石墨烯研究现状及应用前景

时间:2019-05-13 13:01:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《石墨烯研究现状及应用前景》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《石墨烯研究现状及应用前景》。

第一篇:石墨烯研究现状及应用前景

石墨烯材料研究现状及应用前景

崔志强

(重庆文理学院材料与化工学院,重庆

永川

402160)

摘要:近几年来, 石墨烯材料以其独特的结构和优异的性能, 在化学、物理和材料学界引起了轰动。本文引用大量最新的参考文献,阐述了石墨烯的制备方法如机械剥离法、取向附生法、加热 SiC 法、爆炸法、石墨插层法、热膨胀剥离法、电化学法、化学气相沉积法、氧化石墨还原法、球磨法等,分析了各种制备方法的优缺点。论述了石墨烯材料在透明电极、传感器、超级电容器、能源储存、复合材料等方面的应用,同时简要分析了石墨烯材料研究的现实意义,展望了其未来的发展前景。

关键词:石墨烯材料;制备方法;现实意义;发展现状;应用前景 中图分类号: TQ323

文献标识码:A

文章编号:

Research status and application prospect of graphene materials

Cui Zhiqiang(Faculty of materials and chemical engineering, Chongqing Academy of Arts and Sciences, Yongchuan, Chongqing 402160)Abstract: In recent years, graphene has caused a sensation in chemical, physical and material science due to its unique structure and excellent properties.Cited in this paper a large number of the latest references, expounds the graphene preparation methods such as layer method, thermal mechanical stripping method, orientation epiphytic method, heating SiC method, explosion, graphite intercalation expansion stripping method, electrochemical method, chemical vapor phase deposition method, graphite oxide reduction method, ball milling method, and analyze the advantages and disadvantages of various preparation methods.This paper discusses the application of graphene materials in transparent electrodes, sensors, super capacitors, energy storage and composite materials, and briefly analyzes the practical significance of the study of graphene materials, and gives a prospect of its future development.Keywords: graphene materials;preparation methods;practical significance;development status;application prospect

0 引言

1985 年英美科学家发现富勒烯和1991 年日本物理学家Iijima 发现碳纳米管,加之英国曼彻斯特大学科学家于2004 年成功制备石墨烯之后,金刚石(三维)、石墨(三维)、石墨烯(二维)、碳纳米管(一维)和富勒烯(零维)组成了一个完整的碳系材料“家族”。从理论上说,石墨烯是除金刚石外所有碳晶体的基本结构单元,如果从石墨烯上“剪”出不同形状的薄片,进一步就可以包覆成零维的富勒烯,卷曲成一维的碳纳米管,堆叠成三维的石墨,如图1 所示。由于石墨烯优异的电学、热学、力学性能,近年来各国科研人员对其的研究日益增长,已经是材料科学领域的研究热点之一。2010 年诺贝尔物理学奖揭晓[5-6]

[4]

[3]

[1]

[2]之后,人们对石墨烯的研究和关注越来越多,新的发现不断涌现。在不断深入研究石墨烯的制备方法和性质的过程中,其应用领域也在不断扩大。由于石墨烯缺乏带隙以及在室温下的超高电子迁移率、低于银铜的电阻率、高热导率等,在光电晶体管、生化传感器、电池电极材料和复合材料方面有着很高[7]的应用价值;由于它很低的电阻率和极大的载流子迁移率,人们很快发现了石墨烯在光电探测领域的潜能,并且认为将会是很具发展前途的材料之一。石墨烯材料的制备方法

1.1 石墨烯制备方法

目前,石墨烯的制备手段通常可以分为两种类型,化学方法和物理方法。物理方法,是从具有高晶格完备性的石墨或者类似的材料来获得,获得的石墨烯尺度都在80 nm 以上。而化学方法是通过小分子的合成或溶液分离的方法制备的,得到石墨烯尺度在10 nm 以下。物理方法包括:机械剥离法、取向附生法、加热 SiC 法、爆炸法;化学方法包括石墨插层法、热膨胀剥离法、电化学法、化学气相沉积法、氧化石墨还原法、球磨法。

这些制备方法有着各自的优缺点,如机械剥离法简单,可获得高品质的石墨烯,但重复性差、产量和产率很低;溶液液相剥离法制备过程简单且未破坏石墨烯面内原子结构,但该法效率低,而且单片层和多层石墨烯共存,很难将单片层石墨烯分离出来;外延生长法可制备得到大面积的单层石墨烯,但是该方法制备条件苛刻,需要高温和高真空,且石墨烯难从衬底上转移出来;化学气相沉积法制备的石墨烯具有较完整的晶体结构,石墨烯面积大,在透明电极和电子设备等领域表现出很明显的应用优势,但存在产量较低,成本偏高,石墨烯难转移等缺点。

对比上述方法,还原氧化石墨烯法是指先将石墨在强酸和强氧化剂作用下进行氧化,制备氧化石墨烯(GO),然后再还原除去含氧官能团制备石墨烯

[8]

尽管还原氧化石墨烯法制备的石墨烯不能完全消除含氧官能团,制备的石墨烯存在缺陷和导电性差等缺点,但是其宏量和廉价制备为其在聚合物复合材料等宏量应用研究中提供了机会。1.2 石墨烯基复合材料的制备

由于薄层石墨烯片合成方法的潜力巨大、成本低廉,所以石墨烯片作为新兴填料在石墨烯复合材料上会有广泛的应用。将石墨烯与无机物、聚合物等复合可以形成石墨烯复合材料。因为石墨烯具有独特的优异性能,能够展示良好性能的石墨烯复合材料令人期待。S.H.Yu等

[9]

证实:在还原态石墨烯片上,通过在聚合醇中高温分解前驱体乙酰丙酮铁就可以成功合成磁性化还原态石墨烯。通过有效控制石墨烯片上的表面电荷密度和磁性纳米颗粒的尺寸就可以调节复合材料的磁性,其独特的性质使其在磁共振成像或蛋白质分离方面具有一定的应用潜力。目前,石墨烯基复合材料的制备方法主要有化学耦合法、原位还原-萃取分散技术、共沉淀法、催化还原反应

[10]

等。氧化石墨烯是结晶性高的石墨强力氧化后加水分解得到的化合物,与氟化石墨一样可以归类为有共价键的石墨层间化合物。氧化石墨烯片表面带有大量亲水性酸性官能团,具有良好的润湿性能和表面活性,从而使其能在稀碱水和纯水中分散,形成稳定的胶状悬浮液,这使得石墨烯与其他材料的复合形式多样化。如Graeme等[11]将TiO2吸附在氧化石墨烯上通过紫外线辅助的催化还原合成了TiO2-石墨烯纳米复合材[12]料;Nethravathi等通过氧化石墨烯与活性阴离子的复合,经还原制备了石墨烯-无机物纳米复合材料,说明氧化石墨烯的特殊结构使得石墨烯基复合材料的制备更容易以多样化的过程实现。

石墨烯复合材料的制备是目前石墨烯研究中的一大热点,因为虽然石墨烯本身的性能很好,但是与实际应用还有较大的距离,许多研究者希望通过石墨烯的复合达到在电学、电化学等领域实际应用的目的。石墨烯材料的应用研究

2.1 透明电极

工业上已经商业化的透明薄膜材料是氧化铟锡(ITO), 由于铟元素在地球上的含量有限, 价格昂贵,尤其是毒性很大, 使它的应用受到限制。作为炭质材料的新星, 石墨烯由于拥有低维度和在低密度的条件下能形成渗透电导网络的特点被认为是氧化铟锡的替代材料, 石墨烯以制备工艺简单、成本低的优点为其商业化铺平了道路。Mullen 研究组通过浸渍涂布法沉积被热退火还原的石墨烯, 薄膜电阻为900 , 透光率为70% , 薄膜被做成了染料太阳能电池的正极, 太阳能电池的能量转化效率为0.26%。2009 年, 该研究组采用乙炔做还原气和碳源, 采用高温还原方法制备了高电导率(1425S/ cm)的石墨烯,为石墨烯作为导电玻璃的替代材料提供了可能。

2.2 传感器

电化学生物传感器技术结合了信息技术和生物技术, 涉及化学、生物学、物理学和电子学等交叉学科。石墨烯出现以后, 研究者发现石墨烯为电子传输提供了二维环境和在边缘部分快速多相电子转移, 这使它成为电化学生物传感器的理想材料。Chen 等采用低温热退火的方法制备的石墨烯作为传感器的电极材料, 在室温下可以检测到低浓度NO2 , 作者认为如果进一步提高石墨烯的质量, 则会提高传感器对气体检测的灵敏度。石墨烯在传感器方面表现出不同于其它材料的潜能, 使越来越多的医学家关注它, 目前石墨烯还被用于医学上检测多巴胺、葡萄糖等。2.3 超级电容器

超级电容器是一个高效储存和传递能量的体系, 它具有功率密度大, 容量大, 使用寿命长, 经济环保等优点, 被广泛应用于各种电源供应场所。石墨烯拥有高的比表面积和高的电导率, 不像多孔碳材料电极要依赖孔的分布, 这使它成为最有潜力的电极材料。Chen 等

[ 13]

以石墨烯为电极材料制备的超级电容器功率密度为10kW/ kg , 能量密度为28.5Wh/ kg , 最大比电容为205F/ g, 而且经过1200次循环充放电测试后还保留90% 的比电容, 拥有较长的循环寿命。石墨烯在超级电容器方面的潜在应用受到更多的研究者关注。2.4 能源存储

众所周知, 材料吸附氢气量和其比表面积成正比, 石墨烯拥有质量轻、高化学稳定性和高比表面积的优点, 使其成为储氢材料的最佳候选者。希腊大学Fro udakis 等设计了新型3D 碳材料, 孔径尺寸可调, 他们将其称为石墨烯柱。当这种新型碳材料掺杂了锂原子时, 石墨烯柱的储氢量可达到6.1%(w t)。Ataca 等用钙原子(Ca)掺杂石墨烯, 利用第一性原理和从头算起的方法得到石墨烯被Ca 原子掺杂后储氢量约为8.4%(w t);他们还发现氢分子的键能适合在室温下吸/ 放氢, Ca 会留在石墨烯表面, 有利于循环使用。Ataca 的研究结果又一次推动石墨烯储氢向前迈进一步。2.5 复合材料

石墨烯独特的物理、化学和机械性能为复合材料的开发提供了原动力, 可望开辟诸多新颖的应用领域, 诸如新型导电高分子材料、多功能聚合物复合材料和高强度多孔陶瓷材料等。Fan 等

[14]

利用石墨烯的高比表面积和高的电子迁移率, 制备了以石墨烯为支撑材料的聚苯胺石墨烯复合物, 该复合物拥有高的比电容(1046F/ g)远远大于纯聚苯胺的比电容115F/ g。石墨烯的加入提高了复合材料的多功能性和复合材料的加工性能等, 为复合材料提供了更广阔的应用领域。图3 对比了几种纳米填料对橡胶增强效率,可以看到石墨烯具有更显著的增强效果

[15]

。展望

石墨烯自2004年以稳定的形态出现以来,因其独特的性能和二维纳米结构受到科学界的普遍关注。无论在理论还是实验研究方面,石墨烯都展示出重大的科学意义和应用价值。近年来,石墨烯的研究不断取得重要进展,在石墨烯透明导电薄膜的结构、性能、制备等方面也已经取得了很多的研究成果,但也存在不少问题。由于制作大面积石墨烯薄膜时会混入杂质,产生缺陷,因此大多数以石墨烯薄膜为器件的导电性及透明性都未达到ITO的水平。为了使石墨烯透明导电薄膜达到实际应用水平,还需要继续探索透明导电薄膜的制备方法以实现大面积化及量产化;开发有效的掺杂技术以使石墨烯薄膜具有理想的载流子密度;研究更有效的还原与结构修复方法以制备不含缺陷及杂质的高品质石墨烯薄膜。

理论上看,石墨烯是一种理想的太阳电池透明电极材料。然而,目前以石墨烯作透明电极的太阳电池光电转化效率都低于ITO/FTO基太阳电池。这是由于采用各种方法制备的石墨烯电阻较大,影响了电池的光电转化效率。所以石墨烯作透明电极的研究重点主要集中在如何采用合适的制备方法,获得电性能、透光性、力学性能等综合性能好的石墨烯。对石墨烯内部的位错、晶界、应变等缺陷进行理论模拟计算,并用来指导实验研究,最终通过控制位错、晶界等缺陷的运动,使其性能得到有效控制,实现理论指导实验、实验验证理论、理论与实验紧密结合。这是获得大面积、高性能石墨烯的新的着眼点。另外,石墨烯作透明电极时,也会与太阳电池其它部分直接接触。在未来的研究中,制备高性能石墨烯的同时,也应该关注太阳电池中石墨烯与其它部分的界面情况。

目前,关于石墨烯材料的制备和其在电化学领域的应用研究仍在如火如荼地进行。人们的研究主要集中于3个方面:一是石墨烯的低成本大规模制备的基础研究,二是石墨烯基复合材料的制备与性能研究,三是石墨烯材料在相关领域的应用研究。随着人们对石墨烯及其复合材料研究的深入以及制备方法的改进,石墨烯及其复合材料在电化学中的应用将会得到更为广泛的关注。以下几方面研究较少,值得关注:(1)石墨烯在锂离子电池正极材料研究方面(如石墨烯/磷酸亚铁锂);(2)含氮或硼石墨烯在电化学中的应用;(3)氧化石墨烯复合材料在燃料电池中的应用;(4)氧化石墨烯复合材料在电化学传感器中的应用。与碳纳米管的发现与研究应用过程类似,在今后的若干年里石墨烯的研究会越来越深入,其最终进入实际应用阶段是必然的。石墨烯材料是当今世界新材料科技发展的又一制高点,对其深入研究与开发将给许多领域的发展带来巨大机会。

参考文献

[1] 史永胜,李雪红,宁青菊.石墨烯的制备及研究现状.电子元件与材料[J],2010,8(8):70-73 [2] 孙治华,朱申敏,张 荻.石墨烯基纳米复合材料在光解水产氢中的应用[J].材料导报,2014,3(3):30-33 [3] 赵建红,宋立媛等.石墨烯在光电探测领域的研究进展[J].红 外 技 术,2014,8(8):608-611 [4] 章海霞,闫 辉等.石墨烯作太阳电池透明电极的研究进展[J].材料导报.2014,11(11):8-11 [5] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films [J].Science,2004,306(5696):666-669.[6] 王学宝,李晋庆,罗运军.高氯酸铵/石墨烯纳米复合材料的制备及热分解行为[J].火炸药学报,2012,35(6):76-80.[7] 沙金,谢林生,马玉录,等.氨基改性氧化石墨烯及其与环氧树脂的复合[J].中国塑料,2011,25(8):28-33.[8] BALANDIN A A,GHOSH S,BAOWZ,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.[9] PACI J T,BELYTSCHKO T,SCHATZ G C.Computational studies of the structure,behavior upon heating,and mechanical properties of graphite oxide[J].The Journal of Physical Chemistry(C),2007,111(49):18099-18111.[10] SZABO T,TOMBACZ E,ILLES E,et al.Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides[J].Carbon,2006,44(3):537-545.[11] BERGERC,SONGZM,LIXB,et al.Electronic confinement and coherence in patterned epitaxial graphene[J].Science,2006,312(5777):1191-1196.[12] Li D, Mull er M B, Gilje S , et al.Proces sab le aqueous di sper s ions of graphen e nanosheet s [ J ].Natu re Nanot ech nology ,2008 , 3(2): 101-105.[13] H ernan dez Y, Nicolosi V, Lot ya M , et al.High yield produc t ion of graphene b y liquid phase exf oliat ion of graphit e[ J].Na tur e Nanot echnology , 2008 , 3(9): 563-568.[14] H amilt on C E, Lomeda J R , Su n Z Z, et al.H igh yield or ganic disp ersion s of u nfu nct ionalized graphene[ J ].Nano L et t ,2009 , 9(10): 3460-3462.[15] 张晓珍.基于石墨烯/硅异质结高性能光伏器件的研究[D].苏州:苏州大学,2013

第二篇:石墨烯前景

2013年1月,欧盟委员会将石墨烯列为“未来新兴技术旗舰项目”之一;

十二五规划

石墨烯是新材料中最为“时髦”的一员。它具有超硬、最薄、负电子的特征,有很强的韧性、导电性以及导热性。这使其能够广泛应用于电子、航天、光学、储能、生物医学等众多领域,拥有巨大的产业发展空间。

因此,石墨烯在2004年被发现后就迅速引发全球范围内的研究热。近年来我国在石墨烯研发应用方面的研究不断加强,各地政府和有关机构加大力度扶持和推动石墨烯产业化发展。

2013年6月,内蒙古石墨烯材料研究院正式成立。这是我国首个与石墨烯材料相关的综合性研究机构和技术开发中心。

2013年7月13日,在中国产学研合作促进会的支持下,中国石墨烯产业技术创新战略联盟正式成立。该联盟已向有关部门上报了无锡、青岛、宁波、深圳四个地方,作为石墨烯产业研发示范基地。江苏省、山东省等省级石墨烯联盟已于2013年陆续成立。

2013年12月18日,无锡市发布《无锡石墨烯产业发展规划纲要》,规划建立无锡石墨烯产业发展示范区和无锡市石墨烯技术及应用研发中心、江苏省石墨烯质量监督检验中心。力争把无锡市打造成国家级石墨烯产业应用示范基地和具有国际竞争力的石墨烯产业发展示范区。

2013年12月20日,宁波年产300吨石墨烯规模生产线正式落成投产。

与此同时,上海浦东新区也正筹备建立临港石墨烯产业园区,并力争国家石墨烯检验监测中心落户浦东。

石墨烯产业遍地开花。据记者了解,目前,无锡市已设立2亿元专项资金,通过补贴、配套、奖励、跟进投资、股权投资等方式,进一步扶持石墨烯产业发展;宁波为了扶持石墨烯产业发展,也拿出了千万元以上的扶持资金。业内人士表示,作为一种理想的替代型材料,石墨烯一旦实现产业化其产值至少在万亿元以上。

推进产业结构优化

第三篇:石墨烯性质与应用

石墨絮是绝缘体还是导体?

2007-03-18 09:11 紫月影夭儿 | 分类:学习帮助 | 浏览1906次| 该问题已经合并到>>

提问者采纳 2007-03-18 09:15 有一种称为石墨炸弹的武器在战时被用来破坏敌方的供电设施,这种炸弹不会造成人员伤亡,而是在空中爆炸时散布大量极细的石墨絮,这些石墨絮是 导体飘落到供电设备上,会造成 短路,从而使供电系统瘫痪评论(1)|赞同36

音速行 |八级采纳率39%

擅长:青春期学习帮助

按默认排序|按时间排序

其他5条回答

2007-03-20 23:50dolphin027|二级

准确说石墨是禁带宽度仅为0.08eV的半导体,表观上具有金属导电性,其根源在于其π电子的迁移率很高,但载流子浓度(电子浓度)不大。评论|赞同0 查看更多其他回答石墨的比热容和导热系数是多少

2007-05-17 15:21 shenzhen_he | 分类:学习帮助 | 浏览4880次

提问者采纳 2007-05-17 15:32 石墨比热 710 J/(kg·K)电导率 0.061×10-6/(米欧姆)热导率 129 W/(m·K)石墨的两种晶体结构怎么分辨

2011-08-23 16:45 hubin821 | 分类:化学 | 浏览1504次

石墨存在两种晶体结构:六方形结构和菱形结构,六方形结构为ABABAB„堆积模型、菱形结构为ABCABCABC„堆积模型,如下图所示:(a)为六方形结构,(b)为菱形结构。

我手上现在有份天然石墨样品,不知道怎么分辨是什么石墨,是鳞片石墨还是微晶石墨,或者说里面含多少六方的多少菱形的提问者采纳 2011-08-30 08:45 只能用x射线衍射分析(XRD)才能知道含多少六方(六方晶系)的多少菱形(三方晶系,菱面体)。鳞片石墨是指材料的宏观外形,肉眼可以判断。微晶石墨说的是材料中的石墨以很小的晶粒杂乱无章地排列(晶粒内部规则排列为六方形结构或菱形结构),晶粒的大小同样可以用x射线衍射分析测定。x射线衍射仪在一般的省会城市中的比较有名的理工科大学都有,可联系其分析测试中心或材料或化学院、系、所。(官网上查联系方式),一个样品费用100元左右。提问者评价谢谢 评论|赞同1 caoyuannust |十四级采纳率82%

擅长:物理学化学教育/科学理工学科

按默认排序|按时间排序

其他1条回答

2011-08-25 17:401257721|四级

你应该问的是石墨和金刚石的区别。石墨与金刚石都是碳单质,且为同素异形体,区别在于原子的排布形式不同。碳有三种同素异形体,即金刚石、石墨和无定形碳。无定形碳有炭黑、木炭、焦炭、骨炭、活性炭等。统称黑碳。这三种同素异形体的物理性质差别很大。但在氧气里燃烧后的产物都是二氧化碳。1.金刚石的晶体结构金刚石是典型的原子晶体,在这种晶体中的基本结构粒子是碳原子。每个碳原子都以sp3杂化轨道与四个碳原子形成共价单键,键长为1.55×10-10 m,键角为109°28′,构成正四面体。每个碳原子位于正四面体的中心,周围四个碳原子位于四个顶点上,在空间构成连续的、坚固的骨架结构。因此,可以把整个晶体看成一个巨大的分子。由于C—C键的键能大(为347 kJ/mol),价电子都参与了共价键的形成,使得晶体中没有自由电子,所以金刚石是自然界中最坚硬的固体,熔点高达3 550 ℃,并且不导电。2.石墨的晶体结构石墨晶体是属于混合键型的晶体。石墨中的碳原子用sp2杂化轨道与相邻的三个碳原子以σ键结合,形成正六角形蜂巢状的平面层状结构,而每个碳原子还有一个2p轨道,其中有一个2p电子。这些p轨道又都互相平行,并垂直于碳原子sp2杂化轨道构成的平面,形成了大π键。因而这些π电子可以在整个碳原子平面上活动,类似金属键的性质。而平面结构的层与层之间则依靠分子间作用力(范德华力)结合起来,形成石墨晶体.石墨有金属光泽,在层平面方向有很好的导电性质。由于层间的分子间作用力弱,因此石墨晶体的层与层之间容易滑动,工业上用石墨作固体润滑剂。3.无定形碳所谓无定形碳是指其内部结构而言。实际上它们的内部结构并不是真正的无定形体,而是具有和石墨一样结构的晶体,只是由碳原子六角形环状平面形成的层状结构零乱而不规则,晶体形成有缺陷,而且晶粒微小,含有少量杂质。无定形碳包括: 炭黑 木炭 焦炭 活性炭 骨炭 糖炭无定形碳跟少量砂子、氧化铁催化剂混合,在约3500℃中加热,使产生的碳蒸气凝聚,可得人造石墨。而跟中子数无关,原子的质子数相同而中子数不同时,叫作同位数。自然界中碳元素有三种同位素,即稳定同位素12C、13C和放射性同位素14C,14C的半衰期为5730年,14C的应用主要有两个方面:一是在考古学中测定生物死亡年代,即放射性测年法;二是以14C标记化合物为示踪剂,探索化学和生命科学中的微观运动。我是做化学的,希望对你有帮助。以后不懂的还可以找我。鳞片状石墨 性质:呈鳞片状、薄叶片状晶质的石墨,大小一般为(1.0~2.0)×(0.5~1.0)mm,最大4~5mm,片厚0.02~0.05mm。鳞片愈大,经济价值愈高。多呈浸染状、片麻状分布于岩石中。具有明显的定向排列。与层面方向一致。石墨含量一般为3%~10%,最高20%以上,常与古老变质岩(片岩、片麻岩)中石英,长石,透辉石等矿物共生,在火成岩与石灰岩接触带也可见到。鳞片状石墨具层状结构,其润滑性,柔韧性,耐热性和导电性能均比其他石墨好。主要用作制取高纯石墨制品的原料。土状石墨 土状石墨又称非晶质石墨或隐品质石墨,这种石墨的晶体直径一般小于1微米,是微晶石墨的集合体,只有在电子显微镜下才能见到晶形。此类石墨的特点是表面呈土状,缺乏光泽,润滑性也差。品位较高。一般的60~80%。少数高达90%以上。矿石可选性较差。评论|赞同0 其他类似问题

石墨烯的结构与性质问题

2010-12-18 22:09 zzk314 | 分类:工程技术科学 | 浏览3397次

石墨烯是正六边形的吗?它的π电子是共轭的吗?是像石墨一样的共轭的吗?? 一定要准确,不懂的少装

提问者采纳 2010-12-19 10:26 石墨烯是六边形的,它的π电子是共轭的,但不像石墨一样共轭的。

它不仅是已知材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快。石墨烯在原子尺度上结构非常特殊,必须用相对论量子物理学(relativistic quantum physics)才能描绘。

石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。

这种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。提问者评价谢谢 评论(1)|赞同6 石墨烯是一种什么物质?

2012-06-03 08:31 似痛心的爱 | 来自手机知道 | 分类:化学 | 浏览124次

物质种类、用途、定义,是否环保 我有更好的答案

按默认排序|按时间排序

3条回答

2012-06-03 08:37张勇内蒙古伊东|二级

石墨烯是由碳六元环组成的两维(2D)周期蜂窝状点阵结构, 它可以翘曲成零维(0D)的富勒烯(fullerene),卷成一维(1D)的碳纳米管(carbon nano-tube, CNT)或者堆垛成三维(3D)的石墨(graphite), 因此石墨烯是构成其他石墨材料的基本单元。是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料[1]。

石墨烯不仅是已知材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快。室温下石墨烯具有10倍于商用硅片的高载流子迁移率(约10 am /V·s),并且受温度和掺杂效应的影响很小,表现出室温亚微米尺度的弹道传输特性(300 K下可达0.3 m),这是石墨烯作为纳电子器件最突出的优势,使电子工程领域极具吸引力的室温弹道场效应管成为可能。石墨烯还可以应用于晶体管、触摸屏、基因测序等领域,同时有望帮助物理学家在量子物理学研究领域取得新突破。

石墨烯的合成方法主要有两种:机械方法和化学方法。机械方法包括微机械分离法、取向附生法和加热SiC的方法 ; 化学方法是化学还原法与化学解理法。评论|赞同0 2012-06-03 08:32xi10539093|四级

石墨烯(Graphene)是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料[1]。石墨烯一直被认为是假设性的结构,无法单独稳定存在[1],直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖[2]。

石墨烯目前是世上最薄却也是最坚硬的纳米材料[3],它几乎是完全透明的,只吸收2.3%的光“[4];导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率*超过15000 cm2/V·s,又比纳米碳管或硅晶体*高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料[1]。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。

石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。

石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯的命名来自英文的graphite(石墨)+-ene(烯类结尾)。石墨烯被认为是平面多环芳香烃原子晶体。

石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42Å。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。

石墨烯是构成下列碳同素异形体的基本单元:石墨,木炭,碳纳米管和富勒烯。完美的石墨烯是二维的,它只包括六边形(等角六边形);如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。

石墨烯卷成圆桶形可以用为碳纳米管;另外石墨烯还被做成弹道晶体管(ballistic transistor)并且吸引了大批科学家的兴趣。在2006年3月,佐治亚理工学院研究员宣布, 他们成功地制造了石墨烯平面场效应晶体管,并观测到了量子干涉效应,并基于此结果,研究出以石墨烯为基材的电路.石墨烯的问世引起了全世界的研究热潮。它是已知材料中最薄的一种,质料非常牢固坚硬,在室温状况,传递电子的速度比已知导体都快。石墨烯的原子尺寸结构非常特殊,必须用量子场论才能描绘。

石墨烯是一种二维晶体,最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”(electric charge carrier),的性质和相对论性的中微子非常相似。人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。[1]发展简史。第一:石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂;第二:石墨烯是世界上导电性最好的材料,电子在其中的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域,比如超轻防弹衣,超薄超轻型飞机材料等。根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。另外石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由于其高传导性、高比表面积,可适用于作为电极材料助剂 石墨烯出现在实验室中是在2004年,当时,英国曼彻斯特大学的两位科学家安德烈·杰姆和克斯特亚·诺沃消洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。这以后,制备石墨烯的新方法层出不穷,经过5年的发展,人们发现,将石墨烯带入工业化生产的领域已为时不远了。因此,两人在2010年获得诺贝尔物理学奖。

石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。在石墨烯中,电子能够极为高效地迁移,而传统的半导体和导体,例如硅和铜远没有石墨烯表现得好。由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,目前一般的电脑芯片以这种方式浪费了70%-80%的电能,石墨烯则不同,它的电子能量不会被损耗,这使它具有了非同寻常的优良特性评论|赞同0 查看被隐藏回答2012-12-26 18:411079235453|五级 石墨烯硬度大,导电性能好,有韧性,可弯曲评论|赞同0 其他类似问题 石墨烯奇异物理性质有哪些?

2012-05-27 08:45 西门吹吹风1 | 分类:化学 | 浏览509次

提问者采纳 2012-05-27 12:59 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光”;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率*超过15000 cm2/V·s,又比纳米碳管或硅晶体*高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。

石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。第一:石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂;第二:石墨烯是世界上导电性最好的材料,电子在其中的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域,比如超轻防弹衣,超薄超轻型飞机材料等。根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。另外石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由于其高传导性、高比表面积,可适用于作为电极材料助剂提问者评价太感谢了,真心有用 评论|赞同1

我i国足 |来自团队心系数学 |五级采纳率40%

擅长:生活常识物理学哲学数学常见软件 按默认排序|按时间排序

其他2条回答

2012-05-30 14:07chocolate02091|二级

石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光";导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率*超过15000 cm2/V·s,又比纳米碳管或硅晶体*高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。评论|赞同0 查看被隐藏回答2012-08-23 18:54li996166749|二级 由碳元素组成评论|赞同0 其他类似问石墨棒导热性能怎么样?

第四篇:石墨烯学习心得

石墨烯学习心得

最近这段时间断断续续搜集了很多纳米材料、半导体物理还有石墨烯的相关资料,主要是来自万方数据网、超星学术视频网站、百度文库还有一些相关网页博客资料。了解到了很多之前闻所未闻的知识,比如“纳米材料的神奇特性、纳米科技潜在的危害”等等。

对于石墨烯,主要有如下几方面不成熟的想法,还望老师您来指正。

(一)在石墨烯新奇特性以及宏观应用预测方面

有人认为,石墨烯的这些新奇的特性以及预期应用并不能推广到宏观尺寸。

第一是认为很多实验数据都是来源于对微纳米级单层石墨烯的实验研究,不能把纳米微米级观察和测试到的数据无限夸大到宏观应用;

第二是认为单层悬浮石墨烯的特异性是依靠其边界碳原子的色散作用而稳定存在,大面积的单层悬浮石墨稀不可能稳定存在。第三是认为目前的大面积石墨烯的应用实例存在相当大的褶皱以及碳原子缺失。因而否定很多2010年诺贝尔物理奖的公告中对于石墨稀的宏观应用预测,并主张继续深入石墨烯微观性能研究,比如半导体器件等研究。

我想:我们最好还是不能放弃石墨烯在宏观尺度上应用的希望,应该尽最大努力用各种手段去克服所谓的褶皱、碳原子缺失等等导致石墨烯性质不能稳定存在的负面因素,比如采用衬底转移(CVD)的方式所制大面积石墨烯透明电极尺寸的方法(虽然制得的石墨烯还有很多的缺陷,但至少证明大面积石墨烯还是有可能稳定存在并最终为我们所用的吧,毕竟有宏观实际应用的材料才更有可能是有发展前景的新型材料)。

(二)在石墨烯制备工艺方面 我们知道,石墨烯非常有希望在诸多应用领域中成为新一代器件,但这些元件要达到实际应用水平,还需要解决很多问题。那就是如何在所要求的基板或位臵制作出不含缺陷及杂质的高品质石墨烯,或者通过掺杂(Doping)法实现所期望载流子密度的石墨烯。用于透明导电膜用途时能否实现大面积化及量产化,而用于晶体管用途时能否提高层控制精度,这些问题都十分重要。今后,为了探寻石墨烯更广阔的应用领域,还需继续寻求更为优异的石墨烯制备工艺,使其得到更好的应用。

(三)石墨烯在纳米存储器上的应用前景

传统的半导体工艺技术已逐渐逼近物理极限,难以大幅度提高存储器的性能,越来越难以满足人们对存储器的要求,要想有突破性的进展,就必须另辟蹊径,寻找新的原理和方法。

第一是因为传统半导体存储器存在容量小数据易丢失等弊端。第二是因为现代化信息爆炸社会迫切要求新型的大容量存储器的出现。

第三因为是人们对信息存储的安全性要求越来越高。最后,假如纳米存储技术能够实现的话,届时我们电脑中的存储设备也许会以PB为单位计算,而因存储介质损坏导致数据丢失的烦恼也将远离我们。所以我觉得:要是可能的话,以石墨烯为介质的存储器,应该是一个不错的研究方向。

第五篇:石墨烯应用产业园项目汇报

关于天津九大街石墨烯应用产业园

项目汇报

中晶环境科技股份有限公司

二零一七年九月

前言

石墨烯一种足以改变世界的新材料

2004年英国曼彻斯特大学的康斯坦丁·诺沃肖洛夫和安德烈·盖姆通过机械剥离法首次成功制备得到了石墨烯。作为目前发现的最薄、强度最大、导电导热性最强的一种新型纳米材料——石墨烯被称为“黑金”,是新材料之王科学家曾预言:石墨烯将会掀起一场席卷全球的颠覆性新技术,新产业革命。

石墨烯(Graphene)是从石墨中剥离出来的,是由碳原子组成的只有一层的原子厚度的二维晶体,是自然界最薄,强度最高的新材料。

由于石墨烯的性能优良、功能众多而被广泛应用到 “防腐涂料”、“建筑材料”、“电子信息”、“电子元件”“绿色能源”等几大领域。

一项目概述

1.1、项目背景:

与石墨烯相关的研究和产业化在近年来持续升温。欧洲、美国、日本、韩国等许多国家和地区都进行了一系列相关研究,支持了许多项目,对推动产业发展做出了战略部署。近年来,国家出台众多政策,支持石墨烯产业化,石墨烯应用的发展与研究。

各国政府纷纷重视和关注石墨烯的同时,众多企业也积极投入到石墨烯研发和产业化的大潮中。

1.2、项目定位:

中国最大的石墨烯商业化应用产业基地

1.3、项目位置

该产业园位于天津经济技术开发区第九大街与第十大街之间,占地面积超过20万平米,配套设施齐全,交通便利,地理位置十分优越。

1.4、项目承建商介绍

中晶环境科技股份有限公司,是专业从事工业烟气、废水、固废一体化协同治理技术的国家高新技术企业。通过FOSS®烟气综合治理副产物与城市、工业固废有机结合,生产出轻质、高强、防火、保温建筑一体化新型建材,实现绿色循环产业链。公司近些年来不断加大在新材料领域的研发投入,依靠自身技术积累,目前已经具备产业化制备单层、多层石墨烯材料的生产能力。

二、项目介绍

根据Marketsand Markets发布的2020年全球石墨烯市场趋势和预测最新报告显示2015年作为石墨烯产业的爆发元年,2015-2020年期间,市场增长率达42.8%。并呈现出以下特征:

一、亚太地区--石墨烯最快增长市场。亚太地区石墨烯市场预计将成为增长速度最快的地区。

二、氧化石墨烯--石墨烯最大市场。氧化石墨烯是石墨烯市场最大门类。

三、能源与材料应用--石墨烯最大、增长最快的应用领域市场。

当前石墨烯产业化的瓶颈主要有两点,分别是低成本高品质石墨烯原料的规模化制备和石墨烯的商业化应用。2.1、石墨烯的制备

中国在制备高纯度大面积大批量制备石墨烯的工艺已经达到了世界领先水平。中晶环境制备的单层石墨烯薄膜采用化学气相沉积法,低压状态下卷对卷式生产方式,简单易行,效率高,成本低,生产的石墨烯薄膜品质良好,单层率高。产品多用于电子器件领域;多层石墨烯采用氧化还原的方法,纯度高,多层石墨烯与复合基体的相容性好,分散均匀,有效提高复合基体的各项性能,主要应用在特种涂料与特种建材领域。

2.2、石墨烯产业化应用 A 特种涂料:

目前国内重防腐涂料消费量近180万吨,占世界重防腐涂料总消费量的40%以上。我国重防腐涂料需求主要集中在船舶、石油化工、桥梁、集装箱等领域,涂料领域将会是石墨烯可能应用最快的领域之一。

石墨烯用于涂料中可制备纯石墨烯涂料和石墨烯复合涂料,前者主要是指纯石墨烯在金属表面发挥防腐蚀、导电等作用的功能性涂料;后者主要是指石墨烯首先与聚合物树脂复合,然后以复合材料制备功能性涂料,石墨烯可显著提升树脂的性能,除具有传统涂料的特性外,更具备无机物特性,涂膜与机制相同,具有安全环保、防水透气、耐碱耐污、防火耐候性、不褪色、抗菌防霉,不会造成二次污染。

涂料中添加石墨烯后,石墨烯能够形成稳定的导电网格,有效提高锌粉的利用率,可用1%含量的石墨烯代替50%的锌粉,达到富锌涂料相同的防腐效果同时延长防腐时间,而且每吨涂料可以便宜1000多元。

产业园石墨烯特种涂料投产后,年产量为预计为30万吨,售价1.2万元/吨,年产值36亿元。B 建筑材料:

水泥混凝土时下是建筑领域中最为廉价、应用最广泛的建筑材料,但随着高层、超高层建筑的兴建,跨海大桥和海底隧道等高难度工程的建设,传统混凝土材料暴露出越来越多的问题,如抗拉强度低、韧性差、耐候性差、渗透性差等缺陷,将制约混

凝土向高强高性能化、绿色环保化、高耐久和智能化方面发展。石墨烯优异的各项物理化学性能,在混凝土基体中发挥体积效益

石墨烯的二维纳米片层结构,能很好的分散在水泥集体中,促进水泥的水化过程,影响水化产物的大小形状以及分布,从微观上彻底改变了水泥水化后的内部结构,从根本上提高了水泥基材料的抗压强度、抗折强度、韧性等各项力学性能,进而大大延长了水泥基材料的使用寿命。

投产后,生产的含有石墨烯的建筑墙体材料具有保温效果好,导热系数低至0.046W/(m·k)等特点。年产能500万m2,成本为20元/m2,市场售价为120元/m2,年产值6亿元。

C 电子元件

探索石墨烯柔性透明薄膜在有机发光二极管(OLED)、柔性显示屏、太阳能电池、电子散热及可穿戴电子等方面的应用,主要包括石墨烯柔性透明电极的制备、石墨烯复合薄膜透明电极的制备,并实现石墨烯柔性透明薄膜的中试和产业化。建成后单层石墨烯薄膜年产能4万m2,年产值近150亿元。

四、小结与建议

目前石墨烯产业已被纳入国家战略布局。《中国制造2025》首个重点领域技术路线图把它列为前沿新材料之一。中国“十三五”规划建议明确提出将加快突破新材料等领域核心技术。到2018年实现石墨烯材料稳定生产,实现在部分工业产品和民生消费品上的产业化应用。

石墨烯产业园一旦建成除了可以给当地创造大量的就业机会,增加当地的财政收

入的同时,更可以吸引相关领域的高端人才聚集,并最终形成以石墨烯新材料为核心驱动的相关产业转型升级。

市场、资金、技术、成本、人才等等都是企业在经营过程中必须考虑到的问题,这些都离不开政府的政策扶持与支持。石墨烯在全球范围内作为一种可以撬动产业与技术升级的新材料,在产业化的过程中也面临着市场培育期长、资金占用量大、人才稀缺等问题。希望相关领导与部门能够在财政补贴、税收优惠、土地政策、人才引进等方面给予大力的支持。

中晶环境科技股份有限公司

2017年9月

下载石墨烯研究现状及应用前景word格式文档
下载石墨烯研究现状及应用前景.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    石墨烯材料研究点评(附股)

    石墨烯是最理想的电极和半导体材料,制备并稳定组装是制约其产业化的最大难点。 石墨烯是一种二维的单层碳原子结构材料,它不仅是世界上最强、最坚硬、最薄的物质,同时由于它在......

    石墨烯相变材料论文

    石墨烯相变材料的研究 摘要:随着热管理及热存储技术的发展,储热技术逐渐扮演着越来越重要的角色,于此同时寻找高性能的储热材料也成为了研究热潮。近年来,相变材料的发展为储热......

    石墨烯调研报告

    石墨烯调研报告 2016年3月4日程毕康 1. 石墨烯 石墨烯是一种可以单独存在的单原子层二维碳材料。石墨烯结构是由碳六元环组成的二维周期蜂窝状点阵结构,它可以翘曲成零维的富......

    关于石墨烯的总结

    一.石墨烯常用修饰方法总结 石墨烯是由一层密集的、包裹在蜂巢晶体点阵上的碳原子组成,是世界上最薄的二维材料,其厚度仅为 0.35 nm。这种特殊结构蕴含了丰富而新奇的物理现象,......

    石墨烯制作方法总结

    目前制备石墨烯采用的方法有:微机械剥离法、化学气相沉积法、氧化还原法、溶剂剥离法和溶剂热法等. Large-scale pattern growth of graphene films for stretchable transpar......

    石墨烯纳米材料论文

    石墨烯纳米材料 摘要: 石墨烯是继富勒烯、碳纳米管之后发现的一种具有二维平面结构的碳纳米材料,它自2004年发现被以来,成为凝聚态物理与材料科学等领域的一个研究热点。石墨......

    石墨烯调研小结

    www.xiexiebang.com 石墨烯调研小结 一、简介石墨烯的结构及性质 石墨烯(Graphene)是一种由碳原子构成的单层片状结构的新材料,是一种由碳原子以sp杂化轨道组成六角型呈蜂巢......

    纳米材料研究现状及应用前景要点

    纳米材料研究现状及应用前景 摘要:文章总结了纳米粉体材料、纳米纤维材料、纳米薄膜材料、纳米块体材料、纳米复合材料和纳米结构的制备方法,综述了纳米材料的性能和目前主要......