技术等。许多新结构新技术的电池在此阶段相继出现,如效率达24.4%钝化发射极和背面点接触(PERL)电池。目前相当多的技术、材料和设备正在逐渐突破实验室的限制而应用到产业化生产当中来。目前已经有多家国内外公司对外宣称到2008年年底其大规模产业化生产转换效率单晶将达到18%,多晶将超过17%。

4.2 硅基太阳能电池的应用前景

目前,硅基电池已广泛应用于工业、农业、商业、通信、军事、航火等领域。还包括家用电器以及公用设施。硅基电池的应用主要可分为3种类型:并网型、离网和家用电器产品。

4.2.1 并网

进入21纪以来,全球太阳能光伏并网发电并网容址增长了44.1倍.从2000年的28 7MW递增至2008年的29.85MW,年均增长率 达60.99%,同比2007年增长了72.65%.全球太阳能光伏并网发电并网累积总里增长10.5倍,从2000的1.435G增至2008年的16.4GW,年增长率为35.6%。世界各国都在楼宇和家居屋顶应用了太阳能电池,所发的电大都可以并网。4.2.2离网应用

与井网发电相比,离网发电具有灵活等特点,特点,始终占据着重的市场份领,如用于通信联络中继站的供电、边远山区小功率的生活用电等场合。在不少偏远地区如远离城市的农场、山区、葡萄园采用离网方式发电,如水泵的供电系统。功率可高达441.3KW。

4.2.3 家用电器应用

太阳能发电虽受昼夜、晴雨、季节的影响,但可以分散地进行,所以它适合于各家各户分散进行发电,而且要联接到供电网络上。太阳电池日益成为家用电器的“能源心脏”。

1.太阳能电话。以太阳能作能源的无线电话已在英国一家无线电公司问世。它利用顶端上装的太阳能接收板,可以不断给电池充电。使用者的声音通过无线电波输入附近的电话交换机,再传送到各地电话通讯网去。巴黎伏德瓦特公司制作的太阳能收费公用电话,耗电量极低,只要在阳光下充电几小时,便足够使用10多天。

2.太阳能冰箱。法国的太阳能冰箱以甲醇为制冰剂,每24小时可制冰10公斤,保鲜30公斤食物。印度研制出一种仓库用的大型太阳能冰箱,上部装的抛物线镜面将阳光集中在半导体网孔上,把光转换成电流,箱内温度保持在-2℃,可冷藏500公斤食品,每天还可制出25公斤冰来。

3.太阳能空调器。日本夏普电器公司制造的这种空调装置,当天气晴朗时,全部动力都由阳光供给,多云或阴天时才使用一般电源。期间的转换由控制系统自动完成,用它可使一间18平方米的居室室温保持在20℃左右,并较一般空调器节约电费60%以上。

4.太阳能电视机。芬兰研制的太阳能电视机只要白天把半导体硅光电池转换器放在有阳光的窗台上,晚上不需电源便可观看电视。转换器贮存的电能,可供工作电压为12伏的电视机使用3至4小时。印度研制的太阳能电视机,其能源吸收系统只要每天工作4小时,即使连续3天无太阳,也能正常接收信号播放节目。

5.太阳能照相机。日本制作的世界上第一架太阳能照相机,重量仅有475克,机内装有先进的太阳能电池系统,其蓄电池可连续使用4年。美国一家公司生产了一种新型的135照相机。它的光圈、速度均由微电脑自动控制,电力则由太阳能硒光电池提供,只要有光线就能供电。

5.总结

目前晶体硅电池仍然是硅基太阳能电池的主要部分,但由十成木、环保等发而的制约。为了寻找晶硅电池的替代品,人们除开发了硅基薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化嫁III-V族化合物、硫化福、硫化福及铜锢硒薄膜电 池等。但这些材料有些含有剧毒而制约其发展。

硅基薄膜凭借其而积大、成木低、工艺设备成熟、易集成、无毒、有多种廉价衬底选择以及适合制备柔性电池等优势,己经成为工业生产的一个重要组成部分。随着研究的深入,技术的进步和成木的进一步下降,薄膜电池将占据越来越多的市场份额,最终取代体硅材料成为太阳能电池的主要材料。薄膜电池的另一个优点是适合作为光伏建筑一体化(BIFV)的材料,非氢化非晶硅薄膜电池的生产线己有很多条,但其红外波段的响应较弱,受到光致衰

减效应的影响,组件效率较低。为了充分利用光谱减小光致衰减效应以提高效率,非晶微晶叠层电池己成为目前研究的一个热点。多晶硅薄膜电池的制备温度较高,耐高温衬底的成本

大致为组件制造成本的三分之一,因此寻找低成本的衬底和高效的低温制备技术和工艺艺是目前研究的一个重点。

参考文献

【1】申兰先。薄晶体硅太阳能电池。昆明,云南师范人学太阳能研究所。

【2】 鲁源坤,张敏刚。硅基薄膜太阳能电池及硅锗薄膜在其中的应用。山西太原,太原科技大学。

【3】铁生年,李星,李昀珺。太阳能硅材料的发展现状。青海西宁,青海大学先进材料重点实验室。

【4】 王昊鹰,近几年太阳能电池的研究进展与发展趋势。辽宁大连 大连理工大学。

【5】黄庆举,林继平,魏长河,.姚若河。硅太阳能电池的应用研究与进展。广东广州。华南理工大学电子信息学院,茂名学院物理系。

【6】汪建军,刘金霞。太阳能电池及材料研究和发展现状。宁波

第五篇:太阳能电池行业发展现状及前景预测分析

(复制转载请注明出处,否则后果自负!)

当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。

目前,全球太阳能电池市场竞争激烈,欧洲和日本领先的格局已被打破。尽管主要的销售市场在欧洲,但太阳能电池的生产重镇已经转移到亚洲。2011年,在光伏市场带动下,全球光伏电池产量持续增长,达到29.5GW。

在世界光伏市场的强力拉动下,中国太阳能电池制造业通过引进、消化、吸收和再创新,获得了长足的发展。中国太阳能电池产业的发展大致可分为三个阶段。第一阶段为1984年以后的研究开发时期;之后迎来了2001年以后的产业形成时期,第二阶段也是尚德等太阳能电池厂商开始创业的时期;2005年至今的第三阶段是中国太阳能电池产业的快速发展时期。

得益于国家对太阳能等新能源产业的政策、资金支持,2011年太阳能电池产业增长迅速,在世界10大太阳能电池生产商中有6家是中国企业。

前瞻产业研究院数据显示:2012年2月24日,工业和信息化部发布了《太阳能光伏产业“十二五”发展规划》,以促进太阳能产业可持续发展。该《规划》的提出对于太阳能光伏企业来说,对市场是个极大地刺激,也将引领光伏企业走上快速发展的轨道。《规划》将晶硅电池、薄膜电池、高效聚光太阳能电池列为“十二五”期间的发展重点。

中国已在太阳能电池生产制造方面取得重要地位,也将成为使用太阳能的大市场。近年来国家陆续出台了太阳能屋顶计划、金太阳工程、上网电价等诸多补贴扶持政策,在政策的支持下中国有望像美国一样,启动一个巨大的市场。

前瞻网《2013-2017年中国太阳能电池行业市场前瞻与投资战略规划分析报告》共十一章。首先介绍了太阳能电池的定义、种类、应用领域等,接着分析了国际国内太阳能电池产业的现状,然后具体介绍了单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池、多元化合物太阳能电池、薄膜太阳能电池的发展。随后,报告对太阳能电池行业做了技术研发分析、原料市场分析、关联产业发展分析、投资分析和未来前景趋势分析,最后分析了国内外太阳能电池重点生产企业的运营状况。

资料来源:前瞻网《2013-2017年中国太阳能电池行业市场前瞻与投资战略规划分析报告》,百度报告名称可看报告详细内容。

下载太阳能电池材料的制作是近些年来发展最快word格式文档
下载太阳能电池材料的制作是近些年来发展最快.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐