石墨烯纳米材料论文

时间:2019-05-13 14:14:23下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《石墨烯纳米材料论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《石墨烯纳米材料论文》。

第一篇:石墨烯纳米材料论文

石墨烯纳米材料 摘要:

石墨烯是继富勒烯、碳纳米管之后发现的一种具有二维平面结构的碳纳米材料,它自2004年发现被以来,成为凝聚态物理与材料科学等领域的一个研究热点。石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文简要介绍了石墨烯的性能特点、制备方法,着重对石墨烯纳米复合材料进行了介绍,对石墨烯纳米材料的制备方法、理化性质、及应用前景进行了详细介绍。关键词:石墨烯纳米材料复合物特性制备应用 引言:

石墨烯自2004年被发现以来,因其优异的电学、力学、热学、光学等性能,已经深深地影响了物理、化学和材料学领域,被广泛应用于复合材料、纳米电子器件、能量储存、生物医学和传感器等范围,表现出巨大的潜在应用前景。石墨烯是近年来发现的新型碳纳米材料,它基本具有碳材料的所有优点,而且还拥有更高的比表面积和导电率,能够克服碳纳米管的一些缺陷,使其成为了一个非常理想的纳米组合成分来制备石墨烯的复合材料。自从石墨烯被发现以来,越来越多科学家开始关注基于石墨烯的复合材料的研究。目前,石墨烯的复合材料己在催化、储能、生物、医药等领域展现出优越的性质和潜在的应用价值。例如,将石墨烯添加到高分子中,可以提高高分子材料的机械性能和导电性能;通过石墨烯与许多不同结构和性质的纳米粒子进行复合,制备出新型石墨烯

一、石墨烯的性能特点

1、导电性

石墨烯稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。

2、机械特性

石墨烯集成电路石墨烯是人类已知强度最高的物质,比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍。哥伦比亚大学的物理学家对石墨烯的机械特性进行了全面的研究。他们选取了一些10—20微米的石墨烯微粒。研究人员先是将这些石墨烯样品放在了一个表面被钻有小孔的晶体薄板上,这些孔的直径在1—1.5微米之间。之后,他们用金刚石制成的探针对这些放置在小孔上的石墨烯施加压力,以测试它们的承受能力。

在石墨烯样品微粒开始碎裂前,它们每100纳米距离上可承受的最大压力居然达到了大约2.9微牛。据科学家们测算,这一结果相当于要施加55牛顿的压力才能使1米长的石墨烯断裂。如果用石墨烯制成包装袋,那么它将能承受大约两吨重的物品。

3、饱和吸收

当输入的光波强度超过阈值时,这独特的吸收性质会开始变得饱和。这种非线性光学行为称为可饱和吸收,阈值称为饱和流畅性。给予强烈的可见光或近红外线激发,因为石墨烯的整体光波吸收和零能隙性质,石墨烯很容易就变得饱和。石墨烯可以用于光纤激光器的锁模运作。用石墨烯制备成的可饱和吸收器能够达成全频带锁模。由于这特殊性质,在超快光子学里,石墨烯有很广泛的应用空间。

4、自旋传输

科学家认为石墨烯会是理想的自旋电子学材料,因为其自旋-轨道作用很小,而且碳元素几乎没有核磁矩。使用非局域磁阻效应,可以测量出,在室温状况,自旋注入于石墨烯薄膜的可靠性很高,并且观测到自旋相干长度超过1微米。使用电闸,可以控制自旋电流的极性。

5、电子的相互作用

石墨烯中电子间以及电子与蜂窝状栅格间均存在着强烈的相互作用。科学家借助了美国劳伦斯伯克利国家实验室的“先进光源(ALS)”电子同步加速器。这个加速器产生的光辐射亮度相当于医学上X射线强度的1亿倍。科学家利用这一强光源观测发现,石墨烯中的电子不仅与蜂巢晶格之间相互作用强烈,而且电子和电子之间也有很强的相互作用。

二、石墨烯复合材料制备

由于石墨烯具有高强度、高电导率、高比表面积,用其对聚合物材料进行改性有望得到高性能的聚合物基复合材料,使复合材料具有高电导率、高强度、高热稳定性并具有一定的阻燃性,进一步扩大聚合物材料的应用范围。

先按照目标制备出表面改性的石墨烯,使其具有亲油或亲水性;再讲改性石墨烯与聚合物材料进行复合制备聚合物基/石墨烯复合材料。改性后的石墨烯可以更好地分散于聚合物基体中。此用途的石墨烯可取代价格昂贵的碳纳米管来填充聚合物,使聚合物基复合材料的性能及因公得到进一步提高。

三、常见石墨烯纳米材料

1、石墨烯/无机物纳米材料

石墨烯/无机物纳米材料是石墨烯与无机物复合的纳米材料,它兼具石墨烯与复合的无机物的优良特性。如:①石墨烯/SiO2纳米复合材料,它的电导率比石墨烯增大了很多,透射率也很好;②石墨烯/Pt纳米复合材料,它的催化效果比单纯的Pt要好很多,也可用于制作电极,效果也很好;③石墨烯/TiO2纳米复合材料,它的电阻约为原来的1/8,用于电的传输时,可以大大的减少电的损耗。

所以,石墨烯/无机物纳米材料相对石墨烯而言,许多性能更加优异。

2、石墨烯/聚合物纳米材料

石墨烯/聚合物纳米材料是石墨烯与聚合物复合的纳米材料,它兼具石墨烯与复合的聚合物的优良特性。如:①改性石墨烯/PMMA纳米复合材料,与PMMA相比,其弹性模量增加30%,硬度增加了5%;②石墨烯/聚苯乙烯(PS)纳米复合材料,它的电逾渗阀值与相同体积比的单壁碳纳米管(SWCNT)相当,而且分别SWCNT/聚酰亚胺和SWCNT/聚对亚苯基乙炔基的2倍到4倍;③石墨烯/泡沫有机硅纳米复合材料,它与未添加石墨烯的泡沫有机硅相比,石墨烯(0.25%)/泡沫有机硅纳米复合材料的起始分解温度提高了16OC,热分解终止温度提高了50OC,而且热降解速率也变慢了。

四、石墨烯纳米材料的理论与实际意义

石墨烯本身作为一种新型碳纳米材料,由于其特殊的结构特性使其在电学、力学、热学、光学等方面具有优异的性能,如量子霍尔效应、量子隧穿效应等。由于具有独特的纳米结构和优异的性能,石墨烯可应用于许多的先进材料与器件中,如薄膜材料、储能材料、液晶材料、机械谐振器等;石墨烯是单层石墨,原料易得,所以价格便宜,不像碳纳米管那样价格昂贵,因此石墨烯有望代替碳纳米管成为聚合物基碳纳米复合材料的优质填料。

石墨烯纳米复合材料是在石墨烯的基础上添加上具有特定性能的聚合物或无机物,使其在某一方面或某几方面具有更加优异的特性。这使得它在很多领域都有广阔的应用前景。石墨烯的优秀特性加上聚合物或无机物而形成的石墨烯纳米复合材料将实现高效、经济、环保等技术追求,这将迎来材料界的新革命。参考文献:

(1)杨常玲,刘云芸,孙彦平.石墨烯的制备及其电化学性能[J].电源技术 ,2010,34(2):177-180.(2)谢普,于杰,秦军.石墨烯的制备与表征[J].贵州化工,2010,35(4):20-22.

(3)张好斌,杨勇,卢朝晖.微孔PMAA/石墨烯导电纳米复合材料的制备与结构[C]/ /中国天津2009年全国高分子学术论文报告会.天津,2009.

(4)黄毅,梁嘉杰,张龙.石墨烯功能复合材料的制备及应用[C]/ /中国化学会第 27 届学术年会中日青年化学家论坛.北京:,2010.

(5)杨波,唐建国,刘继宪.石墨烯/苯丙乳液复合导电膜的制备[J].涂料工业,2010,40(9):5-8.

(6)张晓艳,李浩鹏,崔晓莉.TiO2/石墨烯复合材料的合成及光催化分解水产氢活性[J].无机化学学报2009,25(11):1903-1907

第二篇:碳材料领域专家盘点(石墨烯及碳纳米材料)

碳材料领域专家盘点(石墨烯及碳纳米材料)

本文为大家主要盘点石墨烯及碳纳米材料领域的部分专家,供大家参考,排名不分先后,如有遗漏欢迎补充指正。

Andre Geim

石墨烯发现者、2010年诺贝尔奖获得者、欧盟石墨烯旗舰计划战略委员会主任。

刘忠范

中国科学院院士、北京大学化学与分子工程学院教授、北京石墨烯研究院院长

主要从事低维材料与纳米器件、分子自组装以及电化学研究。发展了纳米碳材料的化学气相沉积生长方法学,建立了精确调控碳纳米管、石墨烯等碳材料结构的系列生长方法,发明了碳基催化剂、二元合金催化剂等新型生长催化剂,提出了新的碳纳米管“气-固”生长模型等。

刘兆平

中科院宁波材料所高级研究员,博士生导师

主要从事石墨烯和动力锂离子电池及其材料技术等。

许建斌

香港中文大学电子工程系教授,材料科学与技术研究中心主任

主要从事石墨烯及新型二维固态半导体电子及光电子材料与器件探讨;纳米技术在固态电子材料和器件中的应用(如扫描探针显微术和近场显微术,纳米材料和器件构筑与表征)等。

王立平

中科院宁波材料所研究员,博士生导师

主要从事新型强润一体化以及耐磨蚀薄膜材料及其航空航天和船舶领域应用研究工作。前不久其所在团队成功突破石墨烯改性防腐涂料研发及应用的技术瓶颈,开发出拥有自主知识产权的新型石墨烯改性重防腐涂料等。

王建涛

中国科学院物理研究所研究员,博士生导师

主要研究方向有三维碳烯的拓扑Node-Line物性;结构与高压相变;表面吸附与重构;金属的高温非谐效应等理论计算研究等。

任文才

中国科学院金属研究所研究员,博士生导师

主要研究方向为石墨烯等二维原子晶体材料的制备、物性与应用:高质量石墨烯及其宏观体材料的CVD控制制备;高品质石墨烯的化学法规模化制备;石墨烯在锂离子电池和超级电容器方面的应用;石墨烯在柔性光电器件和储能器件方面的应用探索;石墨烯在热管理、功能涂层、复合材料等方面的规模应用等。

林正得

中科院宁波材料所研究员

主要研究方向:化学气相沉积法(CVD)生长石墨烯薄膜与其它二维原子层材料、石墨烯/高分子复合材料、三维石墨烯结构、以及在热管理、传感器、能源领域的应用等。

冯新亮

上海交通大学化学化工学院教授

德国德累斯顿工业大学首席教授

主要从事二维纳米石墨烯的合成研究,宏量制备高质量二维石墨烯材料研究,合成水溶和油溶可加工石墨烯研究,基于石墨烯的二维纳米能源材料和电子器件研究,基于石墨烯电极材料在太阳能电池和场效应晶体管器件的应用研究,可控纳米结构功能碳材料、有机/无机杂化材料的设计合成及其在能源储存和转化的应用研究(主要基于超级电容器,锂离子电池,光解水,燃料电池电极材料和催化剂的研究)等。

高超

浙江大学高分子科学与工程学系教授

主要从事高分子基纳米化学与材料:

有机纳米大分子(树枝状聚合物、柱状聚合物刷及其它复杂结构/构造聚合物): 设计、合成、组装及应用;无机纳米材料的高分子化;生物--纳米化学、材料与器件;石墨烯纤维等方面的研究等。

孙立涛

东南大学电子科学与工程学院教授,博士生导师

主要从事新型纳米材料的可控制备与动态结构表征等研究工作。

李雪松

电子科技大学教授

主要从事石墨烯薄膜的制备及应用方面的研究等。

成会明

炭材料科学家,中国科学院院士,第三世界科学院院士,中国科学院金属研究所研究员。

主要从事先进炭材料的研究,促进了碳纳米管的研究与应用。制备出石墨烯三维网络结构材料、毫米级单晶石墨烯,发展了石墨烯材料的宏量制备技术等。

李永舫

高分子化学、物理化学专家,中国科学院院士。中国科学院化学研究所有机固体重点实验室研究员,苏州大学材料与化学化工学部特聘教授。

主要研究领域为新型富勒烯衍生物受体光伏材料。

马振基

左一为马院士

台湾国立清华大学,台湾高分子学会教授,理事长

主要研究领域为石墨烯的癌症诊断与治疗研究。

戴黎明

美国凯斯西储大学教授

主要研究领域为碳纳米材料(碳管)在医疗和能源应用。

康飞宇

清华大学教授

主要研究领域为石墨层间化合物,石墨深加工技术。

戴宏杰

斯坦福大学教授

主要研究领域为碳纳米管、石墨烯片。长期从事碳纳米材料的生长合成、物理性质研究、纳米电子器件研发,以及纳米生物医学以及能源材料等方面的研究,是国际碳纳米材料研究领域的领军人物之一。

刘开辉

北京大学研究员

主要研究领域为一维碳纳米管、纳米线,二维石墨烯等。

甘良兵

北京大学教授

主要研究领域为开孔富勒烯,杂富勒烯,富勒烯包合物等。

赵宇亮

中科院高能物理所研究员

主要研究领域为富勒烯在肿瘤治疗方法应用等。

朱彦武

中国科学技术大学教授

主要研究方向为石墨烯及其他新型碳材料的制备和表征;纳米材料的光电转换特性;高性能能量转换和存储器件研究等。

智林杰

国家纳米科学中心教授

主要研究方向为富碳纳米材料的构建与结构控制;高性能富碳纳米材料;富碳纳米材料在能源与环境领域的应用;重点研究以高效、清洁能源为应用背景的多功能富碳纳米材料的设计、制备、组装及其化学及物理性质的调节和控制等。

朱宏伟

清华大学材料学院教授、博士生导师

主要从事纳米材料制备、结构表征和性能研究等。

冷金凤

济南大学教授,有色合金及复合材料研究所副所长

长期潜心从事金属基复合材料制备及研究工作,近几年主要致力于纳米颗粒增强金属基复合材料的高品质制备技术及微观机制研究,在石墨烯增强金属基复合材料方面已申报多项技术发明专利并发表多篇论文。

史浩飞

中科院重庆绿色智能技术研究院微纳制造与系统集成研究中心副主任

主要从事微纳加工与新型材料研究。

邱介山

大连理工大学化工与环境生命学部炭素材料研究室主任

主要从事材料化工、能源化工、多相催化等方面的研究,涉及碳素、碳纳米材料等。

Rodney S.Ruoff

著名石墨烯专家、韩国基础科学研究院多尺度碳材料研究中心主任、韩国蔚山国立科技大学教授。在材料领域尤其在碳纳米材料领域有着深厚的造诣,曾经在金刚石、富勒烯、纳米碳管和石墨烯领域做出了多项杰出工他领导的研究小组最早研究了氧化石墨烯的制备与应用(Nature2006)、利用铜基底生长单层石墨烯薄膜(Science2009)并得到了厘米尺度石墨烯单晶(Science 2013)。

冯冠平

深圳清华大学研究院院长

冯冠平先生致力于石墨烯的产业化发展,从全世界带回70多名石墨烯领域的人才,成立了30多家石墨烯企业,被誉为“中国石墨烯产业奠基人”。

Stephan Roche

ICREA研究员,加泰罗尼亚纳米科学与技术研究所(icn2)纳米理论与计量组组长,理论物理学家

主攻量子传输和纳米材料设备的计算以及模型的发展。

卢红斌

复旦大学教授

主要研究方向为石墨烯及其他二维材料的制备研究;石墨烯复合材料及相应产品的制备;聚合物复合材料的制备及性能研究等。

海正银

中国原子能科学研究院博士

主要研究领域为石墨烯涂料核电应用。

Luigi Colombo

剑桥大学石墨烯中心博士

Antonio Correia

欧洲石墨烯大会主席

Francesco Bonaccorso

欧盟石墨烯旗舰计划路线图制定者、意大利技术研究院石墨烯中心储能负责人

Ahn Jong-Hyun

韩国成均馆大学柔性电子实验室教授

主要研究领域为石墨烯在柔性电子应用。

Kim Sang Ouk

韩国科学技术院首席教授

主要研究领域为石墨烯传感器。

吴忠帅

中科院大连化物所研究员

主要研究领域为石墨烯及二维材料与能源器件。

Jari Kinaret

欧洲石墨烯旗舰计划主任

主要研究领域为石墨烯和碳管。

Andrea C.Ferrari

欧洲石墨烯旗舰计划战略委员会主席

主要研究领域为柔性电子、传感器、生物医疗。

Vincenzo Palermo

欧洲石墨烯旗舰计划战略委员会副主任

Vladimir Falko

英国曼彻斯特大学国家石墨烯研究院主任

主要研究领域为双层石墨烯光电特性。

Byung Hee Hong

Graphene Research Laboratory Director

主要研究领域为石墨烯在光电器件、能源应用。

Soon Kyu Hong

韩国釜山国立大学教授

主要研究领域为碳管&石墨烯海水淡化。

Rahul Raveendran Nair

英国石墨烯工程创新中心教授

主要研究领域为石墨烯防腐涂料等。

杨世和

香港科技大学教授

主要研究领域为富勒烯新型光电转换材料。

Kenichiro Itami

日本名古屋大学教授

主要研究领域为筒状碳纳米带。

Robert J Young

英国石墨烯工程创新中心教授

主要研究领域为石墨烯增强复合材料等。

Seung Kwon Seol

韩国电气技术研究所KERI教授

主要研究领域为石墨烯、碳管与3D打印等。

Wang Qijie

新加坡南阳理工大学副教授

主要研究领域为石墨烯图像传感器等。

Vittorio Pellegrini

意大利技术研究院(IIT)石墨烯中心主任

主要研究领域为石墨烯制备及其在储能、高分子复合材料、纤维复合材料等方面的应用等。

Il-Young Song

韩国三星集团高级工程师

主要研究领域为石墨烯大薄膜制备及设备开发等。

Tianyi Yang

日本东芝研究科学家

Tao Hong

日本索尼锂锂电池研发工程师

Kosuke Nagashio

日本东京大学教授

主要研究领域为石墨烯电子特性、界面行为等。

戴贵平

北卡中央大学教授

主要研究领域为石墨烯锂离子电池。

Gianluca Fiori

比萨大学信息工程学院教授

Alberto Bianco

法国国家科学研究中心教授

刘建影

上海大学&查尔姆斯理工大学教授

阮殿波

宁波中车新能源科技有限公司博士(总工程师)

张华

南洋理工大学教授

主要研究方向

1.Synthesis of noble metal nanostructures;

2.Investigation of electrocatalytic behavior of novel nanomaterials;

3.Synthesis of covalent organic frameworks(COFs);

4.Computational chemistry related to novel 2D nanomaterials(such as metal dichalcogenide nanosheets, metal and semiconducting nanoplates, etc.)。

Norbert Fabricius

卡尔斯鲁厄理工学院教授(德国)

在卡尔斯鲁厄理工学院主要负责“微系统技术”“纳米技术”等项目。

Felice Torrisi

博士,剑桥大学剑桥石墨烯中心的研究助理,三一学院研究员。

主要研究领域涉及石墨烯和二维纳米材料分散体,油墨和涂料的开发以及它们在复合材料领域中的应用。基于Felice Torrisi博士的研究成果在印刷柔性/可拉伸电子和光电子器件中有良好的应用。

Pedro Gómez-Romero

西班牙巴塞罗那材料科学研究所高级研究科学家

主要从事导电高分子与氧化物材料的研究,并开发其在燃料电池,锂电池和超级电容器等领域的应用。

Dusan Losic

澳大利亚石墨烯研究和产业化领军人物、阿德莱德大学石墨烯中心主任

其团队研究涵盖石墨烯化学,材料科学,工程学,生物学,纳米应用医药学等多个学科,以及新纳米材料的研究工艺与设备,旨在解决健康、环境和农业等方面的现实问题。

Alain Pénicaud

法国国家科学研究中心主任

发展了溶解碳纳米材料(碳纳米管,石墨烯等)的方法,特别是熵驱动的热力学与解离,最重要的是溶解过程无需超声。

吴恒安

中国科学技术大学教授

主要研究领域为石墨烯阻隔材料等。

王晶晶

中船重工725所厦门分院副院长

主要研究领域为石墨烯重防腐涂料等。

金章教

香港科技大学教授

主要研究领域为碳纳米管/聚合物纳米复合材料等。

张亚妮

西北工业大学副教授

主要研究领域为定向碳纳米管及其连续纤维在储能与轻质防弹领域的应用等。

Barbaros ZYILMAZ

新加坡国立大学石墨烯研究中心主任

主要研究领域为石墨烯柔性穿戴等。

第三篇:石墨烯相变材料论文

石墨烯相变材料的研究

摘要:随着热管理及热存储技术的发展,储热技术逐渐扮演着越来越重要的角色,于此同时寻找高性能的储热材料也成为了研究热潮。近年来,相变材料的发展为储热技术带来了福音,相比于其他热导率低,储热性能差的储热材料,相变材料有着天然的优势。而在相变材料中,石墨烯相变材料是如今发现的储热性能最优异的相变材料,通过将石墨烯作为填充材料,相变材料的储热能力大大提升。

关键词: 热存储 相变材料 储热材料 石墨烯 前言:

在热能的存储和利用过程中,常常存在于在供求之间在时间上和空间上不匹配的矛盾,如太阳能的间歇性,电力负荷的峰谷差,周期性工作的大功率器件的散热和工业余热利用等。相变储能材料通过材料相变时吸收或释放大量热量实现能量的储存和利用,可有效解决能量供求在时间和空间上不匹配的矛盾。因此,相变储能技术被广泛应用于具有间歇性或不稳定性的热管理领域,如航空航天大功率器件的管理,周期性间歇式电子工作器件的散热,太阳能利用,电力的“移峰填谷”,工业废热余热的回收利用,民用建筑的采暖及空调的节能领域等。近年来,相变储能技术成为能源科学和材料科学领域中一个十分活跃的前沿研究方向。

相变储能材料具有储能密度大储能释能过程近似恒温的特点。但多数相变储能材料存在热导率低,换热性能差等缺点。采用具有高导热,低密度,耐腐蚀和化学稳定性好等优点的碳材料对其进行强化传热,可有效提高系统换热效率。常用的固-液定型相变储能材料实际上是一类复合相变材料,主要是由两种成分组成:一是工作物质;二是载体基质。工作物质利用它的固-液相变进行储能工作物质可以是各种相变材料,如石蜡,硬脂酸,水合盐,无机盐和金属及其合金材料。载体基质主要是用来保证相变材料的不流动性和可加工性,并对其进行强化传热。

石墨烯是一种新型碳材料,它具有由单层碳原子紧密堆积而成的二维蜂窝状紧密堆积结构。它是构建其他维度炭质材料的基本单元。石墨烯本身具有非常高的导热系数,并兼具密度小,膨胀系数低和耐腐蚀等优点有望成为一种理想型散热材料。将石墨烯作为强化传热载体,有可能克服单一相变材料热导率低的缺点,缩短复合体系热响应时间,提高换热效率实现复合材料传热和储热一体化。

本文通过查阅大量文献以及亲自做实验得出了一些数据和结论。正文

1.根据同济大学田胜力、张东、肖德炎、向阳等人2006年在《材料开发与应用》上发表的文章,他们对脂肪酸相变储能材料的热循环行为进行了系统的研究试验。试验选用了化学纯的癸酸、月桂酸、肉豆蔻酸和棕榈酸等四种脂肪酸为研究对象,利用差示扫描量热技术(DSC)测定了经过56次、112次、200次和400次反复热循环的相变材料的融化温度和融化潜热,加速热循环试验结果显示:癸酸融化温度范围变窄了4℃左右,肉豆蔻酸融化温度范围变宽了3℃左右,月桂酸和棕榈酸的融化温度范围变化不明显,其中以棕榈酸的融化温度变化最小。随着热循环次数的增加,相变材料的融化初始温度和融化潜热变化较小,且是没有规律的。在400次左右的热循环范围内,这些脂肪酸具有较好的热稳定性,有作为潜热储存材料的应用潜力。且此四种脂肪酸的融化温度在30℃到60℃之间,适于用作绿色建筑材料及其他室温范围内的潜热储存过程。考虑到相变材料的使用时间可能更长,因此要测试以上脂肪酸长期作为潜热储存材料的稳定性和可行性,需要更多次数的加速热循环实验来验证。而Ahmet Sari在研究纯度为工业级的月桂酸、肉豆蔻酸、棕榈酸是发现,经过1200次热循环后,这些脂肪酸的融化温度均逐渐降低,降低最大值为6.78℃,并且,脂肪酸的融化温度变宽了。这与上文实验结果有所出入,可能是由于脂肪酸原材料的纯度和产地不同造成的。因此,原料的选取对材料的性能有很大影响。

2.2012年1月20日,中国科学院上海硅酸盐研究所的黄富强等人申请了他们的最新专利:三维石墨烯/相变储能复合材料及其制备方法。三维石墨烯/相变储能复合材料的特征在于石墨烯与相变储能材料原位复合,其中以具有三维结构的多孔石墨烯作为导热体和复合模板,以固-液相变的有机材料作为储能材料和填充剂。可以采用兼具曲面和平面特点的泡沫金属作为生长基体,利用CVD方法制备出具有三维连通网络结构的泡沫状石墨烯材料。通过该方法制备的石墨烯材料完整的复制了泡沫金属的结构,石墨烯以无缝连接的方式构成一个全连通的整体,具有优异的电荷传导能力,巨大的比表面积,孔隙率和极低密度。并且,这种方法可控性好,易于放大,通过改变工艺条件可以调控石墨烯的平均层数,石墨烯网络的比表面积,密度和导电性。以金属模板CVD法制备的三维石墨烯泡沫具有丰富的孔结构特征,其比表面积高,孔壁孔腔高度连通,为基体材料提供可复合填充的空间。若将三维多孔石墨烯和相变材料复合,相变储能材料被分隔在各个孔腔,与石墨烯壁紧密结合,有效热接触面积大幅度提高,高度连通的石墨烯三维导热网络通道将快速实现系统换热。另一方面多孔石墨烯的毛细吸附力将液态相变储能材料局域化,可有效防止渗透。

3.2012年6月来自于中国科学院能源转换材料重点实验室,上海硅酸盐研究所的周雅娟,黄富强等人发表了一篇名为太阳能材料和太阳能电池的论文,这篇论文重点讲解了他们最新研制出的一种由石墨烯三维气凝胶(GA)和硬脂酸(OA)组成的相变材料。GA是通过石墨烯氧化物在热水表面反应制得,三维石墨烯网络的空隙尺寸只有几微米而且薄壁墙是石墨烯片层堆积而成,OA通过GA的毛细管力牵引下进入到GA中。GA/OA复合材料的热稳定性达到了2.635W/mk,是OA的14倍。GA/OA复合材料的短暂升温和冷却过程是在为热能量存储做准备。GA是一种低密度材料因此在复合材料中仅占15%的比重,这种复合材料能够大大减少或消除材料内部的热电阻,表现出一种高储热的能力,达到181.8J/g,与独立的OA材料非常接近,研究中发现,大多数相变材料的热储存能力都较低,为了提高材料的热传递能力,金属泡沫添加剂进入了专家们的视野,然而他们进一步发现金属泡沫添加剂与原材料不兼容。经过数次实验得出的结论,石墨烯材料具有很好的热稳定性和热传递能力,并且与原材料兼容。由石墨烯片层组成的三维网络结构在相变材料领域有着巨大的潜力。

4.来自于浙江杭州辐射研究所的邢芳,李悟凡等人发表了关于烷烃类相变材料的文章。烷烃及其混合物由于自身的中低温度热能量储存能力已经被广泛应用于相变材料中。在这些烷烃中,熔化温度为37度的二十烷已经出现在诸如电子领域的基于能量储存的被动热管理技术中。为了提高二十烷的热导性,将石墨烯纳米片添加进二十烷这个课题正在试验中。这种复合相变材料是将石墨烯纳米片均匀分布在液体的二十烷中。通过扫描量热计测量它的热融合和融化点,我们发现在10度的时候热传导能力整整增加了4倍,这表明石墨烯纳米片相对于传统的一些填充来说有着更好的表现。石墨烯纳米片的两维平面形态降低了热表电阻,这也是为什么它效果这么好的原因。扩大的石墨烯片层有着高导电性和低密度性,能有效地增强相变材料的热性能。

5.同济大学材料科学与工程学院的田胜力、张东、肖德炎等人利用多孔石墨的毛细管作用吸附硬脂酸丁酯制成了一种定形相变材料的相变温度、相变潜热和热稳定性,得出硬脂酸丁酯含量的临界值。研究表明,硬脂酸丁酯与纳米多孔石墨形成的定形相变材料相变温度合适、相变潜热较大、热稳定性好,是适合于在建筑墙体中使用的相变材料。对不同含量的硬脂酸丁酯/多孔石墨复合材料利用差热扫描仪进行DSC测试显示,相变复合材料的峰值温度为26℃,与纯硬脂酸丁酯的熔点相同,即定形相变材料的熔点不变,为硬脂酸丁酯的熔点。定形材料的潜热随硬脂酸丁酯含量的变化而变化,硬脂酸丁酯含量越高,定形相变材料的相变潜热越大,近似呈线性关系。此定形相变材料的蓄热性能、均匀性和热稳定性好,具有较大的相变潜热,其相变温度在26℃,适合做室温相变材料,有助于建筑节能。此定形相变材料中硬脂酸丁酯的含量又一个渗出临界值,当硬脂酸丁酯质量含量达到90%时,有细微渗出,使用时建议把含量控制在85%以内。这种定形相变材料在经过多次热循环之后其相变潜热变化较小,具有良好的热稳定性。因此,硬脂酸丁酯/多孔石墨相变材料是较好的可应用于建筑墙体的相变材料。

6.2013年,新乡学院能源与燃料研究所的周建伟等人以氧化石墨烯为基质、硬脂酸为储热介质用液相插层法成功制备了硬脂酸/氧化石墨烯相变复合材料。其中以氧化石墨烯维持材料的形状、力学性能,把硬脂酸嵌在片层结构的氧化石墨烯基质中,通过相变吸收和释放能量,提高其储热、导热性能和循环性能。该相变材料具有适宜的相变温度和较高的相变潜热,相变材料与基质具有较好的相容性,在相变过程中没有液体泄漏现象,复合相变储热材料储/放热时间比硬脂酸减少,且热稳定性良好。实验表明,硬脂酸质量分数为40%的硬脂酸/氧化石墨烯复合相变材料的相变温度为67.9℃,相变潜热为289.2J/g。经过连续冷热循环试验发现,复合相变材料的储热/放热时间比纯硬脂酸缩短,相变温度和相变潜热变化较小,表明硬脂酸/氧化石墨烯复合相变材料具有良好的热稳定性和兼容性。因此,通过此方法一方面将硬脂酸局限在片层结构中,解决了相变过程中的渗出泄露问题;另一方面,利用氧化石墨烯良好的热传导性提高复合相变材料的传热效率,弥补了硬脂酸在导热、换热方面的缺陷。

7.2013年10月12日到10月16日,在上海举办的中国高分子学术论文报告会上,四川大学高分子材料科学与工程学院亓国强等人提出了他们的最新成果:聚乙二醇/氧化石墨烯定型相变储能材料的制备与性能研究,研究发现聚乙二醇(PEG)是一种性能优良的固-液相变储能材料。相变过程中会发生熔体流动泄露,故需要对其进行封装,但封装又会降低其热导率,影响工作效率,增加成本。因而加入另一种物质作为支撑定型材料,制备复合定型相变材料成为另一种选择。但通常过高的添加量会严重影响材料的储能性能。于是通过向 PEG 中加入氧化石墨烯(GO)作为定型支撑材料,用溶液共混法在 GO 含量仅为 8%时成功制备了 PEG/GO 定型相变储能材料。该材料在超过熔点一倍时仍保持形状稳定。GO 的加入对相变材料熔点基本没有影响,但在低含量下促进结晶,当含量高于 4wt%时阻碍结晶的进行。相变潜热随 GO 含量的提升有所下降,但在能维持材料定型的最低含量(8wt%)时,仍高达 135 J/g,可以有效应用于储能领域。该材料在经历 200 次升降温循环后,相变温度和相变潜热变化不大,较稳定,具有良好的可重复使用性。

8.远在大洋彼岸,来自于加州大学河滨分校,加利福尼亚大学的Pradyumna Goli, Stanislav Legedza, Aditya Dhar 等人一直在进行关于锂电池的研究。锂电池在在移动通讯和交通动力中扮演着重要角色,但是由于其自身的自加热作用使得使用寿命大大缩短,为了解决这一问题,学者们经过大量实验发现锂电池的可靠性通过将石墨烯作为填充材料能够大大的改善。传统的热管理电池由于其相位只在一个很小的温度范围内变化,减小了电池内温度的上升,故只能依赖于潜在的储热能。而将石墨烯掺入碳氢化合物相变材料中可以将其导电能力提高到原来的两个数量级倍,同时还保持潜储热能力。显热-潜热相结合的热传导组合能够大大地减少锂电池内部温度的上升。储热-热传导的方法即将在锂电池和其他类型电池的热管理领域引领一场变革。

9.2008年4月24日来自于首尔崇实大学工学院建筑系的Sumin Kim a, Lawrence T.Drzal b等人研制出了一种具有高导电性和高储热能力的相变材料。使用剥离的石墨烯纳米片,石墨烯相变材料可以提高在液晶中的高导电性,热稳定性以及潜储热能力。在扫描电子显微镜显示下,石墨烯相变材料均匀分布在液晶中,而良好的均匀分布意味着高导电能力。石墨烯复合相变材料的热稳定能力在石墨烯内部结构的帮助下得到提升。而且,由于相变材料的电热稳定性,石墨烯复合相变材料具备了可持续再生能力。石墨烯相变复合材料在差示扫描热量法的热曲线中有两个峰,第一次在固-固过渡阶段,温度较低,峰显示为35.1度;第二次是固-液相变阶段时温度较高,峰显示为55.1度。石墨烯可以在保有其潜储热能力的情况下提高材料的热稳定性。相变材料具有高储热,低成本,无毒和无腐蚀性等特点而具有美好的前景。最近,一些无机,有机以及它们的混合物正在被应用于相变材料中,成为热门的研究课题。

10.Fazel Yavari等人在2011年也就石墨烯作为改性添加剂改良十八醇相变材料在《Physical chemistry》上发表了文章。和很多有机相变材料一样,十八醇也具有热导率低,换热性能差,以及存在泄漏问题等缺点。Fazel Yavari等人的研究表明,由于石墨烯低密度、高导热的特点,添加很低含量的石墨烯,就可以达到显著提高热导率、改良十八醇的目的。然而由于部分相变材料分子被限制在石墨烯层间空隙中,在工作温度范围并没有发生相变,从而使加入石墨烯后的复合材料的相变焓低于原相变材料,造成储热能力的损失。实验中,当石墨烯含量(质量分数)达到4%时,材料的热导率增加到原来的2.5倍,此时其相变焓只降低了15.4%。而如果用银纳米线代替石墨烯,要达到同等的热导率,需要使其含量达到45%,并带来高达50%的相变焓损失。综合实验表明,相比于其它微型添加材料,石墨烯能在不造成明显储热损失的前提下明显改良有机相变材料的热性能,为通过潜热的储存/释放实现热管理和热保护提供了新的可行性方案。

11.Jia-Nan Shi ,Ming-Der Ger等人2013年在期刊《CARBON》上发表文章,阐述了有关石墨烯提高石蜡导热系数的研究成果。实验另辟蹊径,对比了剥离石墨薄片和石墨烯作为改性添加剂对于石蜡相变材料的不同影响。实验结果表明,剥离石墨薄片带来的热导率增量更高,石墨含量为10%的石蜡/石墨薄片复合材料的热导率为纯石蜡的十余倍。石墨烯表现出了极好的导电性,石蜡/石墨烯的电导率要远高于石蜡/石墨薄片,但是其热导率的增量比石墨薄片小。原因在于,虽然单层石墨烯热导率极高,但是石墨烯片层间微小空隙内存在的大量界面严重阻碍了热传导。同时,实验也发现,石墨烯在定形方面的作用要远过于石墨薄片。石墨含量2%的石蜡/石墨烯相变复合材料中,石蜡能在185.2℃高温下保持形态,这远远超过了石蜡相变的温度范围。而石蜡/石墨薄片复合材料中石蜡只能保持形态到67.0℃。少量的石墨烯和剥离石墨薄片都能作为低成本、高效率的改性添加剂应用于石蜡相变材料的导热和定形方面的改良。

12.马来西亚的Mohammad Mehrali等人对石蜡/石墨烯相变复合材料进行了系统的研究和测试。该项目应用了SEM、FT-IR、TGA、DSC等设备对制得的石蜡/石墨烯复合材料的材料特性和热学性能进行了测试和分析。所测试的石蜡质量分数为48.3%的样品在相变过程中无泄漏现象发生,为定形相变材料。SEM图像显示石蜡嵌入了石墨烯片层间的孔隙。FT-IR分析结果显示石蜡与石墨烯之间没有化学反应发生。试验进行了2500次熔化/凝固热循环检测来确认其热可靠性和化学稳定性。TGA测试结果显示,氧化石墨烯增强了复合材料的热稳定性。该相变复合材料的热导率从0.305(W/mk)显著提升到0.985(W/mk)。测试结果表明,石蜡/氧化石墨烯复合材料具有良好的热学性能、热可靠性、化学稳定性和导热性,很适合做热管理和热储存材料。总结:

相变储能材料,通过材料相变时吸收或释放大量热量实现能量的储存和利用,以其巨大的相变潜热,在未来的能源利用和热管理领域具有很广泛的开发和应用价值。而大多数相变材料存在的导热率抵、换热性能差、相变过程发生泄漏等缺陷使其很难直接被应用于生产生活中。因此,需要一种改性填充材料来增加相变材料的导热换热性能,同时需要对相变材料进行定形和封装。而石墨烯材料的发现和研究成果的公布,给相变材料的研究和应用指明了道路。一方面,石墨烯的高导热性能很好地改善了相变材料的热性能,同时,其良好的化学稳定性和热学可靠性使其作为改性添加剂不与相变材料本体发生化学反应;另一方面,低密度、高强度的石墨烯结构能够使复合材料在较低石墨烯含量下就达到所要求的定形效果,因此,相比其他改性添加剂,石墨烯对相变材料的相变温度、相变潜热和储热能力的减益效果要小得多。正是从这两方面出发,石墨烯作为导热定形的改性材料,在相变储能材料领域得到广泛认可和应用。大量实验采用了以相变材料作为工作物质,通过其相变过程储/放热,同时以石墨烯作为载体基质,增加材料导热性能和不流动性的实验思路进行相变导热材料的设计、制备和改良。相信随着对石墨烯研究的深入和石墨烯制备工艺的进步,石墨烯会以更突出的性能改良相变材料,从而获得更有实践和应用价值的石墨烯/相变复合储能材料,为能源可持续和热管理领域带来更大的发展,为人类创造出更科学、更环保、更舒适的生活环境。

参考文献:

【1】田胜力, 张东, 肖德炎, 等.脂肪酸相变储能材料热循环行为的试验研究[J].材料开发与应用,2006,21(1):9—12.【2】亓国强 李亭 杨伟 谢邦互 杨鸣波 聚乙二醇/氧化石墨烯定型相变储能材料的制备与性能研究 成都 四川大学高分子科学与工程学院 2013 【3】Yajuan Zhong Mi Zhou Fuqiang Huang Tianquan Lin Dongyun Wan Solar Energy Materials and Solar Cells Beijing State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, 2013 【4】Xin Fang,†,‡ Li-Wu Fan,*,†,‡ Qing Ding,†,‡ Xiao Wang,†,‡ Xiao-Li Yao,†,‡ Jian-Feng Hou,† Zi-Tao Yu,†,§Guan-Hua Cheng,∥ Ya-Cai Hu,† and Ke-Fa Cen§ Increased Thermal Conductivity of Eicosane-Based Composite PhaseChange Materials in the Presence of Graphene Nanoplatelets Zhejiang 2012 【5】田胜力, 张东, 肖德炎.硬脂酸丁酯/多孔石墨定形相变材料的实验研究[J].节能,2005,11:5—6.【6】周建伟, 程玉良, 王储备 等.硬脂酸/氧化石墨烯复合相变储热材料研究[J].化工新型材料,2013,41(6):47—49.【7】黄富强 仲亚娟 陈剑 万冬云 毕辉 三维石墨烯/相变储能复合材料及其制备方法 上海市长宁区定西路1295号 中国科学院上海硅酸盐研究所 2012 【8】Pradyumna Goli, Stanislav Legedza, Aditya Dhar, RubenSalgado, Jacqueline Renteria and Alexander A.BalandinGraphene-Enhanced Hybrid PhaseChange Materials for ThermalManagement of Li-Ion Batteries USA Nano-Device Laboratory, Department of Electrical Engineering and Materials Scienceand Engineering Program, Bourns College of Engineering, University of California 2013

【9】Sumin Kim a,Ã, Lawrence T.Drzal b Solar Energy Materials & Solar Cells USA Department of Architecture, College of Engineering, Soongsil University, Seoul 156-743, Republic of Korea Composite Materials and Structures Center, College of Engineering, Michigan State University, East Lansing, 2008 【10】Fazel Yavari, Hafez Raeisi Fard, Kamyar Pashayi,etc.Enhanced Thermal Conductivity in a Nanostructured Phase Change Composite due to Low Concentration Graphene Additives[J].J.Phys.Chem.C 2011, 115, 8753–8758.【11】Jia-Nan Shi , Ming-Der Ger , Yih-Ming Liu.Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J].CARBON,51(2013): 365—372.【12】Mohammad Mehrali, Sara Tahan Latibari, Mehdi Mehrali.Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite[J].Energy Conversion and Management,67(2013): 275—282.

第四篇:石墨烯前景

2013年1月,欧盟委员会将石墨烯列为“未来新兴技术旗舰项目”之一;

十二五规划

石墨烯是新材料中最为“时髦”的一员。它具有超硬、最薄、负电子的特征,有很强的韧性、导电性以及导热性。这使其能够广泛应用于电子、航天、光学、储能、生物医学等众多领域,拥有巨大的产业发展空间。

因此,石墨烯在2004年被发现后就迅速引发全球范围内的研究热。近年来我国在石墨烯研发应用方面的研究不断加强,各地政府和有关机构加大力度扶持和推动石墨烯产业化发展。

2013年6月,内蒙古石墨烯材料研究院正式成立。这是我国首个与石墨烯材料相关的综合性研究机构和技术开发中心。

2013年7月13日,在中国产学研合作促进会的支持下,中国石墨烯产业技术创新战略联盟正式成立。该联盟已向有关部门上报了无锡、青岛、宁波、深圳四个地方,作为石墨烯产业研发示范基地。江苏省、山东省等省级石墨烯联盟已于2013年陆续成立。

2013年12月18日,无锡市发布《无锡石墨烯产业发展规划纲要》,规划建立无锡石墨烯产业发展示范区和无锡市石墨烯技术及应用研发中心、江苏省石墨烯质量监督检验中心。力争把无锡市打造成国家级石墨烯产业应用示范基地和具有国际竞争力的石墨烯产业发展示范区。

2013年12月20日,宁波年产300吨石墨烯规模生产线正式落成投产。

与此同时,上海浦东新区也正筹备建立临港石墨烯产业园区,并力争国家石墨烯检验监测中心落户浦东。

石墨烯产业遍地开花。据记者了解,目前,无锡市已设立2亿元专项资金,通过补贴、配套、奖励、跟进投资、股权投资等方式,进一步扶持石墨烯产业发展;宁波为了扶持石墨烯产业发展,也拿出了千万元以上的扶持资金。业内人士表示,作为一种理想的替代型材料,石墨烯一旦实现产业化其产值至少在万亿元以上。

推进产业结构优化

第五篇:石墨烯学习心得

石墨烯学习心得

最近这段时间断断续续搜集了很多纳米材料、半导体物理还有石墨烯的相关资料,主要是来自万方数据网、超星学术视频网站、百度文库还有一些相关网页博客资料。了解到了很多之前闻所未闻的知识,比如“纳米材料的神奇特性、纳米科技潜在的危害”等等。

对于石墨烯,主要有如下几方面不成熟的想法,还望老师您来指正。

(一)在石墨烯新奇特性以及宏观应用预测方面

有人认为,石墨烯的这些新奇的特性以及预期应用并不能推广到宏观尺寸。

第一是认为很多实验数据都是来源于对微纳米级单层石墨烯的实验研究,不能把纳米微米级观察和测试到的数据无限夸大到宏观应用;

第二是认为单层悬浮石墨烯的特异性是依靠其边界碳原子的色散作用而稳定存在,大面积的单层悬浮石墨稀不可能稳定存在。第三是认为目前的大面积石墨烯的应用实例存在相当大的褶皱以及碳原子缺失。因而否定很多2010年诺贝尔物理奖的公告中对于石墨稀的宏观应用预测,并主张继续深入石墨烯微观性能研究,比如半导体器件等研究。

我想:我们最好还是不能放弃石墨烯在宏观尺度上应用的希望,应该尽最大努力用各种手段去克服所谓的褶皱、碳原子缺失等等导致石墨烯性质不能稳定存在的负面因素,比如采用衬底转移(CVD)的方式所制大面积石墨烯透明电极尺寸的方法(虽然制得的石墨烯还有很多的缺陷,但至少证明大面积石墨烯还是有可能稳定存在并最终为我们所用的吧,毕竟有宏观实际应用的材料才更有可能是有发展前景的新型材料)。

(二)在石墨烯制备工艺方面 我们知道,石墨烯非常有希望在诸多应用领域中成为新一代器件,但这些元件要达到实际应用水平,还需要解决很多问题。那就是如何在所要求的基板或位臵制作出不含缺陷及杂质的高品质石墨烯,或者通过掺杂(Doping)法实现所期望载流子密度的石墨烯。用于透明导电膜用途时能否实现大面积化及量产化,而用于晶体管用途时能否提高层控制精度,这些问题都十分重要。今后,为了探寻石墨烯更广阔的应用领域,还需继续寻求更为优异的石墨烯制备工艺,使其得到更好的应用。

(三)石墨烯在纳米存储器上的应用前景

传统的半导体工艺技术已逐渐逼近物理极限,难以大幅度提高存储器的性能,越来越难以满足人们对存储器的要求,要想有突破性的进展,就必须另辟蹊径,寻找新的原理和方法。

第一是因为传统半导体存储器存在容量小数据易丢失等弊端。第二是因为现代化信息爆炸社会迫切要求新型的大容量存储器的出现。

第三因为是人们对信息存储的安全性要求越来越高。最后,假如纳米存储技术能够实现的话,届时我们电脑中的存储设备也许会以PB为单位计算,而因存储介质损坏导致数据丢失的烦恼也将远离我们。所以我觉得:要是可能的话,以石墨烯为介质的存储器,应该是一个不错的研究方向。

下载石墨烯纳米材料论文word格式文档
下载石墨烯纳米材料论文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    石墨烯纳米银线金属网格对比分析

    石墨烯/纳米银线/金属网格对比分析 OFweek显示网讯:从触摸屏产业链来讲,玻璃基板、Petfilm、胶材是产业上游的主要材料,而玻璃基板、Petfilm的供应被美日企业所垄断。ITO玻璃、......

    石墨烯调研报告

    石墨烯调研报告 2016年3月4日程毕康 1. 石墨烯 石墨烯是一种可以单独存在的单原子层二维碳材料。石墨烯结构是由碳六元环组成的二维周期蜂窝状点阵结构,它可以翘曲成零维的富......

    关于石墨烯的总结

    一.石墨烯常用修饰方法总结 石墨烯是由一层密集的、包裹在蜂巢晶体点阵上的碳原子组成,是世界上最薄的二维材料,其厚度仅为 0.35 nm。这种特殊结构蕴含了丰富而新奇的物理现象,......

    石墨烯制作方法总结

    目前制备石墨烯采用的方法有:微机械剥离法、化学气相沉积法、氧化还原法、溶剂剥离法和溶剂热法等. Large-scale pattern growth of graphene films for stretchable transpar......

    石墨烯调研小结

    www.xiexiebang.com 石墨烯调研小结 一、简介石墨烯的结构及性质 石墨烯(Graphene)是一种由碳原子构成的单层片状结构的新材料,是一种由碳原子以sp杂化轨道组成六角型呈蜂巢......

    碳纳米材料与技术论文报告-石墨烯电光性质(五篇范例)

    石墨烯的电光性质 龙 (磁学与超导 上海) 随着对石墨烯的研究的深入,石墨烯经历了艰难的寻找制备手段,到现在的丰富的制备方法,目前比较热门的制备方法有,撕胶带法/轻微摩擦法,最普......

    最新石墨烯研究机构和单位大全(5篇可选)

    第5章 石墨烯研究机构和单位 5.1 石墨烯研究领先单位 1. 沈阳材料科学(国家)联合实验室,先进炭材料研究部 负责人:成会明院士 先进炭材料研究部主要开展碳纳米管、石墨烯等纳米......

    石墨烯性质与应用

    石墨絮是绝缘体还是导体? 2007-03-18 09:11 紫月影夭儿 | 分类:学习帮助 | 浏览1906次| 该问题已经合并到>> 提问者采纳 2007-03-18 09:15 有一种称为石墨炸弹的武器在战......