石墨烯制作方法总结

时间:2019-05-12 01:37:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《石墨烯制作方法总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《石墨烯制作方法总结》。

第一篇:石墨烯制作方法总结

目前制备石墨烯采用的方法有:微机械剥离法、化学气相沉积法、氧化还原法、溶剂剥离法和溶剂热法等.

Large-scale pattern growth of graphene films for stretchable transparent electrodes

Figure 1 | Synthesis, etching and transfer processes for the largescale and patterned graphene films.a, Synthesis of patterned graphene films on thin nickel layers.b, Etching using FeCl3(or acids)and transfer of graphene films using a PDMS stamp.c, Etching using BOE or hydrogen fluoride(HF)solution and transfer of graphene films.RT, room temperature(,25 ℃).Thin layers of nickel of thickness less than 300nm were deposited on SiO2/Si substrates using an electron-beam evaporator电子束蒸发器, and the samples were then heated to 1,000℃ inside a quartz tube under an argon atmosphere.After flowing reaction gas mixtures(CH4:H2:Ar=50:65:200 standard cubic centimetres per minute), we rapidly cooled the samples to room temperature(25℃)at the rate of ,10℃/s using flowing argon.We found that this fast cooling rate is critical关键 in suppressing formation of multiple layers and for separating graphene layers efficiently from the substrate in the later process.In our work,an aqueous iron(III)chloride(FeCl3)solution(1 M)was used as an oxidizing etchant to remove the nickel layers.The net ionic equation of the etching reaction can be represented as follows:

2Fe3+(aq)+Ni(s)=2Fe2+(aq)+Ni2+(aq)This redox process slowly etches the nickel layers effectively within a mild pH range without forming gaseous products or precipitates.In a few minutes, the graphene film separated from the substrate floats on the surface of the solution, and the film is then ready to be transferred to any kind of substrate.Graphene on metal surfaces

第二篇:关于石墨烯的总结

一.石墨烯常用修饰方法总结

石墨烯是由一层密集的、包裹在蜂巢晶体点阵上的碳原子组成,是世界上最薄的二维材料,其厚度仅为 0.35 nm。这种特殊结构蕴含了丰富而新奇的物理现象,使石墨烯表现出许多优异性质。

结构完整的石墨烯是由不含任何不稳定键的苯六元环组合而成的二维晶体,化学稳定性高,其表面呈惰性状态,与其他介质(如溶剂等)的相互作用较弱,并且石墨烯片与片之间有较强的范德华力,容易产生聚集,使其难溶于水及常用的有机溶剂,这给石墨烯的进一步研究和应用造成了极大的困难。为了充分发挥其优良性质,并改善其成型加工性(如提高溶解性、在基体中的分散性等),必须对石墨烯进行有效的功能化。通过引入特定的官能团,还可以赋予石墨烯新的性质,进一步拓展其应用领域。功能化是实现石墨烯分散、溶解和成型加工的最重要手段。

从功能化的方法来看。主要分为共价键功能化和非共价键功能化两种。

1.石墨烯的共价功能化

石墨烯的共价键功能化是目前研究最为广泛的功能化方法。尽管石墨

烯的主体部分由稳定的六元环构成,但其边沿及缺陷部位具有较高的反应活性,可以通过化学氧化的方法制备石墨烯氧化物(Grapheneoxide)。由于石墨烯氧化物中含有大量的羧基、羟基和环氧键等活性基团,可以利用多种化学反应对石墨烯进行共价键功能化。

1.1 石墨烯的聚合物功能化

(1)聚乙二醇(PEG)具有优异的生物相容性和亲水性,被广泛应用于多种不同的功能化纳米材料,以提高这些材料的生物相容性,减小其对生物分子及细胞的非特定的约束力,也改善了体内的药物代谢动力学,以实现更好的肿瘤靶向性治疗[1,2,3-5]。2008年,Dai 等使用六臂星型氨基聚乙二醇的端氨基与纳米石墨烯片边缘的羧基通过亚胺催化酰胺形成反应,制备 PEG 修饰纳米石墨烯片,得到的产物在用于体外给药和生物成像的生理溶液中显示了优良的分散性和稳定性[2]。

(2)除了PEG外,还有其他的被用来共价功能化GO的亲水大分子。刘庄工作组,将氨基修饰的DEX与GO通过共价键键合,得到了具有生物相容性的材料,这种材料大大提高了GO生理溶解性的稳定性[6]。Bao et al.用壳聚糖修饰GO,得到共价功能化的GO,这种材料被用于药物传递和基因转染[7]。除了GO上羧基(-COOH)的化学反应外,还有其基地平面上的环氧基团也被用于与其他聚合物的结合。比如,Niu及其工作人员报道称氨基化的PLL功能化的GO就是利用GO上的环氧基团的活性反应。

1.2 石墨烯的小分子功能化

2006 年, Stankovich 等利用有机小分子实现了石墨烯的共价键功能化[8],他们首先制备了氧化石墨,然后利用异氰酸酯与氧化石墨上的羧基和羟基反应,制备了一系列异氰酸酯功能化的石墨烯。该功能化石墨烯可以在 N,N-二甲基甲酰胺(DMF)等多种极性非质子溶剂中实现均匀分散,并能够长时间保持稳定。该方法过程简单,条件温和(室温),功能化程度高,为石墨烯的进一步加工和应用提供了新的思路。

石墨烯氧化物及其功能化衍生物具有较好的溶解性,但由于含氧官能团的引入,破坏了石墨烯的大π共轭结构,使其导电性及其他性能显著降低。为了在功能化的同时尽量保持石墨烯的本征性质,Samulski 等发展了一种新的功能化方法。他们以石墨烯氧化物为原料,首先采用硼氢化钠还

原,然后磺化, 最后再用肼还原的方法, 得到了磺酸基功能化的石墨烯[9]。该方法通过还原除去了石墨烯氧化物中的多数含氧官能团,很大程度上恢复了石墨烯的共轭结构,其导电性显著提高(1250 S/m),并且,由于在石墨烯表面引入磺酸基,使其可溶于水,便于进一步的研究及应用。2.石墨烯的非共价功能化

石墨烯的非共价功能化包含有π-π堆垛相互作用,疏水作用,静电作用等非共价键作用,使修饰分子对石墨烯进行表面功能化,形成稳定的分散体系。

2.1 石墨烯的疏水非共价功能化

(1)

Hu

et

al.[10]

PF127(Pluronic F127)功能化修饰石墨烯,得到了graphene-PF127纳米材料,这种材料有亲水链使其具有水溶性,也有与石墨烯通过疏水作用相连的疏水部分。

(2)Liu et al.利用C18PMH-PEG功能化RGO[11-12],这种RGO-PEG有很好的生理稳定性,而且在光热治疗癌症中,这种材料在血液循环中的半衰期有所增长。

(3)Huang et al.发现GO在牛胎的血清蛋白中经过超声处理,可以得到GO-Protein复合物,它有极低的细胞毒性[13]。这种非极性氨基酸中的血清蛋白可以通过疏水作用非共价修饰石墨烯。Liu et al.用明胶通过类似的方法功能化GO[14]。

以上都为疏水作用的非共价修饰功能化石墨烯,石墨烯为富电子体,因此可以通过静电作用对石墨烯进行非共价修饰。

2.2 石墨烯的静电作用非共价功能化

(1)Liu et al.利用带正电荷的,被广泛用于基因转染的聚合物PEI非共价修饰GO,得到了GO-PEI,这种材料的生理稳定性比GO的生理稳定性好,减小了PEI的毒性,并且具有很高的基因转染率[15]。

(2)Misra et al.用带正电的叶酸结合壳聚糖,然后再包裹药物DOX,最后再加载在GO上,得到了DOX-GO-Chitosan-folate这种具有pH敏感释放药物特点的纳米载药体。2.3 石墨烯的π-π堆垛相互作用非共价功能化

表面很多π电子效应区的石墨烯和氧化石墨烯都可以与多种芳香族分子通过π-π堆垛相互作用结合在一起。Liu et al.利用单链DNA与石墨烯之间的π-π键合力证实了,在化学还原GO时引入DNA可以得到DAN修饰的RGO,这种材料具有很好的水溶性[16]。纳米石墨烯上的纳米粒子修饰

许多无机纳米结构材料,例如,金属及金属氧化物纳米材料包括Au,Ag,Pd,Pt,Ni和Cu,TiO2,ZnO,MnO2,Co3O4和 Fe3O4都已经用于石墨烯即其衍生物的修饰,并且修饰的材料用于不同的领域[17-22]。

(1)由于这种材料具有光学活性和磁性,GO-iron氧化纳米材料(GO-IONP)吸引了生物医学界的注意力。2008年,Chen等研制出GO-IONP纳米复合材料,这种材料可被用作控制药物传递及释放的药物载体[23,24]。Zhang等报道称GO-IONP可用作细胞标记和磁共振成像造影剂

[25]。

(2)Liu et al.研制的GO-IONP包含有部分用氨基化的PEG共价修饰和用两性分子C18PMH-PEG非共价修饰还原的GO,这种材料用于体外药物的靶向传递,也用于体内多种成像导向光热治疗[26-27]。

比有磁性的GO复合物优越的多种其他纳米微粒修饰的GO纳米复合材料已显现出生物医学的运用潜力。

(3)Chen et al.研制出量子点还原修饰的GO纳米复合材料(RGO-QD),用于荧光细胞成像和光热治疗。有趣的是,RGO与QD间的距离合适时,RGO-QDs的荧光猝灭会减小[28]。金纳米簇修饰的RGO的纳米复合材料也被报道并用于药物传递和癌细胞成像,而且TiO2修饰的GO也已经合成并用于光动力疗法杀死癌细胞[29]。二.功能化石墨烯在药物传递领域的应用总结

在过去十年,纳米材料在药物传递系统已被广泛用于癌症治疗,旨在提高治疗效果,减小毒副作用。自2008年起,许多工作团队包括Liu 的工作团队开始探究石墨烯在药物传递系统中的应用。单层的GO或者RGO有极多高效载药的表面区域,石墨烯的这种π电子效应能够使各种芳香药物分子通过π-π堆垛作用与石墨烯键合。用靶向配合体功能化修饰GO或者RGO,使针对癌细胞的特定类型的选择性给药得以实现。

不同表面功能化的GO已被用作负载各种化学治疗药物,这些药物包括DOX,CPT,SN38,ellagic acid,β-lapachone

和1,3-bis(2-chloroethyl)-1-nitrosourea(BCNU),它们与GO通过物理吸收或者共价修饰键合。

(1)由于石墨烯具有单原子层结构, 其比表面积很大, 非常适合用作药物载体。2008年,Dai 等首先制备

了具有生物相容性的聚乙二醇功能化的石墨烯, 使石墨烯具有很好的水溶性, 并且能够在血浆等生理环境下保持稳定分散;然后利用 π-π 相互作用首次成功地将抗肿瘤药物喜树碱衍生物(SN38)负载到石墨烯上,得到nGO-PEG-SN38表现出杀死癌细胞的能力比水溶性前药CPT11强很多。石墨烯的很好的载药能力已被其他工作组在他们各自的领域证实了,为了能够靶向传递药物到特定类型的细胞,Dai等在另一个相关的工作中,将nGO-PEG与anti-CD20抗体结合,然后再与能够选择性杀死B淋巴细胞的药物DOX结合,这样就实现了药物在体内的靶向输送。叶酸也被其他的工作组作为另一种靶向传递药物的靶向配合体。

(2)Zhang等发现磺酸修饰GO后再与叶酸结合,可特别地靶向作用于叶酸受体细胞。有趣的是,两种药物分子DOX和CPT一起负载在GO上,实现了在剂量依赖下协同杀死癌细胞的作用[30]。

(3)Shi等阐明PEG修饰的GO将妨碍药物从NGO-PEG中释放,他们将PEG与GO通过二硫键键合,由于二硫键在还原性的环境中容易断裂,用这种材料负载药物DOX,会使DOX在药物传递系统中的释放有很大的提高,在体外的治疗效果也会提高[31]。

(4)2009年,Yang等将GO-IONP纳米复合材料作为DOX药物载体,此药物为pH敏感型控制释放[23],后来这个工作组利用GO-IONP具有磁性的优势将其作为双重靶向传递系统,并将其与叶酸结合[24]。

(5)Liu等将GO-IONP用在光热疗法中,再用PEG功能化GO-IONP,得到GO-IONP-PEG,使其生理稳定性提高且具有生物相容性。并且由其体外细胞实验证实,这种材料用于磁共振靶向药物传递和光热治疗癌症。参考文献

[1] K.Yang, S.Zhang, G.Zhang, X.Sun, S.-T.Lee and Z.Liu,Nano Lett., 2010, 10, 3318.[2]Z.Liu, J.T.Robinson, X.M.Sun and H.J.Dai, J.Am.Chem.Soc., 2008, 130, 10876.[3]X.Sun, Z.Liu, K.Welsher, J.T.Robinson, A.Goodwin,S.Zaric and H.Dai, Nano Res., 2008, 1, 203.[4]Z.Liu, S.Tabakman, K.Welsher and H.Dai, Nano Res.,2009, 2, 85.[5] Z.Liu, W.B.Cai, L.N.He, N.Nakayama, K.Chen,X.M.Sun, X.Y.Chen and H.J.Dai,Nat.Nanotechnol.,2007, 2, 47.[6] S.A.Zhang, K.Yang, L.Z.Feng and Z.Liu, Carbon, 2011,49, 4040.[7] H.Bao, Y.Pan, Y.Ping, N.G.Sahoo, T.Wu, L.Li, J.Li andL.H.Gan, Small, 2011, 7, 1569.[8]Stankovich S, Piner R D, Nguyen S T, Ruoff R S.Synthesis and exfoliation of isocyanate-treated

graphene

oxide

nanoplatelets.Carbon,2006, 44: 3342—3347.[9]Si Y C, Samulski E T.Synthesis of water soluble graphene.Nano Lett, 2008, 8: 1679—1682.[10] H.Hu, J.Yu, Y.Li, J.Zhao and H.Dong, J.Biomed.Mater.Res., Part A, 2011, 100A, 141.[11] K.Yang, J.Wan, S.Zhang, B.Tian, Y.Zhang and Z.Liu,Biomaterials, 2012, 33, 2206.[12]K.Yang, L.Hu, X.Ma, S.Ye, L.Cheng, X.Shi, C.Li, Y.Liand Z.Liu, Adv.Mater., 2012, 24, 1868.[13]W.Hu, C.Peng, M.Lv, X.Li, Y.Zhang, N.Chen, C.Fan andQ.Huang, ACS Nano, 2011, 5, 3693.[14]K.Liu, J.-J.Zhang, F.-F.Cheng, T.-T.Zheng, C.Wang andJ.-J.Zhu, J.Mater.Chem., 2011, 21, 12034.[15] L.Feng, S.Zhang and Z.Liu, Nanoscale, 2011, 3, 1252.[16]J.Liu, Y.Li, Y.Li, J.Li and Z.Deng, J.Mater.Chem., 2010, 20, 10944.[17]J.Shen, M.Shi, N.Li, B.Yan, H.Ma, Y.Hu and M.Ye, NanoRes., 2010, 3, 339.[18] X.Huang, Z.Yin, S.Wu, X.Qi, Q.He, Q.Zhang, Q.Yan,F.Boey and H.Zhang, Small, 2011, 7, 1876.[19] J.Ma, J.Zhang, Z.Xiong, Y.Yong and X.S.Zhao, J.Mater.Chem., 2011, 21, 3350.[20]X.Huang, X.Qi, F.Boey and H.Zhang, Chem.Soc.Rev.,2011, 41, 666.[21]Y.Liang, H.Wang, H.S.Casalongue, Z.Chen and H.Dai,Nano Res., 2010, 3, 701.[22]H.Sun, L.Cao and L.Lu, Nano Res., 2011, 4, 550.[23]X.Yang, X.Zhang, Y.Ma, Y.Huang, Y.Wang and Y.Chen,J.Mater.Chem., 2009, 19, 2710.[24]X.Yang, Y.Wang, X.Huang, Y.Ma, Y.Huang,R.Yang, H.Duan and Y.Chen, J.Mater.Chem., 2011,21, 3448.[25]W.Chen, P.Yi, Y.Zhang, L.Zhang, Z.Deng and Z.Zhang,ACS Appl.Mater.Interfaces, 2011, 3, 4085.[26]K.Yang, L.Hu, X.Ma, S.Ye, L.Cheng, X.Shi, C.Li, Y.Liand Z.Liu,Adv.Mater., 2012, 24, 1868.[27]X.Ma, H.Tao, K.Yang, L.Feng, L.Cheng, X.Shi, Y.Li,L.Guo and Z.Liu, Nano Res., 2012, 5, 199.[28]S.-H.Hu, Y.-W.Chen, W.-T.Hung, I.W.Chen andS.-Y.Chen, Adv.Mater., 2012, 24, 1748.[29]Z.Hu, Y.Huang, S.Sun, W.Guan, Y.Yao, P.Tang andC.Li, Carbon, 2012, 50, 994.[30]L.Zhang, J.Xia, Q.Zhao, L.Liu and Z.Zhang, Small, 2010,6, 537.[31] H.Wen, C.Dong, H.Dong, A.Shen, W.Xia, X.Cai, Y.Song,X.Li, Y.Li and D.Shi, Small, 2012, 8, 760.

第三篇:石墨烯前景

2013年1月,欧盟委员会将石墨烯列为“未来新兴技术旗舰项目”之一;

十二五规划

石墨烯是新材料中最为“时髦”的一员。它具有超硬、最薄、负电子的特征,有很强的韧性、导电性以及导热性。这使其能够广泛应用于电子、航天、光学、储能、生物医学等众多领域,拥有巨大的产业发展空间。

因此,石墨烯在2004年被发现后就迅速引发全球范围内的研究热。近年来我国在石墨烯研发应用方面的研究不断加强,各地政府和有关机构加大力度扶持和推动石墨烯产业化发展。

2013年6月,内蒙古石墨烯材料研究院正式成立。这是我国首个与石墨烯材料相关的综合性研究机构和技术开发中心。

2013年7月13日,在中国产学研合作促进会的支持下,中国石墨烯产业技术创新战略联盟正式成立。该联盟已向有关部门上报了无锡、青岛、宁波、深圳四个地方,作为石墨烯产业研发示范基地。江苏省、山东省等省级石墨烯联盟已于2013年陆续成立。

2013年12月18日,无锡市发布《无锡石墨烯产业发展规划纲要》,规划建立无锡石墨烯产业发展示范区和无锡市石墨烯技术及应用研发中心、江苏省石墨烯质量监督检验中心。力争把无锡市打造成国家级石墨烯产业应用示范基地和具有国际竞争力的石墨烯产业发展示范区。

2013年12月20日,宁波年产300吨石墨烯规模生产线正式落成投产。

与此同时,上海浦东新区也正筹备建立临港石墨烯产业园区,并力争国家石墨烯检验监测中心落户浦东。

石墨烯产业遍地开花。据记者了解,目前,无锡市已设立2亿元专项资金,通过补贴、配套、奖励、跟进投资、股权投资等方式,进一步扶持石墨烯产业发展;宁波为了扶持石墨烯产业发展,也拿出了千万元以上的扶持资金。业内人士表示,作为一种理想的替代型材料,石墨烯一旦实现产业化其产值至少在万亿元以上。

推进产业结构优化

第四篇:石墨烯学习心得

石墨烯学习心得

最近这段时间断断续续搜集了很多纳米材料、半导体物理还有石墨烯的相关资料,主要是来自万方数据网、超星学术视频网站、百度文库还有一些相关网页博客资料。了解到了很多之前闻所未闻的知识,比如“纳米材料的神奇特性、纳米科技潜在的危害”等等。

对于石墨烯,主要有如下几方面不成熟的想法,还望老师您来指正。

(一)在石墨烯新奇特性以及宏观应用预测方面

有人认为,石墨烯的这些新奇的特性以及预期应用并不能推广到宏观尺寸。

第一是认为很多实验数据都是来源于对微纳米级单层石墨烯的实验研究,不能把纳米微米级观察和测试到的数据无限夸大到宏观应用;

第二是认为单层悬浮石墨烯的特异性是依靠其边界碳原子的色散作用而稳定存在,大面积的单层悬浮石墨稀不可能稳定存在。第三是认为目前的大面积石墨烯的应用实例存在相当大的褶皱以及碳原子缺失。因而否定很多2010年诺贝尔物理奖的公告中对于石墨稀的宏观应用预测,并主张继续深入石墨烯微观性能研究,比如半导体器件等研究。

我想:我们最好还是不能放弃石墨烯在宏观尺度上应用的希望,应该尽最大努力用各种手段去克服所谓的褶皱、碳原子缺失等等导致石墨烯性质不能稳定存在的负面因素,比如采用衬底转移(CVD)的方式所制大面积石墨烯透明电极尺寸的方法(虽然制得的石墨烯还有很多的缺陷,但至少证明大面积石墨烯还是有可能稳定存在并最终为我们所用的吧,毕竟有宏观实际应用的材料才更有可能是有发展前景的新型材料)。

(二)在石墨烯制备工艺方面 我们知道,石墨烯非常有希望在诸多应用领域中成为新一代器件,但这些元件要达到实际应用水平,还需要解决很多问题。那就是如何在所要求的基板或位臵制作出不含缺陷及杂质的高品质石墨烯,或者通过掺杂(Doping)法实现所期望载流子密度的石墨烯。用于透明导电膜用途时能否实现大面积化及量产化,而用于晶体管用途时能否提高层控制精度,这些问题都十分重要。今后,为了探寻石墨烯更广阔的应用领域,还需继续寻求更为优异的石墨烯制备工艺,使其得到更好的应用。

(三)石墨烯在纳米存储器上的应用前景

传统的半导体工艺技术已逐渐逼近物理极限,难以大幅度提高存储器的性能,越来越难以满足人们对存储器的要求,要想有突破性的进展,就必须另辟蹊径,寻找新的原理和方法。

第一是因为传统半导体存储器存在容量小数据易丢失等弊端。第二是因为现代化信息爆炸社会迫切要求新型的大容量存储器的出现。

第三因为是人们对信息存储的安全性要求越来越高。最后,假如纳米存储技术能够实现的话,届时我们电脑中的存储设备也许会以PB为单位计算,而因存储介质损坏导致数据丢失的烦恼也将远离我们。所以我觉得:要是可能的话,以石墨烯为介质的存储器,应该是一个不错的研究方向。

第五篇:石墨烯相变材料论文

石墨烯相变材料的研究

摘要:随着热管理及热存储技术的发展,储热技术逐渐扮演着越来越重要的角色,于此同时寻找高性能的储热材料也成为了研究热潮。近年来,相变材料的发展为储热技术带来了福音,相比于其他热导率低,储热性能差的储热材料,相变材料有着天然的优势。而在相变材料中,石墨烯相变材料是如今发现的储热性能最优异的相变材料,通过将石墨烯作为填充材料,相变材料的储热能力大大提升。

关键词: 热存储 相变材料 储热材料 石墨烯 前言:

在热能的存储和利用过程中,常常存在于在供求之间在时间上和空间上不匹配的矛盾,如太阳能的间歇性,电力负荷的峰谷差,周期性工作的大功率器件的散热和工业余热利用等。相变储能材料通过材料相变时吸收或释放大量热量实现能量的储存和利用,可有效解决能量供求在时间和空间上不匹配的矛盾。因此,相变储能技术被广泛应用于具有间歇性或不稳定性的热管理领域,如航空航天大功率器件的管理,周期性间歇式电子工作器件的散热,太阳能利用,电力的“移峰填谷”,工业废热余热的回收利用,民用建筑的采暖及空调的节能领域等。近年来,相变储能技术成为能源科学和材料科学领域中一个十分活跃的前沿研究方向。

相变储能材料具有储能密度大储能释能过程近似恒温的特点。但多数相变储能材料存在热导率低,换热性能差等缺点。采用具有高导热,低密度,耐腐蚀和化学稳定性好等优点的碳材料对其进行强化传热,可有效提高系统换热效率。常用的固-液定型相变储能材料实际上是一类复合相变材料,主要是由两种成分组成:一是工作物质;二是载体基质。工作物质利用它的固-液相变进行储能工作物质可以是各种相变材料,如石蜡,硬脂酸,水合盐,无机盐和金属及其合金材料。载体基质主要是用来保证相变材料的不流动性和可加工性,并对其进行强化传热。

石墨烯是一种新型碳材料,它具有由单层碳原子紧密堆积而成的二维蜂窝状紧密堆积结构。它是构建其他维度炭质材料的基本单元。石墨烯本身具有非常高的导热系数,并兼具密度小,膨胀系数低和耐腐蚀等优点有望成为一种理想型散热材料。将石墨烯作为强化传热载体,有可能克服单一相变材料热导率低的缺点,缩短复合体系热响应时间,提高换热效率实现复合材料传热和储热一体化。

本文通过查阅大量文献以及亲自做实验得出了一些数据和结论。正文

1.根据同济大学田胜力、张东、肖德炎、向阳等人2006年在《材料开发与应用》上发表的文章,他们对脂肪酸相变储能材料的热循环行为进行了系统的研究试验。试验选用了化学纯的癸酸、月桂酸、肉豆蔻酸和棕榈酸等四种脂肪酸为研究对象,利用差示扫描量热技术(DSC)测定了经过56次、112次、200次和400次反复热循环的相变材料的融化温度和融化潜热,加速热循环试验结果显示:癸酸融化温度范围变窄了4℃左右,肉豆蔻酸融化温度范围变宽了3℃左右,月桂酸和棕榈酸的融化温度范围变化不明显,其中以棕榈酸的融化温度变化最小。随着热循环次数的增加,相变材料的融化初始温度和融化潜热变化较小,且是没有规律的。在400次左右的热循环范围内,这些脂肪酸具有较好的热稳定性,有作为潜热储存材料的应用潜力。且此四种脂肪酸的融化温度在30℃到60℃之间,适于用作绿色建筑材料及其他室温范围内的潜热储存过程。考虑到相变材料的使用时间可能更长,因此要测试以上脂肪酸长期作为潜热储存材料的稳定性和可行性,需要更多次数的加速热循环实验来验证。而Ahmet Sari在研究纯度为工业级的月桂酸、肉豆蔻酸、棕榈酸是发现,经过1200次热循环后,这些脂肪酸的融化温度均逐渐降低,降低最大值为6.78℃,并且,脂肪酸的融化温度变宽了。这与上文实验结果有所出入,可能是由于脂肪酸原材料的纯度和产地不同造成的。因此,原料的选取对材料的性能有很大影响。

2.2012年1月20日,中国科学院上海硅酸盐研究所的黄富强等人申请了他们的最新专利:三维石墨烯/相变储能复合材料及其制备方法。三维石墨烯/相变储能复合材料的特征在于石墨烯与相变储能材料原位复合,其中以具有三维结构的多孔石墨烯作为导热体和复合模板,以固-液相变的有机材料作为储能材料和填充剂。可以采用兼具曲面和平面特点的泡沫金属作为生长基体,利用CVD方法制备出具有三维连通网络结构的泡沫状石墨烯材料。通过该方法制备的石墨烯材料完整的复制了泡沫金属的结构,石墨烯以无缝连接的方式构成一个全连通的整体,具有优异的电荷传导能力,巨大的比表面积,孔隙率和极低密度。并且,这种方法可控性好,易于放大,通过改变工艺条件可以调控石墨烯的平均层数,石墨烯网络的比表面积,密度和导电性。以金属模板CVD法制备的三维石墨烯泡沫具有丰富的孔结构特征,其比表面积高,孔壁孔腔高度连通,为基体材料提供可复合填充的空间。若将三维多孔石墨烯和相变材料复合,相变储能材料被分隔在各个孔腔,与石墨烯壁紧密结合,有效热接触面积大幅度提高,高度连通的石墨烯三维导热网络通道将快速实现系统换热。另一方面多孔石墨烯的毛细吸附力将液态相变储能材料局域化,可有效防止渗透。

3.2012年6月来自于中国科学院能源转换材料重点实验室,上海硅酸盐研究所的周雅娟,黄富强等人发表了一篇名为太阳能材料和太阳能电池的论文,这篇论文重点讲解了他们最新研制出的一种由石墨烯三维气凝胶(GA)和硬脂酸(OA)组成的相变材料。GA是通过石墨烯氧化物在热水表面反应制得,三维石墨烯网络的空隙尺寸只有几微米而且薄壁墙是石墨烯片层堆积而成,OA通过GA的毛细管力牵引下进入到GA中。GA/OA复合材料的热稳定性达到了2.635W/mk,是OA的14倍。GA/OA复合材料的短暂升温和冷却过程是在为热能量存储做准备。GA是一种低密度材料因此在复合材料中仅占15%的比重,这种复合材料能够大大减少或消除材料内部的热电阻,表现出一种高储热的能力,达到181.8J/g,与独立的OA材料非常接近,研究中发现,大多数相变材料的热储存能力都较低,为了提高材料的热传递能力,金属泡沫添加剂进入了专家们的视野,然而他们进一步发现金属泡沫添加剂与原材料不兼容。经过数次实验得出的结论,石墨烯材料具有很好的热稳定性和热传递能力,并且与原材料兼容。由石墨烯片层组成的三维网络结构在相变材料领域有着巨大的潜力。

4.来自于浙江杭州辐射研究所的邢芳,李悟凡等人发表了关于烷烃类相变材料的文章。烷烃及其混合物由于自身的中低温度热能量储存能力已经被广泛应用于相变材料中。在这些烷烃中,熔化温度为37度的二十烷已经出现在诸如电子领域的基于能量储存的被动热管理技术中。为了提高二十烷的热导性,将石墨烯纳米片添加进二十烷这个课题正在试验中。这种复合相变材料是将石墨烯纳米片均匀分布在液体的二十烷中。通过扫描量热计测量它的热融合和融化点,我们发现在10度的时候热传导能力整整增加了4倍,这表明石墨烯纳米片相对于传统的一些填充来说有着更好的表现。石墨烯纳米片的两维平面形态降低了热表电阻,这也是为什么它效果这么好的原因。扩大的石墨烯片层有着高导电性和低密度性,能有效地增强相变材料的热性能。

5.同济大学材料科学与工程学院的田胜力、张东、肖德炎等人利用多孔石墨的毛细管作用吸附硬脂酸丁酯制成了一种定形相变材料的相变温度、相变潜热和热稳定性,得出硬脂酸丁酯含量的临界值。研究表明,硬脂酸丁酯与纳米多孔石墨形成的定形相变材料相变温度合适、相变潜热较大、热稳定性好,是适合于在建筑墙体中使用的相变材料。对不同含量的硬脂酸丁酯/多孔石墨复合材料利用差热扫描仪进行DSC测试显示,相变复合材料的峰值温度为26℃,与纯硬脂酸丁酯的熔点相同,即定形相变材料的熔点不变,为硬脂酸丁酯的熔点。定形材料的潜热随硬脂酸丁酯含量的变化而变化,硬脂酸丁酯含量越高,定形相变材料的相变潜热越大,近似呈线性关系。此定形相变材料的蓄热性能、均匀性和热稳定性好,具有较大的相变潜热,其相变温度在26℃,适合做室温相变材料,有助于建筑节能。此定形相变材料中硬脂酸丁酯的含量又一个渗出临界值,当硬脂酸丁酯质量含量达到90%时,有细微渗出,使用时建议把含量控制在85%以内。这种定形相变材料在经过多次热循环之后其相变潜热变化较小,具有良好的热稳定性。因此,硬脂酸丁酯/多孔石墨相变材料是较好的可应用于建筑墙体的相变材料。

6.2013年,新乡学院能源与燃料研究所的周建伟等人以氧化石墨烯为基质、硬脂酸为储热介质用液相插层法成功制备了硬脂酸/氧化石墨烯相变复合材料。其中以氧化石墨烯维持材料的形状、力学性能,把硬脂酸嵌在片层结构的氧化石墨烯基质中,通过相变吸收和释放能量,提高其储热、导热性能和循环性能。该相变材料具有适宜的相变温度和较高的相变潜热,相变材料与基质具有较好的相容性,在相变过程中没有液体泄漏现象,复合相变储热材料储/放热时间比硬脂酸减少,且热稳定性良好。实验表明,硬脂酸质量分数为40%的硬脂酸/氧化石墨烯复合相变材料的相变温度为67.9℃,相变潜热为289.2J/g。经过连续冷热循环试验发现,复合相变材料的储热/放热时间比纯硬脂酸缩短,相变温度和相变潜热变化较小,表明硬脂酸/氧化石墨烯复合相变材料具有良好的热稳定性和兼容性。因此,通过此方法一方面将硬脂酸局限在片层结构中,解决了相变过程中的渗出泄露问题;另一方面,利用氧化石墨烯良好的热传导性提高复合相变材料的传热效率,弥补了硬脂酸在导热、换热方面的缺陷。

7.2013年10月12日到10月16日,在上海举办的中国高分子学术论文报告会上,四川大学高分子材料科学与工程学院亓国强等人提出了他们的最新成果:聚乙二醇/氧化石墨烯定型相变储能材料的制备与性能研究,研究发现聚乙二醇(PEG)是一种性能优良的固-液相变储能材料。相变过程中会发生熔体流动泄露,故需要对其进行封装,但封装又会降低其热导率,影响工作效率,增加成本。因而加入另一种物质作为支撑定型材料,制备复合定型相变材料成为另一种选择。但通常过高的添加量会严重影响材料的储能性能。于是通过向 PEG 中加入氧化石墨烯(GO)作为定型支撑材料,用溶液共混法在 GO 含量仅为 8%时成功制备了 PEG/GO 定型相变储能材料。该材料在超过熔点一倍时仍保持形状稳定。GO 的加入对相变材料熔点基本没有影响,但在低含量下促进结晶,当含量高于 4wt%时阻碍结晶的进行。相变潜热随 GO 含量的提升有所下降,但在能维持材料定型的最低含量(8wt%)时,仍高达 135 J/g,可以有效应用于储能领域。该材料在经历 200 次升降温循环后,相变温度和相变潜热变化不大,较稳定,具有良好的可重复使用性。

8.远在大洋彼岸,来自于加州大学河滨分校,加利福尼亚大学的Pradyumna Goli, Stanislav Legedza, Aditya Dhar 等人一直在进行关于锂电池的研究。锂电池在在移动通讯和交通动力中扮演着重要角色,但是由于其自身的自加热作用使得使用寿命大大缩短,为了解决这一问题,学者们经过大量实验发现锂电池的可靠性通过将石墨烯作为填充材料能够大大的改善。传统的热管理电池由于其相位只在一个很小的温度范围内变化,减小了电池内温度的上升,故只能依赖于潜在的储热能。而将石墨烯掺入碳氢化合物相变材料中可以将其导电能力提高到原来的两个数量级倍,同时还保持潜储热能力。显热-潜热相结合的热传导组合能够大大地减少锂电池内部温度的上升。储热-热传导的方法即将在锂电池和其他类型电池的热管理领域引领一场变革。

9.2008年4月24日来自于首尔崇实大学工学院建筑系的Sumin Kim a, Lawrence T.Drzal b等人研制出了一种具有高导电性和高储热能力的相变材料。使用剥离的石墨烯纳米片,石墨烯相变材料可以提高在液晶中的高导电性,热稳定性以及潜储热能力。在扫描电子显微镜显示下,石墨烯相变材料均匀分布在液晶中,而良好的均匀分布意味着高导电能力。石墨烯复合相变材料的热稳定能力在石墨烯内部结构的帮助下得到提升。而且,由于相变材料的电热稳定性,石墨烯复合相变材料具备了可持续再生能力。石墨烯相变复合材料在差示扫描热量法的热曲线中有两个峰,第一次在固-固过渡阶段,温度较低,峰显示为35.1度;第二次是固-液相变阶段时温度较高,峰显示为55.1度。石墨烯可以在保有其潜储热能力的情况下提高材料的热稳定性。相变材料具有高储热,低成本,无毒和无腐蚀性等特点而具有美好的前景。最近,一些无机,有机以及它们的混合物正在被应用于相变材料中,成为热门的研究课题。

10.Fazel Yavari等人在2011年也就石墨烯作为改性添加剂改良十八醇相变材料在《Physical chemistry》上发表了文章。和很多有机相变材料一样,十八醇也具有热导率低,换热性能差,以及存在泄漏问题等缺点。Fazel Yavari等人的研究表明,由于石墨烯低密度、高导热的特点,添加很低含量的石墨烯,就可以达到显著提高热导率、改良十八醇的目的。然而由于部分相变材料分子被限制在石墨烯层间空隙中,在工作温度范围并没有发生相变,从而使加入石墨烯后的复合材料的相变焓低于原相变材料,造成储热能力的损失。实验中,当石墨烯含量(质量分数)达到4%时,材料的热导率增加到原来的2.5倍,此时其相变焓只降低了15.4%。而如果用银纳米线代替石墨烯,要达到同等的热导率,需要使其含量达到45%,并带来高达50%的相变焓损失。综合实验表明,相比于其它微型添加材料,石墨烯能在不造成明显储热损失的前提下明显改良有机相变材料的热性能,为通过潜热的储存/释放实现热管理和热保护提供了新的可行性方案。

11.Jia-Nan Shi ,Ming-Der Ger等人2013年在期刊《CARBON》上发表文章,阐述了有关石墨烯提高石蜡导热系数的研究成果。实验另辟蹊径,对比了剥离石墨薄片和石墨烯作为改性添加剂对于石蜡相变材料的不同影响。实验结果表明,剥离石墨薄片带来的热导率增量更高,石墨含量为10%的石蜡/石墨薄片复合材料的热导率为纯石蜡的十余倍。石墨烯表现出了极好的导电性,石蜡/石墨烯的电导率要远高于石蜡/石墨薄片,但是其热导率的增量比石墨薄片小。原因在于,虽然单层石墨烯热导率极高,但是石墨烯片层间微小空隙内存在的大量界面严重阻碍了热传导。同时,实验也发现,石墨烯在定形方面的作用要远过于石墨薄片。石墨含量2%的石蜡/石墨烯相变复合材料中,石蜡能在185.2℃高温下保持形态,这远远超过了石蜡相变的温度范围。而石蜡/石墨薄片复合材料中石蜡只能保持形态到67.0℃。少量的石墨烯和剥离石墨薄片都能作为低成本、高效率的改性添加剂应用于石蜡相变材料的导热和定形方面的改良。

12.马来西亚的Mohammad Mehrali等人对石蜡/石墨烯相变复合材料进行了系统的研究和测试。该项目应用了SEM、FT-IR、TGA、DSC等设备对制得的石蜡/石墨烯复合材料的材料特性和热学性能进行了测试和分析。所测试的石蜡质量分数为48.3%的样品在相变过程中无泄漏现象发生,为定形相变材料。SEM图像显示石蜡嵌入了石墨烯片层间的孔隙。FT-IR分析结果显示石蜡与石墨烯之间没有化学反应发生。试验进行了2500次熔化/凝固热循环检测来确认其热可靠性和化学稳定性。TGA测试结果显示,氧化石墨烯增强了复合材料的热稳定性。该相变复合材料的热导率从0.305(W/mk)显著提升到0.985(W/mk)。测试结果表明,石蜡/氧化石墨烯复合材料具有良好的热学性能、热可靠性、化学稳定性和导热性,很适合做热管理和热储存材料。总结:

相变储能材料,通过材料相变时吸收或释放大量热量实现能量的储存和利用,以其巨大的相变潜热,在未来的能源利用和热管理领域具有很广泛的开发和应用价值。而大多数相变材料存在的导热率抵、换热性能差、相变过程发生泄漏等缺陷使其很难直接被应用于生产生活中。因此,需要一种改性填充材料来增加相变材料的导热换热性能,同时需要对相变材料进行定形和封装。而石墨烯材料的发现和研究成果的公布,给相变材料的研究和应用指明了道路。一方面,石墨烯的高导热性能很好地改善了相变材料的热性能,同时,其良好的化学稳定性和热学可靠性使其作为改性添加剂不与相变材料本体发生化学反应;另一方面,低密度、高强度的石墨烯结构能够使复合材料在较低石墨烯含量下就达到所要求的定形效果,因此,相比其他改性添加剂,石墨烯对相变材料的相变温度、相变潜热和储热能力的减益效果要小得多。正是从这两方面出发,石墨烯作为导热定形的改性材料,在相变储能材料领域得到广泛认可和应用。大量实验采用了以相变材料作为工作物质,通过其相变过程储/放热,同时以石墨烯作为载体基质,增加材料导热性能和不流动性的实验思路进行相变导热材料的设计、制备和改良。相信随着对石墨烯研究的深入和石墨烯制备工艺的进步,石墨烯会以更突出的性能改良相变材料,从而获得更有实践和应用价值的石墨烯/相变复合储能材料,为能源可持续和热管理领域带来更大的发展,为人类创造出更科学、更环保、更舒适的生活环境。

参考文献:

【1】田胜力, 张东, 肖德炎, 等.脂肪酸相变储能材料热循环行为的试验研究[J].材料开发与应用,2006,21(1):9—12.【2】亓国强 李亭 杨伟 谢邦互 杨鸣波 聚乙二醇/氧化石墨烯定型相变储能材料的制备与性能研究 成都 四川大学高分子科学与工程学院 2013 【3】Yajuan Zhong Mi Zhou Fuqiang Huang Tianquan Lin Dongyun Wan Solar Energy Materials and Solar Cells Beijing State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, 2013 【4】Xin Fang,†,‡ Li-Wu Fan,*,†,‡ Qing Ding,†,‡ Xiao Wang,†,‡ Xiao-Li Yao,†,‡ Jian-Feng Hou,† Zi-Tao Yu,†,§Guan-Hua Cheng,∥ Ya-Cai Hu,† and Ke-Fa Cen§ Increased Thermal Conductivity of Eicosane-Based Composite PhaseChange Materials in the Presence of Graphene Nanoplatelets Zhejiang 2012 【5】田胜力, 张东, 肖德炎.硬脂酸丁酯/多孔石墨定形相变材料的实验研究[J].节能,2005,11:5—6.【6】周建伟, 程玉良, 王储备 等.硬脂酸/氧化石墨烯复合相变储热材料研究[J].化工新型材料,2013,41(6):47—49.【7】黄富强 仲亚娟 陈剑 万冬云 毕辉 三维石墨烯/相变储能复合材料及其制备方法 上海市长宁区定西路1295号 中国科学院上海硅酸盐研究所 2012 【8】Pradyumna Goli, Stanislav Legedza, Aditya Dhar, RubenSalgado, Jacqueline Renteria and Alexander A.BalandinGraphene-Enhanced Hybrid PhaseChange Materials for ThermalManagement of Li-Ion Batteries USA Nano-Device Laboratory, Department of Electrical Engineering and Materials Scienceand Engineering Program, Bourns College of Engineering, University of California 2013

【9】Sumin Kim a,Ã, Lawrence T.Drzal b Solar Energy Materials & Solar Cells USA Department of Architecture, College of Engineering, Soongsil University, Seoul 156-743, Republic of Korea Composite Materials and Structures Center, College of Engineering, Michigan State University, East Lansing, 2008 【10】Fazel Yavari, Hafez Raeisi Fard, Kamyar Pashayi,etc.Enhanced Thermal Conductivity in a Nanostructured Phase Change Composite due to Low Concentration Graphene Additives[J].J.Phys.Chem.C 2011, 115, 8753–8758.【11】Jia-Nan Shi , Ming-Der Ger , Yih-Ming Liu.Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J].CARBON,51(2013): 365—372.【12】Mohammad Mehrali, Sara Tahan Latibari, Mehdi Mehrali.Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite[J].Energy Conversion and Management,67(2013): 275—282.

下载石墨烯制作方法总结word格式文档
下载石墨烯制作方法总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    石墨烯调研报告

    石墨烯调研报告 2016年3月4日程毕康 1. 石墨烯 石墨烯是一种可以单独存在的单原子层二维碳材料。石墨烯结构是由碳六元环组成的二维周期蜂窝状点阵结构,它可以翘曲成零维的富......

    石墨烯纳米材料论文

    石墨烯纳米材料 摘要: 石墨烯是继富勒烯、碳纳米管之后发现的一种具有二维平面结构的碳纳米材料,它自2004年发现被以来,成为凝聚态物理与材料科学等领域的一个研究热点。石墨......

    石墨烯调研小结

    www.xiexiebang.com 石墨烯调研小结 一、简介石墨烯的结构及性质 石墨烯(Graphene)是一种由碳原子构成的单层片状结构的新材料,是一种由碳原子以sp杂化轨道组成六角型呈蜂巢......

    最新石墨烯研究机构和单位大全(5篇可选)

    第5章 石墨烯研究机构和单位 5.1 石墨烯研究领先单位 1. 沈阳材料科学(国家)联合实验室,先进炭材料研究部 负责人:成会明院士 先进炭材料研究部主要开展碳纳米管、石墨烯等纳米......

    石墨烯性质与应用

    石墨絮是绝缘体还是导体? 2007-03-18 09:11 紫月影夭儿 | 分类:学习帮助 | 浏览1906次| 该问题已经合并到>> 提问者采纳 2007-03-18 09:15 有一种称为石墨炸弹的武器在战......

    石墨烯产业发展概况(本站推荐)

    石墨烯产业概况 一、概况 石墨烯是一种由碳原子以sp2 杂化方式形成的蜂窝状平面薄膜,厚度在一个纳米以下,最早是由诺贝尔奖获得者——英国曼彻斯特大学物理学家AndreGeim 和Ko......

    石墨烯生产成套设备(推荐五篇)

    石墨烯生产成套设备 石墨烯生产设备的概况 目前生产石墨烯的制备方法主要是机械法、氧化法、基片生长法和液相法等,这些生产技术及方法多数存在着产量低、能耗大、品质差等......

    什么是生物质石墨烯?(推荐)

    生物质石墨烯 被称为“黑金”的“新材料之王”——石墨烯,是从碳材料中剥离出来、由碳原子组成的只有一层或多层原子厚度的二维晶体,拥有非常优异和独特的光、电、磁、机械等......