第一篇:脱氮除磷技术
哈尔滨理工大学学士学位论文
目录
第1章
脱氮除磷简述------------------------2
第2章
生物脱氮除磷基本原理----------------3
2.1生物脱氮过程3 2.2生物除磷过程3
第3章
生物脱氮除磷工艺研究新方向---4 3.1SHARON工艺4 3.2CANON工艺--5 3.3DEPHANOX工艺---------------------------5 3.4BCFS工艺-----6 3.5厌氧氨氧化(ANAMMOX)工艺------7 3.6 A2NSBR工艺-7
第4章 结语-----9
哈尔滨理工大学学士学位论文
简述污水脱氮除磷工艺及研究进展
摘要
氮、磷去除率不达标造成水体的富营养化是世界各国面临的最大挑战之一,已被各国政府高度重视。传统的脱氮除磷工艺存在许多不足之处,经济、高效、低耗的可持续脱氮除磷工艺已成为污水处理的发展方向。本文简要介绍了生物脱氮除磷的基本原理和工艺:SHARON工艺,CANON工艺,2DEPHANOX工艺,BCFS工艺,ANAMMOX工艺,ANSBR工艺的机理和研究进展。同时指出经济、高效、低能耗的可持续脱氮除磷工艺是污水处理的发展方向。
关键词:污水处理;生物脱氮除磷;处理工艺;研究进展
第1章
脱氮除磷简述
近些年来,随着工农业生产的高速发展和人们生活水平的不断提高,含氮、磷的化肥、农药、洗涤剂的使用量不断上升。然而,我国现有的污水处理厂主要集中于有机物的去除,对氮、磷等营养物的去除率只达到10%-20%其结果远达不到国家二级排放标准,造成大量氮磷污染物进入水体,引起水体的富营养化。对我国的26个主要湖泊的富营养调查表明,其中贫营养湖1个,中营养湖9个,富营养湖16个,在16个富营养化湖泊中有6个的总氮、总磷的负荷量极高,已进入异常营养型阶段。其中滇池、太湖、巢湖流域,水体富营养化更为严重。同时,我国沿海地区多次出现赤潮现象。
我国新颁布的《污水综合排放标准》(GB8918-1996)对氮、磷都做了严格的规定,其中对氮:15mg/L(一级标准)、25mg/L(二级标准);对磷:0.5mg/L(一级标准)、1.0mg/L(二级标准)。因此,采用高效、节能、经济的氮磷去除工艺以及构筑物一体化建设必将是我国城市污水处理工艺的一个发展方向。
哈尔滨理工大学学士学位论文
第2章
生物脱氮除磷基本原理
2.1生物脱氮过程
生物脱氮通过氨化、硝化、反硝化三个步骤完成。
氨化反应:有机氮化合物在氨化细菌的作用下分解,转化为氨态氮。硝化反应:在硝化细菌的作用下,氨态氮进一步分解、氧化,就此分两个阶段进行。首先,在亚硝化细菌的作用下,使氨转化为亚硝酸氮,亚硝酸氮在硝酸菌的作用下,进一步转化为硝酸氮。
反硝化反应:反硝化反应是指硝酸氮和亚硝酸氮在反硝化菌的作用下,被还原为气态氮的过程。
2.2生物除磷过程
生物除磷,是利用聚磷菌一类的微生物,能够过量地、在数量上超过其生理需要的、从外部环境摄取磷,并将磷以聚合物的形态贮藏在菌体内,形成富磷污泥。排出系统外,达到废水中除磷的效果。
哈尔滨理工大学学士学位论文
第3章
生物脱氮除磷工艺研究新方向
传统的生物脱氮除磷工艺如:生物除磷:A/O,A2/O,Bardenpho,UCT,Phoredox,AB等除磷工艺。生物脱氮:A/O,A2/O,Bardenpho,UCT,Phoredox,改进的AB,TETRA深度脱氮,SBR,氧化沟等脱氮工艺。
现有的生物脱氮除磷组合工艺主要是建立在传统生物脱氮除磷理论基础上进行构架组合的。传统生物脱氮除磷工艺中,具有较大差别的微生物在同一系统中相互影响,制约了工艺的高效性和稳定性;较多的工艺流程中包含多重污泥和混合液的回流,增加了系统的复杂性,提高了基建和运行费用;脱氮除磷过程中对能源(如氧、COD)消耗较多;剩余污泥富含磷,处理量较大。这些都不符合环境的可持续发展的要求。近年来,同时硝化反硝化现象、反硝化除磷现象、短程硝化反硝化脱氮工艺、厌氧氨氧化工艺等的发现和研究,为解决上述问题提供了有效的途径。
同时硝化反硝化技术的研究传统脱氮理论认为硝化反应在好氧条件下进行,而反硝化反应在厌氧条件下完成,两者不能在同一条件下进行。然而,近几年许多研究者发现存在同时硝化反硝化现象,尤其是有氧条件下的反硝化现象,确实存在于不同的生物处理系统中。如氧化沟、SBR工艺、间歇曝气反应器工艺。研究者对此进行了广泛的研究,提出了一些新的见解。其中,认为微生物的存在是其最主要的原因。如某些反应器流态上的特征,为同时硝化反硝化创造了可能的环境条件;另外,从微生物发展的角度看,存在着目前尚未被认识的微生物菌种(如好氧条件下的反硝化细菌)能使同时硝化反硝化现象发生,但对其机理的认识还未统一,尚处于探索阶段。
3.1 SHARON工艺
SHARON工艺是由荷兰Delft技术大学开发的新工艺,已经在荷兰鹿特丹的废水处理厂建成并投入运行。该工艺的核心是,应用硝酸菌和亚硝酸菌的不同生长速率,即在高温(30~35℃)下亚硝酸菌的生长速率明显高于硝酸菌这一固有特性,控制系统的水力停留时间和反应温度,从而使硝酸菌被自然淘汰,反应器中亚硝酸菌占优势,使氨氧化控制在亚硝化阶段。SHARON工艺适合于处理具有一定温度的高浓度(〉500mgN/L)氨氮污水。对该工艺来说,温度和pH值(最佳pH值6.8~7.2)都受到严格的控制,因此,低温低氨的城市污水如何实现亚硝酸型硝化值需进一步研究。
哈尔滨理工大学学士学位论文
3.2 CANON工艺
CANON工艺(生物膜内自养脱氮工艺)实质上是通过控制生物膜内溶解氧的浓度实现短程硝化反硝化,使生物膜内聚集的亚硝化菌和ANAMMOX微生物能同时生长,满足生物膜内一体化完全自养脱氮工艺实现的条件。亚硝酸氮在生物膜内的聚集是亚硝化的另一种形式。硝化细菌与亚硝化细菌对氧的亲和性的不同以及传质限制等因素影响两种微生物在细胞膜内的数量。在低DO/NH3-N比值的情况下,氧成为限制性基质,使硝化细菌与亚硝化细菌展开竞争。竞争的结果是亚硝酸氮在生物膜表层聚集。当氧向细胞膜内扩散并被消耗后,出现厌氧层,厌氧氨氧化细菌便能生长。随着未被亚硝化的氨氮与亚硝化后的亚硝酸氮扩散至厌氧层,ANAMMOX反应就发生。环境中的氨氮与溶解氧是决定CANON工艺的两个关键因素。CANON工艺目前在世界上还处于研究阶段,没有真正应用到工程实践中。SHARON工艺和CANON工艺都是经亚硝酸型生物脱氮工艺处理的,出水中可能含有较高的亚硝酸盐,运行时应加以严格的控制。
3.3 DEPHANOX工艺
DEPHANOX工艺是为满足DPB所需的环境要求而开发的一种强化生物除磷工艺。DEPHANOX除磷脱氮工艺流程如图" 所示。工艺在厌氧池与缺氧池之间增加了沉淀池和固定膜反应池。固定膜反应池的设置可以避免由于氧化作用而造成有机碳源的损失和稳定系统的硝酸盐浓度。污水在厌氧池中释磷,在沉淀池中进行泥水分离。含氮较多的上清液进入固定膜反应池进行硝化,污泥则跨越固定膜反应池进入缺氧段,完成反硝化和摄磷。工艺的优点在于能解决除磷系统反硝化碳源不足的问题和降低系统的能源(曝气)消耗,而且可缩小曝气池的体积,降低剩余污泥量,尤其适用于处理低COD/TKN的污水。由于进水中氮和磷的比例是很难恰好满足缺氧摄磷的要求,这给系统的控制带来了困难。此外,目前聚磷菌反硝化试验研究中都不同程度添加乙酸作为碳源,乙酸是诱导聚磷菌释磷的最佳碳源,由于很难真实模拟城市污水的处理情况,因此对于反硝化聚磷茵的筛选富集具有重要意义。该工艺离生产应用尚有一段距离。
图1 DEPHANOX工艺流程图
哈尔滨理工大学学士学位论文
3.4 BCFS工艺
BCFS工艺是荷兰Delft技术大学Kluyver生物技术实验室研究开发的、为最大程度从工艺角度创造DPB富集条件的一种变型UCT工艺。其工艺流程如图2所示。在这种改良的UCT工艺脱氮除磷处理系统中,污泥能够利用硝酸盐作为电子受体,在缺氧环境条件下同时进行反硝化作用和超量聚磷。
从工艺流程上看,BCFS工艺较UCT工艺创新之处在于:(1)BCFS工艺在主流线上增加了两个反应池:即在UCT工艺的厌氧和缺氧池之间增加一个接触池,在缺氧池和好氧池之间增加一个缺氧/好氧混合池。在主流线中的厌氧池以推流方式运行,相当于一个厌氧选择池,可保持较低的污泥指数(SVI)。增设的接触池可起到第二选择池的作用,所需的容积很小,但可较好地抑制丝状菌的繁殖。增设的第二个反应池混合池,可形成低氧环境以获得同时硝化与反硝化,从而保证出水中含较低的总氮浓度。(2)BCFS工艺增设在线分离、离线沉淀化学除磷单元。BCFS工艺通过增加磷分离工艺,避开了生物除磷的不利条件(因满足硝化而使泥龄过长;进水中COD/P的比值过低)。同时,在线进行磷的化学沉淀会因沉淀剂在污泥中聚集而影响硝化菌活性。因此,该工艺又将厌氧池末端富磷上清液抽出,以离线方式在沉淀单元内投以铁盐和镁盐予以回收。以生物除磷辅以化学除磷这种工艺充分利用了PAOs/DPB对磷酸盐具有很高亲和性的这一特点,很容易获得极低的出水正磷酸盐浓度,并能在保证良好出水水质的前提下,大大降低COD的用量。(3)与UCT工艺相比,BCFS工艺增设了两个内循环QB和QC(见图2)。从好氧池设置内循环QB到缺氧池,能辅助回流污泥向缺氧池补充硝酸氮,内循环QC使好氧池与混合池间建立循环,以增加硝化或同时硝化反硝化的机会,为获得良好的出水氮浓度创造条件。
BCFS工艺在荷兰已成功运用于工程实践中,除了具有节能低耗的优点外,还能保持稳定的处理水质,使出水总磷≤0.2mg/L总氮≤0.5mg/L。
图2 BCFS工艺流程图
哈尔滨理工大学学士学位论文
3.5 厌氧氨氧化(ANAMMOX)工艺
ANAMMOX工艺由荷兰Delft技术大学Kluyver生物技术实验室研究开发。工艺在厌氧状态下,以NO2-,NO3-作为电子受体,将氨转化为氮气。厌氧氨氧化是自养的微生物过程,不需投加有机物以维持反硝化,且污泥产率低。此外还可以改善硝化反应产酸、反硝化反应产碱而均需中和的情况,这对控制化学试剂消耗、防止可能出现的二次污染具有重要意义。该工艺适用于高氨废水和低COD/TKN废水的处理。
ANAMMOX工艺与SHARON工艺结合,对污泥消化出水进行了研究。这种联合工艺的自养脱氮工艺流程见图3。试验结果表明,氨态氮的去除率达到83%,并且联合工艺几乎不需要外加碳源。可见在氧气需要量和外加碳源上,该联合工艺明显优于传统的生物脱氮工艺。ANAMMOX及其与SHARON的联合工艺完全突破了传统生物脱氮工艺的基本概念,从一定程度上解决了传统硝化一反硝化工艺存在的问题,但需要进一步的研究才能使之成功地运行于实际工程。
图3 SHARON与ANAMMOX相结合的自养脱氮工艺流程图
3.6 A2NSBR工艺
A2NSBR工艺由厌氧/兼氧序批式反应器(A/A/OSBR)和硝化序批式反应器(N-SBR)组成,这两个反应器的活性污泥完全分开,只将沉淀后的上清液相互交换,见图4。进水和回流污泥混合后进人厌氧池,在此聚磷菌吸收易于降解的有机物进行PHB储备,同时释磷;随后进入沉淀池泥水分离:富集氨氮的上清液进入侧流好氧池进行硝化反应,而含有大量PHB的DPB污泥则同硝化液一起进入主流缺氧反应池,在此以硝态氮为电子受体进行反硝化除磷。
与Dephanox工艺一样,A2NSBR可分别控制聚磷菌和反硝化菌的泥龄,有利于它们的各自优化。两个反应器的沉淀上清液相互交换,保证了原水中85%~90%的COD在A2O-SBR的厌氧段被活性污泥快速吸附或降解并用于该段厌氧释磷和缺氧段反硝化。在N/P比最优的情况下,比传统工艺节省50%的COD,除磷率接近100%,脱氮率约90%。
哈尔滨理工大学学士学位论文
图4 A2NSBR工艺流程图
哈尔滨理工大学学士学位论文
第4章
结
语
本文对生物脱氮除磷的机理及目前较先进的脱氮除磷技术进行了简要概述。由于水体富营养化是一个严重的长期问题,而我国对生物脱氮除磷的研究起步较晚,目前进行了脱氮除磷处理的污水处理厂并不多。因此,开发经济有效、节能、简便且能同时脱氮除磷的适合我国国情的工艺尤为重要。由于生物法运行费用较低,效果稳定,综合处理能力强,因此生物脱氮除磷工艺在我国将有很大的应用前景,且应更加深入的探讨生物脱氮除磷的机理。
第二篇:大型火电厂脱氮技术
低NOX煤粉燃烧技术概述
摘 要:本文共分为四大部分:从当前火电厂脱氮的结设备构特点及组成,工作原理,燃烧方式,控制方法以及在火电厂中的应用前景等方面进行了浅显的描述。其中重要是对该设备的主要原理和控制方法,控制性能及特点方面进行了阐述。
关键词:结构特点、工作原理、燃烧方式、控制方法。
Abstract: This paper is divided into four parts: from the current circulating fluidized bed power plant characteristics of the structure and composition,working principle,and combustion of pulverized coal-fired boiler contrast,the control method and the application of thermal power plants in areas such as prospects for the simple description.One important is the boiler control system for the main control methods to control aspects of performance and features,and explains Key words: current circulating、bed power plant、combustion of pulverized、boiler control system.一 引言
近年来能源利用造成的环境污染越来越严重,其中矿物燃料的燃烧所排放出来的氮氧化物(NOX)己成为环境污染的一个重要方面。NOX是N2O、NO、NO2、N2O3、N2O4和N2O5的总称。我国能源以煤为主。燃煤所产生的大气污染物占污染物排放总量的比 例较大,其中NOX占67%[1]。有关资料表明,电站锅炉的NOX排放量占各种燃烧装臵NOX排放量总和的一半以上,而且80%左右是煤粉锅炉排放的[2]。国家环保局于2003年12月23日发布的《火电厂大气污染物排放标准》(GB13223—2003)中对于第三时段燃煤电厂执行的排放浓度限值为:当Vdaf<10%时,NOx 排放浓度限值为1100 mg/m3;当10%
二 氮氧化物产生的机理
氮氧化物是造成大气污染的主要污染源之一。通常所说的氮氧化物NOx 有多种不同
形式:N2O、NO、NO2、N2O3、N2O4 和 N2O5,其中NO 和NO2 是重要的大气污染物。
我国氮氧化物的排放量中70%来自于煤炭的直接燃烧,电力工业又是我国的燃煤大户,因此火力发电厂是NOx 排放的主要来源之一。
研究表明,氮氧化物的生成途径有三种:(1)热力型NOx,指空气中的氮气在高温下氧化而生成NOx;(2)燃料型NOx,指燃料中含氮化合物在燃烧过程中进行热分解,继而进一步氧化而生 成NOx;(3)快速型NOx,指燃烧时空气中的氮和燃料中的碳氢离子团如CH 等反应生成NOx。在这三种形式中,快速型NOx 所占比例不到5%;在温度低于1300℃时,几乎没有热力型NOx。对常规燃煤锅炉而言,NOx 主要通过燃料型生成途径而产生。控制NOx 排放的技术指标可分为一次措施和二次措施两类,一次措施是通过各种技术手段降低燃烧过程中的NOx 生成量;二次措施是将已经生成的NOx通过技术手段从烟气中脱除。
三 低NOX煤粉燃烧技术
煤粉燃烧过程中影响NOX生成的主要因素有:①煤种特性,如煤的含氮量、挥发分含量、燃料中的固定碳/挥发分之比以及挥发分中含H量/含N量之比等;②燃烧区域的温度峰值;③反应区中氧、氮、一氧化氮和烃根等的含量;④可燃物在反应区中的停留时间。
由此对应的低NOX燃烧技术的主要途径有如下几个反面:①减少燃料周围的氧浓度。包括:减少炉内过量空气系数,以减少炉内空气总量;减少一次风量和减少挥发分燃尽前燃料与二次风的混合,以减少着火区的氧浓度。②在氧浓度较少的条件下,维持足够的停留时间,使燃料中的氮不易生成NOX,而且使生成的NOX经过均相或多相反应而被还原分解。③在过量空气的条件下,降低温度峰值,以减少热力型NOX的生成,如采用降低热风温度和烟气在循环等。④加入还原剂,使还原剂生成CO、NH3和HCN,它们可将NOX还原分解。具体的方法有:燃料分级燃烧、空气分级燃烧、烟气再循环、低NOX燃烧器、低氧燃烧、浓淡偏差燃烧等,以下对各种低NOX燃烧技术分别介绍。3.1 燃料分级燃烧
燃料分级燃烧,又称燃料再燃技术(Returning Technology)。是指在炉膛(燃烧室)内,设臵一次燃料欠氧燃烧的NOX还原区段,以控制NOX的最终生成量的一种“准一次措施”。NOX在遇到烃根CHi和未完全燃烧产物CO、H2、C和CnHm时会发生NOX的还原反应。利用这一原理,把炉膛高度自下而上依次分为主燃区(一级燃烧区)、再燃区和燃尽区。再燃低NOX燃烧将80%—85%的燃料送入主燃区,在空气过量系数α>1的条件下燃烧,其余15%—20%的燃料则在主燃烧器的上部某一合适位臵喷入形成再燃区,再燃区过量空气系数<1,再燃区不仅使主燃区已生成的NOX得到还原,同时还抑制了新的NOX的生成,进一步降低NOX。再燃区上方布臵燃尽风(OFA)以形成燃尽区,以使再燃区出口的未完全燃烧产物燃烧,达到最终完全燃烧目的。再燃燃料可以是各类化石燃料,包括天然气、煤粉、油、生物质、水煤浆等。上世纪80年代,三菱重工第一次将再燃技术用于全尺皴锅炉。随后在全世界取得了长足的发展。
一般,采用燃料分级的方法可以达到30%以上的脱销效果,最高脱效率可达70%,在主燃烧器采用低NOX燃烧器抑制NOX生成的基础联合使用燃料分级燃烧可以进一步降低的NOX排放量。再燃法脱除NOX的影响因素主要有再燃燃料的种类、再燃比例、再燃区的空气过量系数、再燃区温度条件以及再燃区停留时间等。随着技术的进步,如今又发展出了先进再燃技术,它是将再燃技术与氨催化还原技术相结合一种高效控制NOX排放的技术,这种技术是将氨水或者尿素作为氨催化剂加入到再燃区域或者燃尽区,进一步降低NOX。同时,如果将无机盐(尤其是碱金属)助催化剂通过不同的方式一同喷入,将更有利于NOX的还原,实验显示,先进再燃可以降低NOX排放量85%左右,具有非常好的优势。由先进再燃的原理可知,所有影响燃料再燃脱硝效果的因素也会影响先进再燃,除此之外,催化剂及驻催化剂对其影响也很重要,主要是氮催化剂(氨或尿素)喷入位臵及喷入量的影响及无机盐(碱金属)助催化剂喷入方式的影响。
再燃技术的主要特点是:①不仅最大限度地控制NOX的排放,而且使锅炉燃烧更加稳定,尤其是低负荷运行性能得到改善,并可提高锅炉运行效率;②可以避免炉内结渣、高温腐蚀等其它低NOX燃烧技术带来的不良现象;③该技术只需在炉膛适当位臵布臵几个喷口即可,系统简单,投资较少;④无一次污染。3.2 空气分级燃烧
空气分级燃烧技术是美国在20世纪50年代首先发展起来的,它是目前应用较为广泛的低NOX燃烧技术[4]。它的主要原理是将燃料的燃烧过程分段进行。该技术是将燃烧用风分为一、二次风,减少煤粉燃烧区域的空气量即一次风量,提高燃烧区域的煤粉浓度,推迟一、二次风混合时间,这样煤粉进入炉膛时就形成一个过量空气系数在0.8左右的富燃料区,使燃料在富燃料 区进行欠氧燃烧,使得燃烧速度和温度降低,从而降低NOX的生成。欠氧燃烧产生的烟气再与二次风混合,使燃料完全燃烧。
最终空气分级燃烧可使NOX生成量降低30—40%。该技术的关键是风的分配,一般一次风占总风量的25%-35%。若风量分配不当会增加锅炉的燃烧损失,同时引起受热面的结渣腐蚀等问题。分级燃烧可以分成两类。一类是燃烧室(炉内)中的分级燃烧;另一类是单个燃烧器的分级燃烧。在采用分级燃烧时,由于第一级燃烧区内是富燃料燃烧,氧的浓度降低,形成还原性气氛。而在还原性气氛中煤的灰熔点会比在氧化性分为中降低100~120℃,这时如果熔融灰粒与炉壁相接触,容易发生结渣,而且火焰拉长,如果组织不好,还会容易引起炉膛受热面结渣和过热器超温,同时还原性分为还会导致受热面的腐蚀。空气分级再燃的影响因素主要有:第一级燃烧区内的过量空气系数α1,要正确地选择第一级燃烧区内的过量空气系数,以保证这一区域内形成富燃料燃烧,经可能的减少NOX的生成,并使燃烧工况稳定;温度的影响、二次风喷口的位臵的确定、停留时间的影响、煤粉细度的影响等。
分级燃烧系统在燃煤锅炉上应用有较长的历史,单独使用大约可降低20~40%的NOX。通常增大燃尽风分额可得到较大的NOX脱除率。目前该技术与其他初级控制措施联合使用,已成为新建锅炉整体设计的一部分。在适度控制NOX排放的要求下,往往作为现役锅炉低NOX排放改造的首选措施。3.3 烟气再循环 烟气再循环也是常用的降低NOX排放量的方法之一,该技术是将锅炉尾部约10%—30%低温烟气(温度在300℃—400℃)经烟气再循环风机回抽(多在省煤器出口位臵引出)并混入助燃空气中,经燃烧器或直接送入炉膛或是与一次风、二次风混合后送入炉内,从而降低了燃烧区域的温度,同时降低了燃烧区域氧的浓度,最终降低NOX的生成量,并具有防止锅炉结渣的作用。但采用烟气再循环会导致不完全燃烧热损失加大,而且炉内燃烧不稳定,所以不能用于难燃烧的煤种,如无烟煤等。另外,利用烟气再循环改造现有锅炉需要安装烟气回抽系统,附加烟道、风机及飞灰收集装臵。投资加大,系统也叫复杂,对原有设备改造时也会受到场地条件等的限制。
由于烟气再循环使输入的热量增多,可能影响炉内的热量分布,过多的再循环烟气还可能导致火焰的小稳定性及蒸汽超温,因此再循环烟气量有一定的限制。烟气再循环法降低NOX排放的效果与燃料种类、炉内燃烧温度及烟气再循环率有关,延期砸循环率是再循环烟气量与不采用烟气再循环时的烟气量的比值。经验表明:当烟气再燃循环率为15%~20%时,煤粉炉的NOX排放浓度可降低25% 左右。燃烧温度越高,烟气再循环率对NOX脱除率的影响越大。但是,烟气再循环效率的增加是有限的。当采用更高的在循环率时,由于循环烟气量的增加,燃烧会趋于不稳定,而且未完全燃烧热损失会增加。因此电站锅炉的烟气再循环率一般控制在10%~20%左右。在燃煤锅炉上单独利用烟气再循环措施,得到的NOX脱除率<20%。所以,一般都需要与其他的措施联合使 用。
3.4 低NOX燃烧器
常规煤粉燃烧器可以将煤粉和空气快速混合,并能产生高的火焰温度,达到高的燃烧强度和燃烧效率,遗憾的是这些条件也易于产生较多的NOX。通过设计特殊的燃烧器结构来改变燃烧器出口处的风粉配比,可以将前述的空气分级、燃料分级和烟气再循环等降低NOX排放控制技术的原理用于燃烧器。通过燃烧器就能同时实现燃烧、还原、燃尽三个过程,从而设计出低NOX燃烧器。它可以用来控制煤粉与空气的混合特性,改善火焰结构,降低燃烧火焰的峰值,从而降低NOX排放。由于低NOX燃烧器能在煤粉的着火阶段就抑制NOX的生成,对后期控制NOX的排放量十分有利,因此低NOX燃烧器得到了广泛的开发和利用。在低NOX燃烧器设计方面,一些西方发达国家的许多锅炉制造公司在这方面进行了大量的改进和优化工作,并取得很大的成就,开发了不同类型的低NOX燃烧器,主要有:
1、阶段燃烧型低NOX燃烧器
该燃烧器设计使喷口喷出的煤粉分阶段燃烧从而降低NOX的生成。在燃烧器出口区域形成一个还原性气氛的富燃料着火燃烧区,逐步与喷出的二次风相混合,由于二次风风量及旋流动量小,与煤粉混合较慢,使得燃烧过程推后,减缓了煤粉的着火燃烧。所以这种燃烧器有效地降低了NOX的生成。较有代表性的有:巴.威公司的DRB型双调风低NOX燃烧器[7],德国巴布科克((Deutche Babcock)公司的WB、WSF、DS型燃烧器[8],德国斯 坦缪勒(Steinmuller)公司设计的SM低NOX燃烧器[8],福斯特惠勒(Foster Wheeler)公司的CF/SF低NOX燃烧器[9],美国瑞丽斯多克(Riley Stoker)公司的CCV型低NOX燃烧器[7]等。
2、浓淡偏差型低NOX燃烧器
浓淡燃烧器是通过将一次风所携带的煤粉在燃烧器内部分成浓淡两股射出,由于煤粉射流分成了浓淡两股,浓的一侧由于煤粉气流空气量小,为还原性气氛所以生成的NOX较少,淡侧由于燃料较少,燃烧温度较低,所以也可抑制了NOX的生成。浓淡燃烧器如今己发展了多种,根据浓淡分离的不同,有采用弯管离心原理分离式、撞击分离式、旋风分离式以及百叶窗式等等。如:美国ABB-CE公司开发的宽调节比WR型燃烧器、日本三菱公司的PM型低NOX燃烧器、德国EVT公司的Vapour燃烧器、我国自行设计的燃烧器如多功能船形体煤粉燃烧器、钝体燃烧器、浓淡型燃烧器等。
一些公司还将低NOX燃烧器与炉内初级控制措施,如空气分级、燃料分级、烟气再循环等组合在一起,构成一个低NOX燃烧系统。这些低NOX燃烧系统不仅仅有效改善燃烧条件,还能大幅降低NOX排放量。据美国福斯特惠勒公司(Foster Wheeler)报告显示,他们的低NOX燃烧系统可实现50~65%的NOX脱除率。国内在低NOX燃烧技术方面的研究虽然起步较晚,但也积累了许多成熟的经验,尤其是基于浓淡燃烧技术和分级燃烧技术开发出的各种低NOX燃烧器都取得了可喜的实绩。
哈尔滨工业大学经过10余年的努力,开发研制成功水平浓 缩煤粉燃烧器、水平浓淡风煤粉燃烧器、径向浓淡旋流煤粉燃烧器、不等切圆墙式布臵直流煤粉燃烧器等“风包粉”系列浓淡煤粉燃烧技术。华中理工大学煤燃烧国家重点实验室利用一维炉和数值模拟相结合的方式,研制开发出了高浓度煤粉燃烧技术。清华大学力学系贾臻教授研制的煤粉浓缩燃烧器,可使NOX降低到200mg/m3左右,这在世界同类技术中处于领先地位。此外,西安交通大学的夹心风直流燃烧器,浙江大学的可调式浓淡燃烧器都有降低NOX,的排放量的作用。3.5 低氧燃烧
这种方法就是使燃烧过程尽量接近理论空气系数(α =1)的条件下进行,使烟气中的过剩氧量减少,从而降低燃烧过程中NOX的生成量。在低过量空气系数范围的条件下运行,可使用较少的燃料。因此认为,低过量空气运行可以作为减少氮氧化物的形成和燃料消耗量的基本改进燃烧方法之一。实际锅炉采用低氧燃烧时,不仅降低NOX排放量,而且锅炉排烟热损失减少,对提高锅炉热效率有利,但是,如果炉内氧的浓度过低,低于3%以下时,会造成CO浓度的急剧增加,从而大大增加机械未完全燃烧热损失,同时也会引起飞灰含碳量的增加,导致机械未完全燃烧损失增加,从而使燃烧效率降低,使锅炉的燃烧经济性降低,而且炉内壁面附近还可能形成还原性气氛造成炉壁结渣和腐蚀。因此在确定低氧燃烧的过量空气量范围时,必须兼顾燃烧效率、锅炉效率较高和NOX等有害物质最少的要求。这是一种经过充分证明的、有效的降低NOX的基本方法,一般情况下,该措施可以 使NOX排放降低15%—20%。3.6 浓淡偏差燃烧
浓淡偏差燃烧是近几年来国内外采用的一种降低锅炉燃烧排放NOX的燃烧技术。该方法原理是对装有两个燃烧器以上的锅炉,使部分燃烧器供应较多的空气(呈贫燃料区),即燃料过淡燃烧;部分燃烧器供应较少的空气(呈富燃料区),即燃料过浓燃烧。无论是过浓或者过淡燃烧,燃烧时α都不等于1,前者α﹥1,后者α﹤1,故又称非化学当量比燃烧或偏差燃烧。
对NOX生成特性的研究表明,NOX的生成量和一次风煤比有关,一次风煤比在3~4kg/kg煤时,NOX生成量最高;偏离该值,不管是煤粉浓度高还是低,NOX的排放量均下降。因此如果把煤粉流分离成两股含煤粉量不同的气流,即含煤粉量多的浓气流C1和含煤粉量少的淡气流C2,分别送入炉内燃烧,对于整个燃烧器,其NOX生成量的加权平均值与燃用单股C0浓度煤粉流相比,生成的NOX要低。
四 燃煤电厂降低NOx排放的燃烧技术
研究表明,氮氧化物的生成途径有三种:(1)热力型NOx,指空气中的氮气在高温下氧化而生成NOx;(2)燃料型NOx,指燃料中含氮化合物在燃烧过程中进行热分解,继而进一步氧化而生成NOx;(3)快速型NOx,指燃烧时空气中的氮和燃料中的碳氢离子团如CH 等反应生成NOx。在这三种形式中,快速型NOx 所占比 例不到5%;在温度低于1300℃时,几乎没有热力型NOx。对常规燃煤锅炉而言,NOx 主要通过燃料型生成途径而产生。控制NOx 排放的技术指标可分为一次措施和二次措施两类,一次措施是通过各种技术手段降低燃烧过程中的NOx 生成量(前面已经叙述);二次措施是将已经生成的NOx通过技术手段从烟气中脱除。
4.1.1 炉膛喷射法
实质是向炉膛喷射还原性物质,可在一定温度条件下还原已生成的NOx,从而降低NOx 的排放量。包括喷水法、二次燃烧法(喷二次燃料即前述燃料分级燃烧)、喷氨法等。
喷氨法亦称选择性非催化还原法(SNCR),是在无催化剂存在条件下向炉内喷入还原剂氨或尿素,将NOx 还原为N2 和H2O。还原剂喷入锅炉折焰角上方水平烟道(900℃~1000℃),在NH3/NOx 摩尔比2~3 情况下,脱硝效率30%~50%。在950℃左右温度范围内,反应式为:
4NH3+4NO+O2→4N2+6H2O 当温度过高时,会发生如下的副反应,又会生成NO: 4NH3+5O2→4NO+6H2O 当温度过低时,又会减慢反应速度,所以温度的控制是至关重要的。该工艺不需催化剂,但脱硝效率低,高温喷射对锅炉受热面安全有一定影响。存在的问题是由于温度随锅炉负荷和运行周期而变化及锅炉中NOx 浓度的不规则性,使该工艺应用时变得 较复杂。在同等脱硝率的情况下,该工艺的NH3 耗量要高于SCR 工艺,从而使NH3 的逃逸量增加。
4.1.2 烟气处理法
烟气脱硝技术有气相反应法、液体吸收法、吸附法、液膜法、微生物法等几类。
在众多烟气处理技术中,液体吸收法的脱硝效率低,净化效果差;吸附法虽然脱硝效率高,但吸附量小,设备过于庞大,再生频繁,应用也不广泛;液膜法和微生物法是两个新型技术,还有待发展;脉冲电晕法可以同时脱硫脱硝,但如何实现高压脉冲电源的大功率、窄脉冲、长寿命等问题还需要解决;电子束法技术能耗高,并且有待实际工
程应用检验;SNCR 法氨的逃逸率高,影响锅炉运行的稳定性和安全性等问题;目前脱硝效率高,最为成熟的技术是SCR 技术。表1所示为烟气脱硝技术比较。
4.2 SCR 法技术特点
在众多的脱硝技术中,选择性催化还原法(SCR)是脱硝效率最高,最为成熟的脱硝技术。1975 年在日本Shimoneski 电厂建立了第一个SCR 系统的示范工程,其后SCR技术在日本得到了广泛应用。在欧洲已有120 多台大型装臵的成功应用经验,其NOx 的脱除率可达到80~90%。日本大约有170 套装臵,接近100GW 容量的电厂安装了这种设备。美国政府也将SCR 技术作为主要的电厂控制NOx 技术。SCR 方法已成为目前国内外电站脱硝比较成熟的主流技术。
4.2.1 原理及流程
SCR 技术是还原剂(NH3、尿素)在催化剂作用下,选择性地与NOx 反应生成N2和H2O,而不是被O2 所氧化,故称为“选择性”。主要反应如下:
4NH3+4NO+O2→4N2+6H2O 4NH3+2NO2+O2→6N2+6H2O SCR 系统包括催化剂反应室、氨储运系统、氨喷射系统及相关的测试控制系统。SCR工艺的核心装臵是脱硝反应器,有水平和垂直气流两种布臵方式,如图1 所示。在燃煤锅炉中,烟气中的含尘量很高,一般采用垂直气流方式。
4.2.2 主要影响因素
在 SCR 系统设计中,最重要的运行参数是烟气温度、烟气流速、氧气浓度、SO3浓度、水蒸汽浓度、钝化影响和氨逃逸等。烟气温度是选择催化剂的重要运行参数,催化反应只能在一定的温度范围内进行,同时存在催化的最佳温度,这是每种催化剂特有的性质,因此烟气温度直接影响反应的进程;而烟气流速直接影响 NH3 与 NOx 的混合程度,需要设计合理的流速以保证 NH3 与 NOx 充分混合使反应充分进行;同时反应需要氧气的参与,当氧浓度增加催化剂性能提高直到达到渐近值,但氧浓度不能过高,一般控制在 2%~3%;氨逃逸是影响 SCR 系统运行的另一个重要参数,实际生产中通常是多于理论量的氨被喷射进入系统,反应后在烟气下游多余的氨称为氨逃逸,NOx 脱除效率随着氨逃逸量的增加而增加,在某一个氨逃逸量后达到一个渐进值;另外水蒸气浓度的增加使催化剂性能下降,催化剂钝化失效也不利于 SCR 系统的正常运行,必须加以有效控制。
4.2.3 催化剂的选择
SCR 系统中的重要组成部分是催化剂,当前流行的成熟催化剂有蜂窝式、波纹状和平板式等。平板式催化剂一般是以不锈钢金属网格为基材负载上含有活性成份的载体压制而成;蜂窝式催 化剂一般是把载体和活性成份混合物整体挤压成型;波纹状催化剂是丹麦HALDOR TOPSOE A/S 公司研发的催化剂,外形如起伏的波纹,从而形成小孔。加工工艺是先制作玻璃纤维加固的TiO2 基板,再把基板放到催化活性溶液中浸泡,以使活性成份能均匀吸附在基板上。各种催化剂活性成分均为WO3 和V2O5。表2 为各种催化剂性能比较。4.2.4 还原剂的选择
对于SCR 工艺,选择的还原剂有尿素、氨水和纯氨。尿素法是先将尿素固体颗粒在容器中完全溶解,然后将溶液泵送到水解槽中,通过热交换器将溶液加热至反应温度后与水反应生成氨气;氨水法,是将25%的含氨水溶液通过加热装臵使其蒸发,形成氨气和水蒸汽;纯氨法是将液氨在蒸发器中加热成氨气,然后与稀释风机的空气混合成氨气体积含量为5%的混合气体后送入烟气系统。表3 为不同还原剂的性能比较。4.2.5 选型性还原脱硝技术
选择性还原脱硝技术包括选择性非催化还原(SNCR)法、选择性催化还原(SCR)法和SNCR/ SCR 混合法。在这些方法中SNCR 的主要优点是投资及运行费用低,缺点是对温度依赖性强,脱硝率只有30%~50%,氨的逃逸量大。实际工程中应用最多的是SCR 法。SNCR/ SCR 混合法是种有前景的烟气脱硝技术,但牵涉的系统更多,对技术的要求更高。
五 火电厂脱氮的技术定位原则
为满足环境的要求,对于烟气脱氮确定了以下的技术定位原则:
(1)立足于SCR 烟气脱硝技术。作为目前最成熟、效率最高的脱硝技术,应尽快技术引进、消化吸收;
(2)在全面掌握SCR 技术的基础上,以SNCR 技术作为技术突破口和再增长点,使SNCR/SCR法或SCR与其他低NOx燃烧技术混合法作为下阶段的技术发展方向。最佳脱硝技术的选择取决于现有的燃烧系统(常规的或低NOx)、燃料、炉膛结构、锅炉布臵、实际和目标NOx 水平和其他因素;
(3)研究并开发适合我国国情的催化剂。针对我国高灰、高重金属的煤燃料,开发出自主知识产权的催化剂和低温运行的催化剂。据悉,国内一些研究机构一直致力于催化剂的研究,利 用我国蕴量丰富的稀土资源来生产SCR 催化剂,提高了SCR催化剂的活性,降低了生产成本。我们可以组合国内资源,利用已有的研究成果,尽快把它商业化和产业化;
(4)烟气脱硝的流场分析和理论研究。SCR 法关键是催化剂的选择和烟气流场优化;SNCR 法关键是炉膛内温度场的研究。可利用CFD 数学模拟和实体物理模型来系统研究温度场和流场;
(5)建立示范工程进行现场研究。采用与国外技术方和国内其他相关部门联合先在商业锅炉上进行脱硝示范点建设,在装臵运行过程中,进行性能试验和数据收集。
六 总结
不同的燃煤锅炉,由于其燃烧方式、煤种特性、锅炉容量以及其他具体条件的不同,在选用不同的低NOX燃烧技术时,必须根据具体的条件进行技术经济比较,使所选用的低NOX燃烧和锅炉的具体设计和运行条件相适应。不仅要考虑锅炉降低NOX的效果,而且还要考虑在采用低NOX燃烧技术以后,对火焰的稳定性、燃烧效率、过热蒸汽温度的控制、受热面的结渣和腐蚀等可能带来的影响。对不同低NOX燃烧技术可根据实际情况家和使用,以降低NOX的排放量。同时,根据自己电厂的特点选择适当的烟气脱氮技术,满足环保需求
参考文献: 曾汉才.燃烧与污染[M}.武汉:华中理工人学出版社,1992 2 方立军.高正阳.殷立宝等.无烟煤与贫煤的混煤NOx排放特性试验研究.2001, 32(9): 11~14 3 曾汉才.大型锅炉高效低NOx燃烧技术的研究[J].锅炉制造,2001, 3(I):1~11 4 Spliethoff H.et, al.Low-NOx formation for pulverized coal a comparison of air staging and reburning, Inst.Energy’s Int.Conf.Combust.Emiss.Control Proc.Inst.Energy Conf.2 nd, 61~70, 1995 Leithner R, Lendt B, Miilen H.Reduction of the Emission in Coal-Fired Boilers, Coal Combustion.Science and Technology of Industrial and Utility Application.New York: Hemisphere Publishing Corporation,1998 6 高晋生,沈本贤,煤燃烧中NOx的来源和抑制其生成的有效措施,煤炭转化, 1994, 17(3)53-57 7 毛健雄,毛健全,赵树民。煤的清洁燃烧。北京:科学出版社,1998 8 吴生来,郝振亚.德国低NOx煤粉燃烧器.热力发电,1997,(5): 51-56 9 果然,石艳君。低NOx燃烧技术综述。锅炉制造,2003.28(3)21
第三篇:大型城市污水处理厂除氮脱磷工艺之循环式活性污泥法
大型城市污水处理厂除氮脱磷工艺之循环式活性污泥法
(C-TECH)摘 要:循环式活性污泥法(Cyclic Activated Sludge Technology,简称C-TECH工艺)是间隙式活性污泥法(SBR法)的一种变型。该工艺将可变容积活性污泥法过程和生物选择器原理进行有机的结合。在循环式活性污泥法(C-TECH)中, 每一操作循环包括进水-曝气阶段、沉淀阶段、撇水阶段和闲置阶段等几个过程。在操作循环的曝气阶段(同时进水)一步完成生物降解过程(包括降解有机物、硝化/反硝化、生物除磷等过程);在非曝气阶段完成泥水分离功能。排水装置系移动式撇水堰,籍此可将每一循环操作中所处理的废水经沉淀阶段后排出系统。1 前言
随着污水处理除氮脱磷要求的不断提高,污水处理工艺及其运行日益复杂化,污水处理的投资及其运行费用也随之越来越高,因此如何在满足处理要求的前提下,简化工艺流程,减少工程投资和运行费用,是世界各国所面临的一个共同课题。下面简要介绍由Goronszy教授和奥地利SFC环境工程有限公司开发、推广应用的循环式活性污泥法工艺(简称C-TECH 工艺)。循环式活性污泥法工艺在其优异的除氮脱磷性能基础上,能大大地简化工艺流程,减少工程投资和运行费用,是目前国际上较为先进的一种城市污水除磷脱氮工艺。
循环式活性污泥法(Cyclic Activated Sludge Technology,简称C-TECH工艺)为一间隙式反应器,在此反应器中活性污泥法过程按曝气和非曝气阶段不断重复进行。该法将生物反应过程和泥水分离过程结合在一个池子中进行。C-TECH方法是一种“充水和排水”活性污泥法系统,废水按一定的周期和阶段得到处理,故C-TECH方法是SBR工艺的一种变型。C-TECH工艺在七十年代开始得到研究和应用,随着电子计算机应用和自动化控制的日益普及,间隙运行的C-TECH工艺由于其投资和运行费用低处理性能高超,尤其是其优异的脱氮除磷功能而越来越得到重视,该工艺已广泛应用于城市污水和各种工业废水的处理。
本文将简要介绍循环式活性污泥法(C-TECH)的主要特性及其在大型城市污水处理厂除氮脱磷方面的应用。循环式活性污泥法工艺(C-TECH工艺)的基本组成及运行方式 2.1 C-TECH工艺的组
循环式活性污泥法(Cyclic Activated Sludge Technology,简称C-TECH工艺)是间隙式活性污泥法(SBR法)的一种变型。该工艺将可变容积活性污泥法过程和生物选择器原理进行有机的结合。在循环式活性污泥法(C-TECH)中, 每一操作循环包括进水-曝气阶段、沉淀阶段、撇水阶段和闲置阶段等几个过程。在操作循环的曝气阶段(同时进水)一步完成生物降解过程(包括降解有机物、硝化/反硝化、生物除磷等过程);在非曝气阶段完成泥水分离功能。排水装置系移动式撇水堰,籍此可将每一循环操作中所处理的废水经沉淀阶段后排出系统。图 1 表示单池或多池C-TECH系统的各个循环操作过程,包括进水曝气阶段、固液分离阶段和撇水阶段等步骤。当撇水结束后撇水阶段尚有多余的时间可供支配时,可设置进水-闲置阶段。从图1也可看出C-TECH系统中生物选择器和主反应区之间的相互联系。2.1.1生物选择器
在循环式活性污泥法工艺中设有生物选择器,在此选择器中,废水中的溶解性有机物质能通过酶反应机理而迅速去除。选择器可以恒定容积也可以可变容积运行。污泥回流液中所含有的硝酸盐可在此选择器中得以反硝化。选择器的最基本功能是防止产生污泥膨胀。2.1.2主曝气区
在循环式活性污泥法工艺的主曝气区进行曝气供氧,主要完成降解有机物和同时硝化/反硝化(simultaneous nitrification/denitrification)过程。循环式活性污泥法工艺操作循环过程
2.1.3污泥回流/排除剩余污泥系统
在池子的未端设有潜水泵,污泥通过此潜水泵不断地从主曝气区抽送至选择器中(污泥回流量约为进水流量的20 %左右)。所设置的剩余污泥泵在沉淀阶段结束后将工艺过程中产生的剩余污泥排出系统。剩余污泥的浓度一般为10 g/l 左右。2.1.4撇水装置
在池子的未端设有由电机驱动的可升降的撇水堰,以排出处理出水。撇水装置及其它操作过程如溶解氧和排泥等均实行中央自动控制。同时可以查看中国污水处理工程网更多技术文档。2.2工艺的运行方式和运行阶段
在循环式活性污泥法系统中,一般至少设二个池子,以使系统能处理连续的进水。为此,在第一个池子中进行沉淀和撇水时,在第二个池子中同时进行进水和曝气过程,反之亦然。为避免充入池子的进水通过短流影响处理水质量,在工艺执行沉淀、撇水过程时,一般需中断进水。在设有四个池子的系统中,通过合理地选择各个池子的循环过程,可以产生连续均匀的出水。
根据处理出水要求,系统可以多种不同的适合进水实际情况的循环过程进行运行。另外,为进行硝化和反硝化或除磷也可以选择不同的循环操作。
循环式活性污泥法系统简单地按曝气和非曝气阶段进行运行,系统通过时间开关加以控制,每一循环的出水量是变化的。
根据生产性装置的运行经验,在旱流流量条件下,循环式活性污泥法系统以4小时循环周期能达到最佳的处理效果(2小时曝气,2小时非曝气)。在负荷较低时,可以调整循环中各个阶段的时间分配以适应此时的水力和有机负荷。如实际负荷仅为设计负荷的50%,则在4小时循环周期中,可采用1小时曝气,3小时关闭曝气的方式运行。另外,还可考虑6小时和8小时循环周期。
每一循环具体可划分为下列阶段:(1)充水 / 曝气(2)沉淀(3)撇水
(4)闲置(随具体运行情况而定)运行阶段1:曝气阶段
在曝气阶段,池子同时进水,在进水负荷较低时可适当缩短曝气时间,也可采用6小时循环系统,其中1小时沉淀,1小时撇水, 这种根据进水负荷来调整运行状态所表现的灵活性是其他连续流系统所无法相比的。运行阶段2:沉淀阶段
在此阶段,系统停止曝气和进水,此时进水可直接转换到另一个池子。由于在沉淀阶段无水力干扰因素存在,因而可以在池子中形成有利于沉淀的条件。污泥絮体在池子中沉淀下来,并形成污泥层,污泥层不断下沉,在其上方形成上清液。在曝气阶段,池子中污泥呈均匀分布状态,曝气停止后,在池子中泥水混合液尚有部分残余混合能量,因此在沉淀阶段开始时,污泥颗粒利用这部分残余能量进行絮凝过程。在此混合能量消耗完后,污泥形成一边界层,并以成层沉淀的方式进行沉淀。在沉淀开始时,污泥沉速较慢,之后逐渐增加,在污泥进入池底压缩区时,沉速又逐渐减慢。
污泥的沉降速度主要取决于沉降开始时的污泥浓度,池子深度,池子表面积以及污泥的沉降性能。沉淀后污泥浓度可达10 g/l 左右。运行阶段3:撇水阶段
在撇水阶段移动撇水堰沿给定轨道以较高的速度降到水面,在与水面接触后,撇水装置的下降速度即转换到正常下降速度,当撇水装置下降到最低水位后,再返回到初始状态。撇水堰渠的前部设有挡板,可以避免将水面可能存在的浮渣(泥)随出水一起排出。运行阶段4:闲置阶段
在实际操作中,撇水所需的时间往往小于理论设计最大时间,故撇水完成后剩余的时间即可作为闲置阶段,此阶段可以进行充水(不曝气)或其它反应过程。在撇水器返回初始状态三分钟后,即开始作为闲置阶段。3 工艺基本原理 3.1生物选择器
与传统意义的SBR反应器不同,C-TECH工艺在进水阶段中不设单纯的充水过程或厌氧进水和缺氧进水混合过程。另外,C-TECH工艺不同于SBR法的一个重要特性在于在反应器的进水处设置一生物选择器。生物选择器是一容积较小的污水污泥接触区,在此接触区内,进入反应器的污水和从主反应区内回流的活性污泥相互混合接触。生物选择器的设置严格遵循活性污泥种群组成动力学的有关规律,创造合适的微生物生长条件并选择出絮凝性细菌。生物选择器的机理和作用在七十年代和八十年代分别由Chudoba和Wanner进行了深入的研究。大量研究结果表明,设计合理的生物选择器可有效地抑制丝状性细菌的大量繁殖,克服污泥膨胀,提高系统的稳定性。有废水需要处理的单位,也可以到污水宝项目服务平台咨询具备类似污水处理经验的企业。
活性污泥的絮体负荷So/Xo(即基质浓度So和活性微生物浓度Xo的比值)对系统中活性污泥的种群组成有较大的影响,较高的污泥絮体负荷将有助于絮凝性细菌的生长和繁殖。传统SBR工艺中,为防止可能发生的污泥膨胀,往往在循环过程中,通过快速进水的方式使系统在某一时段内产生较高的污泥絮体负荷。因此传统SBR工艺中反应池的进水模式和方案对整个系统的运行有很大的影响。在C-TECH工艺中,由于在池子首部设置有生物选择器,使得活性污泥不断地在选择器中经历一高絮体负荷阶段,从而有利于系统中絮凝性细菌的生长。此外,在选择器中较高的污泥絮体负荷可以提高污泥活性,使其能快速地去除废水中的溶解性易降解基质。一般地,由于溶解性易降解基质较有利于丝状性细菌的生长,因此在选择器中迅速地去除这部分基质,可进一步有效地抑制丝状性细菌的生长和繁殖。由于C-TECH工艺的这些特性,可使整个系统的运行不取决于污水处理厂的进水情况,可以在任意进水速率并且池子在完全混合的条件下运行而不会发生污泥膨胀。3.2同步硝化反硝化和生物除磷
C-TECH工艺中的池子构造和操作方式可允许在一个循环中同时完成硝化和反硝化过程。C-TECH系统的一个重要特性是在工艺过程中不设缺氧混合阶段的条件下,高效地进行硝化和反硝化,从而达到深度去除氮的目的(见表3)。在C-TECH工艺中,硝化和反硝化在曝气阶段同时进行(co-currently or simultaneously)。运行时控制供氧强度以及曝气池中溶解氧浓度,使絮体的外周能保证有一个好氧环境进行硝化,由于溶解氧浓度得到控制,氧在污泥絮体内部的渗透传递作用受到限制,而较高的硝酸盐浓度(梯度)则能较好地渗透到絮体的内部,因此在絮体内部能有效地进行反硝化过程。另外,在曝气停止后的非曝气阶段中,沉淀污泥床中也存在有一定的反硝化作用。通过污泥回流,将部分硝酸盐氮带入设在池首的生物选择器中,因此在选择器中也有部分反硝化功能。
C-TECH系统中通过曝气和非曝气阶段使活性污泥不断地经过好氧和厌氧的循环,这些反应条件将有利于聚磷细菌在系统中的生长和累积。因此C-TECH系统具有生物除磷的功能。生物除磷的效果很大程度上取决于进水中所含有的易降解基质的含量。在C-TECH工艺的选择器中活性污泥通过快速酶去除机理吸附和吸收大量易降解的溶解性基质, 这些吸附和吸收的易降解基质可用于后续的生物除磷过程,对整个系统的生物除磷功能起着非常重要的作用。根据Goronszy 等人的研究,当微生物体内吸附和吸收大量易降解物质而且处在氧化还原电位为+100 mV至-150 mV 的交替变化的环境中时,系统可具有良好的生物除磷功能。图2及图3所示为典型C-TECH污水厂在进水曝气阶段氨氮浓度硝酸盐氮浓度以及溶解氧浓度的典型变化曲线。
3.3工艺控制方式
C-TECH工艺中的池子流态呈完全混合式,通过溶解氧探头测定池子中曝气阶段开始时和曝气阶段结束时的溶解氧变化情况,从而可在生产性装置上直接测得活性污泥的呼吸速率,所测得的污泥呼吸速率将直接作为调节曝气阶段曝气强度和排除剩余污泥量的控制参数。由于这种控制方式能使池子中的溶解氧浓度与工艺要求相一致,故能最大程度地减少曝气所需的能耗。C-TECH工艺除磷脱氮应用实例
自七十年代以来,对循环式活性污泥法的机理及其应用进行了大量的研究和开发工作,工艺技术和设备不断地得到完善,目前,循环式活性污泥法工艺在美国、澳大利亚、欧洲、亚洲等国的很多污水处理厂尤其在深度脱氮除磷方面得到大量应用。
迄今为止,操作循环为4小时的C-TECH系统已成功地应用于日处理从500人口当量(120m3/d)至400000人口当量(210000m3/d)规模的污水处理厂。
目前已经投入运行的最大的可变容积活性污泥法污水厂(采用C-TECH工艺)为澳大利亚的Quakers Hill污水处理厂,该厂拟进行分期建设,全部建成后,共有五组C-TECH池子。设计时采用模块布置方法,根据进水水量情况逐步建成。目前已有二组C-TECH池子投入运行,每组池子长度为131 m,宽度为76 m,池子表面积达9956m2。每组C-TECH池子的进水端设有生物选择器,位于池子中部污泥回流泵(靠池壁设置)将主反应区的活性污泥回流至生物选择器并与污水混合接触,选择器的平均水力停留时间为1.0小时(包括回流量)。选择器的运行可分为曝气和不曝气二种方式。处理出水通过5个同步运行的撇水装置排出系统,各个撇水器的撇水速率保持相等。每一操作循环为4小时,其中曝气时间为2小时。撇水速率为13毫米/分钟。每一组C-TECH池子的处理能力为100000人口当量。采用管式橡胶膜曝气装置进行曝气和混合。该厂已运行五年,其运行结果见表4。从该表可看出,C-TECH工艺具有非常高超的除磷脱氮效果。
澳大利亚Black Rock污水处理厂也是一个采用C-TECH工艺的污水处理厂,共设四个C-TECH池子, 每个池子长为120米, 宽为60米, 池子表面积为7200平方米,池子设计最大水深为5米.该厂最大日处理能力可达210000 m3/d.进水BOD5为370 mg/l, SS为360 mg/l,TKN为63 mg/l, TP为8.6 mg/l.安装在池子底部的圆盘式橡胶膜曝气系统提供曝气和混合。在C-TECH池子中也结合有生物选择器.每个池子设置八台同步运行可同时升降的长度各为10米的撇水装置.在设计该厂时进行了为期一年的中试试验。
联邦德国波茨坦(Potsdam)污水处理厂设计平均日处理量为21082 m3/d,最大设计小时流量为2490 m3/h。在旱流流量条件下循环周期为4小时,在雨天流量下为3小时。系统共设4个C-TECH单元,内置于2个圆形池子中,每个池子的直径为52m,最大设计水深为5.5m。由于该厂进水泵提升能力过大,对后续生物处理段造成很大的冲击,其进水氮的负荷波动高达4倍以上,见图4。尽管氮的负荷波动较大,但C-TECH系统高超的同时硝化反硝化效果仍能保证出水的氨氮和硝酸盐氮浓度维持在很低的出水浓度。进、出水氨氮浓度如图5和图6所示。出水硝酸盐氮浓度一般在5mg/L以下。
捷克Znojmo污水处理厂 设计平均日处理量为19000 m3/d,最大设计小时流量为1800 m3/h。在旱流流量条件下循环周期为4小时,在雨天流量下为2.4小时。系统共设4个C-TECH单元,每个池子的长为74m,宽为15.5m,最大设计水深为5.0m。该厂进水总氮浓度在50mg/L左右,通过C-TECH工艺中高超的同步硝化/反硝化过程,其出水总氮浓度维持在5mg/L左右,见图7。通过选择器对絮凝性细菌的的选择作用,系统的污泥沉降指数可降至50ml/g左右,见图8。C-TECH工艺与传统活性污泥法的比较
与传统活性污泥法比较,C-TECH工艺最重要的特征是不设独立的二沉池和刮泥系统(一般也不设初沉池)。在C-TECH方法中,活性污泥始终保持在一个池子中完成生物反应和泥水分离过程。因此无需设置如传统活性污泥法中将污泥从二沉池输送至曝气池的回流装置(回流比一般为100%),也无需设置如前置反硝化系统中的内回流系统(内回流比可达300%左右)。C-TECH系统中为生物选择器而设置的回流系统其回流比一般仅为20%的日平均流量。因而C-TECH系统可节省大量的土建费用和运行费用(省掉二沉池、刮泥桥、回流污泥系统、用于硝化/反硝化的内回流系统、搅拌装置、曝气池和二沉池之间的各种管道连接等)。当由于进水水质和水量发生变化而影响污泥性质(如絮凝效果等)和处理效果时,可简单地调节变化C-TECH系统中进水和曝气循环过程,而使系统重新恢复正常运行。开发C-TECH工艺的主要目标是尽可能降低基建和运行费用,简化操作过程,提高系统的可靠性和运行的灵活性。7 C-TECH方法的主要优点
(1)工艺流程非常简单, 土建和设备投资低(无初沉池和二沉池以及规模较大的回流污泥泵站,无需搅拌装置);
(2)能很好地缓冲进水水质水量的波动,运行灵活;
(3)在进行生物除磷脱氮操作时,整个工艺的运行得到良好的控制,处理出水水质尤其是除磷脱氮的效果显著优于传统活性污泥法;
(4)运行简单,无需进行大量的污泥回流和内回流;
(5)无污泥膨胀, 沉淀过程在静止环境中进行,无漂泥现象,故工艺过程稳定;(6)自动化程度高,人员费用省;
(7)采用组合式模块结构,布置紧凑,占地面积少,分期建设和扩建方便。
第四篇:《氮及磷》教学设计方案
《氮和磷》教学设计方案
提纲
一、教学目标
二、主要教学方法
三、重难点
四、教学准备
五、教学过程
六、课堂评价
七、教学流程图
八、课件结构图
二零一零年五月
教材:人民教育出版社全日制普通高级中学教科书(必修加选修)第二册
第一单元第一节《氮和磷》教学设计方案
第一课时
班级:
时间:
制定者:
【教学目标】 知识与技能:
1、使学生了解氮族元素性质的相似性和递变规律
2、使学生理解氮气的化学性质
3、简单了解非极性分子的概念
4、使学生掌握运用元素周期律和原子结构理论知识知道元素化合物知识学习的方法 过程与方法:
通过自主学习,形成独立思考能力,发现问题的能力,通过对氮气性质的重点难点的突破,发展科学探究能力,分析推理能力。情感态度与价值观:
通过这节的学习,使学生学会一种科学的思考问题、探究问题的方法,学习元素时联系元素周期表性质,举一反三。通过氮气,二氧化氮等的学习,使学生在了解环境保护知识的同时,增强环境保护意识。
【主要教学方法】
实验演示法、直接讲述法、课件展示法
【重点难点】
重点:氮族元素性质的相似性和递变规律
氮气的化学性质
难点:非极性分子
【教学准备】
教师准备:大试管、水槽、橡胶手套、NO2、教学课件
学生准备:
1、复习元素周期表的知识,对氮族元素有一大致的推断
2、比较学过的卤族元素、氧族元素、氮族元素非金属性的强弱
【教学过程】(导入):光化学烟雾
1943年,美国洛杉矶市发生了世界上最早的光化学烟雾事件。此后,在北美、日 本、澳大利亚和欧洲部分地区也先后出现这种烟雾。经过反复的调查研究,直到1958年才发现,这一事件是由于洛杉矶市拥有的250万辆汽车排气污染造成的,这些汽车每天消耗约1600t汽油,向大气排放1000多吨碳氢化合物和400多吨氮氧化物。这些气体受阳光作用,酿成了危害人类的光化学烟雾事件。
简单介绍引起光化学烟雾的气体、过渡到氮族元素上,开始课程。(板书):
一、氮
(讲解)氮是一种重要的元素,它以化合态存在于多种无机物和有机物中,是构成横蛋白质和核酸不可缺少的成分。在空气中氮以氮气的形式存在,是空气的主要成分。
(板书)
1、氮气的物理性质:(副板书,简单写)
氮在常况下是一种无色无味无嗅的气体,且通常无毒。氮气占大气总量的78.12%(体积分数),在标准情况下的气体密度是1.25g·dm-3,氮气在标准大气压下,冷却至-195.8℃时,变成没有颜色的液体,冷却至-209.86℃时,液态氮变成雪状的固体。
氮气在水里溶解度很小,在常温常压下,1体积水中大约只溶解0.02体积的氮气。它是个难于液化的气体。在水中的溶解度很小,在283K时,一体积水约可溶解0.02体积的N2,氮气在极低温下会液化成白色液体,进一步降低温度时,更会形成白色晶状固体。在生产中,通常采用灰色钢瓶盛放氮气。
(讲解)
氮气是由氮原子组成的双原子分子。氮分子中,2个氮原子共用3对电子,形成3个共价键。(课件)
氮气分子的分子轨道式为 ,对成键有贡献的是 三对电子,即形成两个π键和一个σ键。对成键没有贡献,成键与反键能量近似抵消,它们相当于孤电子对。由于N2分子中存在叁键N≡N,所以N2分子具有很大的稳定性。
(讲解)
氮分子中的键都是非极性键,公用电子对不偏向任何一个原子,像这样以非极性键结合成的双原子分子是非极性分子,如H2、O2、Cl2等。(课件)flash展示分子成键和断键过程(课件)
2、氮气的化学性质 1)氮气与氢气的反应 N₂+ 3H₂—高温、高压、催化剂→2NH₃
(讲解)工业上利用这一反应原理合成氨。关于合成氨工业,我们将在下一章讲解。(课件)
2)氮气与氧气的反应(讲解)
空气的主要成分是氮气和氧气,在通常情况下,他们不起反应。但是,在放电条件下,氮气和氧气却可以直接化合,生成无色、无味、不溶于水的NO气体。(课件)
N₂+O₂——放电→2NO
(讲解)
反应生成的N0在常温下很容易与空气中的氧气化合,生成红棕色、有刺激性气味的二氧化氮气体。(课件)
2NO+O₂——→2NO₂
(演示实验)说明NO与N02之间的相互转化
在大试管内充满N02,把试管倒置放入盛水的水槽,可以看到试管内水面上升,试管内气体由红棕色变成无色。用拇指堵住试管口,并振荡试管,可看到气体又由红棕色变为无色。(实验时带橡胶手套)(思考)为什么会发生上述实验现象?
为什么要带橡胶手套?(课件)课件flash展示实验过程
(讲解)带上橡胶手套是为了防止腐蚀手,下面让我们来学习一下这个原理。(课件)
3NO₂+H2O——→2HNO₃+NO(讲解)
N02是一种有毒气体,易溶于水,它与水发生反应生成HNO₃和NO。工业上用这一反应制取硝酸。
这也是为什么要带橡胶手套的原因。(讲解)
上述几个反应是在自然界中经常发生的重要反应。(以下省略)(讨论)
可以让同学结合刚才所学简述“一场雷雨一场肥”的原理。(课件)
3、氮气的用途(副板书)
(讲解)是合成氨、制硝酸的重要原料。做保护气等。
【本课总结】
总结本节课的主要内容。
【课堂评价练习】
随堂练习,作业
【补充材料】
氮气的实验室制法: 制备少量氮气的基本原理是用适当的氧化剂将氨或铵盐氧化,最常用的是如下几种方法:
⑴加热亚硝酸铵的溶液:
(343k)NH4NO2 ===== N2↑+ 2H2O ⑵亚硝酸钠与氯化铵的饱和溶液相互作用:
NH4Cl + NaNO2 === NaCl + 2 H2O + N2↑
⑶将氨通过红热的氧化铜: NH3+ 3 CuO === 3 Cu + 3 H2O + N2↑
⑷氨与溴水反应: NH3 + 3 Br2(aq)=== 6 NH4Br + N2↑
⑸重铬酸铵加热分解:
(NH4)2Cr2O7===N2↑+Cr2O3+4H2O
【教学流程图】
【课件结构图】
第五篇:A2O生物脱氮除磷工艺与MBR工艺简介及焚烧发电厂渗滤液处理
A2O是Anaeroxic-Anoxic-Oxic的英文缩写,A2O生物脱氮除磷工艺是传统活性污泥工艺、生物硝化及反硝化工艺和生物除磷工艺的综合。工作原理
其工艺流程图如下图,生物池通过曝气装置、推进器(厌氧段和缺氧段)及回流渠道的布置分成厌氧段、缺氧段、好氧段。
在该工艺流程内,BOD5、SS和以各种形式存在的氮和磷将一一被去除。A2O生物脱氮除磷系统的活性污泥中,菌群主要由硝化菌和反硝化菌、聚磷菌组成。在好氧段,硝化细菌将入流中的氨氮及有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入到大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷除去。
工艺特点
(1)厌氧、缺氧、好氧三种不同的环境条件和种类微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能。
(2)在同时脱氧除磷去除有机物的工艺中,该工艺流程最为简单,总的水力停留时间也少于同类其他工艺。
(3)在厌氧—缺氧—好氧交替运行下,丝状菌不会大量繁殖,SVI一般小于100,不会发生污泥膨胀。
(4)污泥中磷含量高,一般为2.5%以上。
一、MBR可提式暴起系统
可提升式垃圾渗滤液MBR生化段微孔曝气装置
由于垃圾渗滤液MBR段的曝气方式主要有微孔曝气和射流曝气两种,射流曝气相对于微孔曝气有三个缺点:1.投资成本高,2.能耗运行费用高,3.池内水温高。水温的升高,(超过38摄氏度,造成硝化速率降低),还需要配套冷却系统。另外射流曝气还存在曝气不均(曝气只向一个方向)的现象,有的区域曝气过量,有的区域曝气明显不足,这样可能造成生物膜被冲脱或因缺氧生物膜也者脱落,影响系统的生化性。
采用可提升式垃圾渗滤液MBR生化段微孔曝气装置,采用橡胶可变孔微空曝气,底盘设有止回阀装置,当管道系统停止供气时阻止混合液进入布气支管,这样可避免支管内进入混合液而被堵塞现在膜的材质,膜片具有抗附着表面的专用进口橡胶(EPDM)。
同时,由于曝气管直径较小,不易产生气泡聚集现象,水气混合状态更趋合理。因此,其氧的转移率高,比一般产品高15%。
采用该曝气装置可直接从池底提升至水面以上,即使有曝气头损坏或堵塞可提出池面维护检修。
该曝气系统曝气管路和牵引提升系统均采用316不锈钢,确保提升强度和水下腐蚀现象。确保系统正常降、落。
二、垃圾焚烧发电场垃圾渗滤液特色技术
针对垃圾焚烧发电厂的新鲜垃圾渗滤液,可生化性较好,而COD、氨氮、SS浓度相当高,水质复杂的特点,首先进行有效的预处理后进入MBR生化系统,然后进入纳滤/反渗透系统,浓缩液进行集中处理,处理出水全部达标,可回用绿化,甚至回用为工业用水。沼气收集处理可焚烧发电。
根据工程具体情况选择MBR的形式以及膜的搭配,有效节约投资与运行费用。
三、城市生活垃圾填埋场垃圾渗滤液处理特色技术Ⅰ
垃圾渗滤液首先经过预处理,然后进入外置式加强型MBR系统,MBR出水进入纳滤和反渗透系统,出水达标排放或者回用。
外置式MBR系统一般用于垃圾渗滤液处理规模在200吨/天以上的工程中,主要有“一级A/O/N系统+二级A/O+外置式管式膜系统”组成。
对于规模比较大的垃圾渗滤液处理工程,特别设计了两级生化A/O,并且进行了强化,利用管式膜超滤出水,脱氮效率大大提高,这样对后续的纳滤/反渗透系统的负荷大大降低,对浓缩液的处理也相对容易。
四、城市生活垃圾填埋场垃圾渗滤液处理特色技术Ⅱ
垃圾渗滤液经过预处理进入加强型内置式MBR系统,然后MBR出水经入纳滤和反渗透系统。本工艺特点是采用加强型内置式MBR系统,在MBR反应系统内,其中的大部分污染物被混合液中的活性污泥去除,再在外压作用下由膜过滤出水。这种形式的MBR反应器由于省去了混合液循环系统,并且靠抽吸出水,能耗相对较低;占地较分置式更为紧凑。缺点膜通量相对较低。
五、城市生活垃圾填埋场垃圾渗滤液处理特色技术Ⅲ
垃圾渗滤液经过预处理进入加强型外置式MBR系统,然后MBR出水经入催化氧化系统,最后通过反渗透系统。
本工艺特点是采用我公司新研发的催化氧化系统,通过催化氧化系统出水COD可控制在100mg/l左右,反渗透系统作为一个出水达标排放的保证措施,当催化氧化系统出水达标的时候,反渗透系统可以不启动,如果启动后,产生的浓缩液可以通过催化氧化系统有效处理。该系统处理污染物彻底,浓缩液产生量少。