飞 机 复 合 材 料 及 应 用

时间:2019-05-13 07:17:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《飞 机 复 合 材 料 及 应 用》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《飞 机 复 合 材 料 及 应 用》。

第一篇:飞 机 复 合 材 料 及 应 用

飞 机 复 合 材 料 及 应 用

【摘要】

本文重点讲述了复合材料的构成、种类、性能以及在飞机上的应用。复合材料是由两种或两种以上的原材料,通过各种工艺方法组合成的新材料。对于一个现代飞机来说复合材料的应用对减重﹑耐腐蚀和降低成本有着重要的作用。对飞机结构轻质化、小型化和高性能化起着至关重要的作用。复合材料结构特点和应用效果,在高性能战斗机实现隐身、超声速巡航、过失速飞行控制,前翼飞机先进气动布局的实际应用。关键词: 复合材料

层合板

1概述

复合材料是由两种或两种以上的原材料,通过各种工艺方法组合成的新材料。它既可以保持原材料的某些特点,又具有原材料所不具备的新特征,并可根据需要进行设计,与单一均质材料相比它具有较多的优越性。复合材料飞机结构技术是以实现高结构效率和改善飞机气动弹性与隐身等综合性能为目标的高新技术,对飞机结构轻质化、小型化和高性能化起着至关重要的作用。复合材料结构特点和应用效果,在高性能战斗机实现隐身、超声速巡航、过失速飞行控制,前翼飞机先进气动布局的实际应用,以“飞翼”著称的B-2巨型轰炸机的隐身飞行,舰载攻击∕战斗机耐腐蚀性改善和轻质化,对于客机来说复合材料的应用对减重﹑耐腐蚀和降低成本有着重要作用,如波音777和空中客车A330∕A340上的应用,标志着飞机复合材料结构设计发展已经成熟。

我国从20世纪80年代开始,将复合材料应用技术研究列入重点发展领域。复合材料应用基本实现了从次承力构件到主承力构件的转变。复合材料的垂直安定面﹑水平尾翼、方向舵、前机身等构件已在多种型号飞机上使用,可以小批量生产。带整体油箱复合材料机翼等主承力结构已装机试飞成功。航空先进复合材料已进入实际应用阶段。复合材料的探究 2.1 复合材料的构成

复合材料是由两种或两种以上材料独立物理相,通过复合工艺组合构成的新型材料。其中,连续相称为基体、分散相称为增强体,两相彼此之间有明显的界面。它既保留原组分材料的主要特点,并通过复合效应获得原组分材料所不具备的性能。通过材料设计可以使各组分材料的性能互相补充、彼此联系,从而获得优越性能。

3复合材料在飞机上的应用

3.1.1机翼采用复合材料结构是提高飞机结构效率,改善飞机气动弹性、飞行品质、控制特性的重要技术途径之一。美欧各国20世纪70年代中期以后研制的新型高性能战斗机均采用了复合材料机翼结构﹔前掠翼飞机的的试飞成功和飞翼隐身轰炸机的服役也充分说明了复合材料机翼的独特效能。

3.1.2机翼是飞机的主升力面。机翼连接在机身上,其主要功用是产生飞机飞行所需的升力。机翼及安装其上的副翼、襟翼、缝翼、扰流板、减速板等还为飞机提供横侧稳定性、操作性以及增升、增阻效能。机翼又可作为发动机、起落架等部件的安装固定基础。机翼内部空间还可利用来收藏起落架、装载燃料、武器设备、设备仪表等。内部空间小(薄翼型机翼)或不够用时,副油箱和武器装备(火箭、导弹等)只好挂在机翼外面,成为机翼的外挂物。因此,机翼结构是飞机的主承力结构,承受多种高载荷,翼面外形复杂,设计有许多特点。

3.1.3机翼结构设计要求

机翼主承力结构的功用、承受多种高载荷和复杂外形特征等因素,决定机翼结构设计除应满足前面已列出的对飞机结构设计的基本要求外,主要设计要求有:

(1)保证机翼外形准确、表面光滑;机翼的外形参数和翼型是在飞机总设计阶段确定的,关系到飞机的飞行特性,机翼结构设计必须首先予以保证;(2)一般情况下,翼面(外翼和中翼)按刚度(气动弹性)要求设计,机翼根部按强度要求设计;翼面刚度不足,不仅影响机翼的气动特性和载荷分布,而且还会引起颤振、操纵面反效等气动弹性问题。因此,翼面设计多数按照刚度要求设计。同时,满足稳定性要求。机翼根部与机身的连接区载荷集中传递,又有起落架收藏大开口,形成高应力区,需按强度要求设计;(3)在满足刚度、强度条件下,还要满足寿命要求;(4)考虑武器发射动载荷响应和起落架着陆撞击载荷影响;(5)整体油箱设计满足密封、防静电、防雷击等要求;

(6)对所有检查维护的部位都应有良好的可达性。为此,必须在机翼上设置一定数量的开口;机翼内部敷设的操纵系统零构件,燃油管路、电气线路、液压管路等需要经常检查调整;整体油箱要检查维护保证密封可靠;再有,按破损安全原则设计的机翼,对影响飞行安全的结构需定期检查;(7)良好的使用维护性和可修理性;

3.1.4复合材料机翼特点

复合材料机翼结构形式,大体分成3种情况;

(1)复合材料蒙皮壁板机械连接在由金属梁和翼肋等构成的骨架上,形成翼盒;

(2)复合材料蒙皮壁板、复合材料辅梁和翼肋与金属主翼梁机械连接在一起形成翼盒;

(3)下翼面复合材料蒙皮与辅梁共固化成形,上翼面复合材料蒙皮单独成形,在与金属主翼梁机械连接组成翼盒;

(4)采用机械连接的目的在于拆卸方便,易检查维修

3.1.5 复合材料机翼结构设计要点

复合材料机翼结构设计要点如下:

(1)机翼结构总体布局,建议优先采用多墙结构;(2)翼面气动弹性剪裁设计与综合优化设计;(3)大型整体翼面壁板,设计/工艺一体化;

(4)翼梁设计翼梁剖面形式选择、结构形式、工艺方法;(5)主承力接头设计;(6)油箱设计;

3.2.整体油箱的设计

机翼整体油箱是机翼结构中参与机翼整体总受力的相对独立的密封多闭室结构;是集中结构承载功能与油箱功用为一体,同时满足结构设计要求和油箱设计要求的机翼盒段。

复合材料机翼整体油箱设计同样包括结构设计和油箱设计两大主要方面的要求。

3.2.1复合材料油箱设计要求

复合材料油箱设计要求与金属材料油箱相比,由于复合材料与金属材料在导电性和成形工艺的显著差异,使复合材料油箱密封、静电防护和雷击防护显得十分重要。

3.2.2 油箱密封设计

(1)油箱密封设计要求;

机翼整体油箱应在滑行、爬升、航行、着陆等各种载荷状态下和由内部充压引起的重复载荷下,在规范的期限内(战斗机一般为2000h。此期限不包括分散系数)不应因发生漏油而影响使用。(2)复合材料油箱密封设计一般原则;

①整体油箱部位使用的层合板,其孔隙率应不大于1%,以保证不渗漏油。②尽量采用共固化整体成形构件,可明显缩短密封的总长度。

③油箱周边零构件应避免分段和采用装配式加强件。周边零构件的弯边应朝向非密封区一侧。

④应保证密封处有足够的刚度,以减少密封在外载荷作用下的相对变形,避免产生不利于密封的变形。

⑤密封区机械连接紧固件的直径应不小于连接外层合板总厚度,其间距和排距确定必须考虑密封要求。密封处耳片螺栓连接正确位置精心设计。

3.3 机身结构设计 3.3.1 机身的功用

机身是飞机的躯干,机翼、尾翼、起落架、发动机等部件均固定其上,互相连在一起成为完整的一架飞机。同时,机身又是飞机装载的主体,设备舱、空勤人员、客舱、油箱、武器舱、货舱均安排在机身上,因此,机身是整架飞机载荷协调的基础,是带多舱门、口盖的主承力结构。

3.3.2机身结构设计要求

机身的功用决定了机身结构设计结构设计要求,应侧重考虑一下几点:(1)机身结构形式选择与主要受力构件的布置,既能承受各装载物的质量力,又应与各相连部件的受力构件载荷传递相协调。

(2)机身结构应有足够的强度和刚度,以保证相连各部件正常工作。(3)机身应有足够的开敞性(多舱门和舱盖),以便安装设备和武器、空勤人员与乘客进出,以及维护修理。

(4)前机身、中机身、后机身三段功能任务不同,设计要求、重点亦有区别。以战斗机为例: 前机身有机头罩、电子设备舱、前油箱等组成。结构按刚度要求设计,外形按隐身和气动要求确定。电子设备舱应有良好的电磁兼容性。

中机身是全机的主承力部位。机翼与机身在此对接连接;下部左右两侧主起落架,中间装发动机,上部还装有减速板;内部装管路、油箱弹舱等并挂有导弹、副油箱等多种外挂物,因此结构协调与载荷平衡十分突出。高性能战斗机要求中机身为机翼/机身融合结构,要求用S进气道满足隐身要求。

后机身是尾翼连接固定的基础,并且受到发动机尾喷气流加热影响,要求结构有足够的刚度以保证尾翼的效能,并且不发生震动或颤振问题。

(5)机身油箱设计要求与机翼油箱设计基本上相同。由于机身是细长的半硬壳式结构,其刚度低于机翼盒式结构,并且机身油箱是在进气道和发动机的振 动环境中工作,若燃油渗漏易引起飞机起火,因此机身邮箱的密封要求更高,并要进行复杂环境下的密封性考核。

3.3.3 复合材料前机身结构设计原则

复合材料前机身结构设计遵循下列原则:(1)结构按刚度设计。在舱门、口盖全部打开、单侧满载情况下,结构扭转刚度为严重载荷情况;结构多采用上、下壁承扭闭室、纵梁、纵墙的Ⅰ形结构布局;多口盖是内部可达性好。

(2)上下壁按共固化整体成形设计成可承扭闭室,以提高抗扭刚度、减轻结构重量。

(3)口框设计利用梁、框作为口框边框以减少框补强增重;口框边缘采取包边等措施以防止边缘分层。

(4)舱门、口盖采用蜂窝夹层结构,共固化成形;碳纤维/芳纶混杂面板可提高抗冲击损伤能力;采用热塑性树脂基体制造口盖不仅可以提高抗冲击损伤能力,而且便于修理。

(5)结构连接尽量避免使用铆钉;口盖连接应采用快卸锁,并应防止孔壁磨损;满足蜂窝夹层结构连接要求,防止连接件电偶腐蚀。(6)电性能满足防雷击、防静电和电磁兼容要求。(7)座舱强度满足座舱内压要求。(8)良好的损伤维修性。

参考文献

[1]: 杨乃宾.高损伤容限低成本复合材料结构技术发展.航空制造工程,国防工业出版社,1997年4月。

[2]: 张凤翻.飞机用树脂基复合材料基体的进展航空制造工程,1991年11月。

[3]:沈真主编,复合材料飞机结构耐久性/损伤容限设计指南,北京:航空工业出版社,1995年7月

[4]:沈真.主编复合材料结构设计手册.北京:航空工业出版社,2001年5月。

第二篇:复合大豆磷脂粉生产与应用

复合大豆磷脂粉生产与应用

大豆磷脂是从生产大豆油的油脚中提取出来的产物,在大豆中的含量为1.2%~3.2%.它是由甘油、脂肪酸、胆碱或胆胺所组成的酯,能溶于油脂及非极性溶剂中。大豆磷脂的组成成分复杂,主要含有卵磷脂(约含34.2%)、脑磷脂(约含19.7%)、肌醇磷脂(约含16.0%)、磷酯酸丝氨

大豆磷脂是从生产大豆油的油脚中提取出来的产物,在大豆中的含量为1.2%~3.2%.它是由甘油、脂肪酸、胆碱或胆胺所组成的酯,能溶于油脂及非极性溶剂中。大豆磷脂的组成成分复杂,主要含有卵磷脂(约含34.2%)、脑磷脂(约含19.7%)、肌醇磷脂(约含16.0%)、磷酯酸丝氨酸(约含15.8%)、磷脂酸(约含3.6%)及其他磷脂(约含10.7%).其中最主要的3种磷脂为:卵磷脂,是由甘油、脂肪酸、磷酸和胆碱组成;脑磷脂,与卵磷脂的结构相似,它含的氨基醇是乙醇胺而不是胆碱;肌醇磷脂,是由甘油、脂肪酸、磷酸和肌醇构成。大豆磷脂在畜禽体内脂肪代谢、肌肉生长、神经系统发育和体内抗氧化损伤等方面发挥很重要的作用。近年来,大豆磷脂作为饲料添加剂代替部分脂肪已初步应用于饲料工业。

1大豆磷脂的理化性质

纯净的大豆磷脂在高温下是一种白色固体物质,由于精制处理和空气接触等原因而变成淡黄色或棕色。大豆磷脂溶于油脂、脂肪酸和苯、乙醚等有机溶剂,部分溶于乙醇,极难溶于丙酮和乙酸甲酯,不溶于水。磷脂具有亲水胶体的性质,遇水时能吸水膨胀,从而使其在油脂中溶解度大大降低,从油中析出。在磷脂分子中,有磷酸根和氨基醇亲水基团及碳氢键疏水基团,故磷脂能起表面活性剂作用,能使水、油两个不相溶的相形成稳定的乳胶体,这是因为磷脂在水、油两相之间形成一个界面层而降低油与水之间的表面张力,成为很好的乳化剂和分散剂。磷脂在空气中或阳光中不稳定,易氧化酸败而变黑,但在油脂中却比较稳定。磷脂的耐热性能较好,但温度超过150℃会逐渐分解。磷脂在酸碱条件下易水解,其产物为脂肪酸、甘油、磷酸、氨基醇及肌醇等。

2大豆磷脂的种类

根据大豆磷脂加工工艺的不同,可将其分为以下几个类型:

2.1天然粗制磷脂

由大豆精炼油的副产品(油脚)真空脱水而制得,亦称为浓缩大豆磷脂。产品的丙酮不溶物(磷脂和糖脂)含量为60%~64%,大豆油含量为36%~40%.2.2改性大豆磷脂

由浓缩大豆磷脂经化学改性而制成,具有较好的亲水性和水包油(O/W)乳化功能。改性方法主要有3种:物理法、化学法和酶法。其丙酮不溶物含量与天然粗磷脂含量相同,但其乳化性和亲水性能较浓缩大豆磷脂有显着提高,因此在饲料添加性能、液体饲料制备和能量的消化吸收方面有更大的优势,在饲料中应用广泛。

2.3粉末大豆磷脂

浓缩大豆磷脂经丙酮脱除油脂后的高纯度磷脂产品,也称脱油磷脂粉。色泽为米黄色或浅棕黄色,呈粉粒状,丙酮不溶物含量为95%~98%.2.4精制大豆磷脂

经丙酮沉淀制得的粉末大豆磷脂可经乙醇油提进行纯化,乙醇处理后分为醇溶部分和醇不溶部分。醇溶部分磷脂酷胆碱含量高,增强了其亲水性,是O/W型乳化剂;醇不溶部分分为磷脂酸乙醇胺和磷脂酷肌醇,是W/O型乳化剂。

2.5磷脂油

植物油和脂肪酸稀释的磷脂产品,粘度低,易于泵送或喷涂。磷脂含量一般为30%~52%.2.6粉状大豆磷脂

液态磷脂加载体而形成的固体粉状产品。磷脂含量为10%~50%.2.7漂白大豆磷脂

粗磷脂经过过氧化氢漂白后进一步脱水所得的产品,含水量小于1%.3大豆磷脂的生理营养作用

大豆磷脂产品的主要成分有油脂、磷脂、胆碱、不饱和脂肪酸和维生素E等。磷脂是生物膜的重要组成部分,是动物脑、神经组织、骨髓和内脏中不可缺少的组成部分,对幼龄动物的生长发育非常重要。大部分磷脂以脂蛋白复合体的形式存在于细胞壁基质、细胞膜、髓鞘、线粒体和微粒体中,其作用是使非极性物质具有很高的通透性。磷脂还参与脂类的代谢,促进饲料中脂类的消化。吸收、转运和合成,防止脂肪肝的产生。磷脂不仅参与脂肪酸的代谢,而且改善维生素 A的吸收。磷脂还参与钠离子与钾离子的活动,激活一些神经组织。磷脂与不饱和脂肪酸中的必需脂肪酸作为组织细胞不可缺少的成分,还可增强组织器官功能,提高动物机体免疫系统活力,增强抗应激能力和抗病力。胆碱可节约动物体内部分蛋氨酸。油脂中的亚油酸、亚麻酸是动物体不能合成的,是细胞结构和机体代谢不可缺少的,必须从饲料中摄取。维生素E具有抗氧化作用,保护饲料中的其他维生素和不饱和脂肪酸。

4大豆磷脂在动物生产中的应用

4.1预防脂肪肝

鱼类营养性脂肪肝严重影响鱼的生长、肉质和抗病力;鸡的脂肪肝可导致产蛋率下降、死亡率升

高。脂肪肝综合症的生理原因主要是缺少磷脂,因为磷脂对脂肪代谢是非常重要的。磷脂分子具有乳化特性,所含的不饱和脂肪酸能酯化胆固醇,在血液中调节脂肪、胆固醇的运输和沉积。动物在肝中合成磷脂,并可通过形成脂蛋白不断把这些脂肪转运到肝外。脂蛋白是磷脂、胆固醇、甘油三酯和阿扑蛋白的复合物,如无足够的磷脂,脂蛋白便不能形成,肝内则会充盈脂肪。由于肝壁薄组织被脂肪浸润,其他重要的化学过程和合成就不能顺利进行,这样机体的其他有关功能将受到影响。因此,在饲料中补充一定量的磷脂,使脂蛋白的合成顺利进行,肝内的脂肪便可输运出,预防脂肪肝的发生。曹俊明等(1997)对草鱼的研究表明,当饲料中添加一定量的大豆磷脂时,草鱼肝脏脂肪脂质含量大幅度降低。

4.2改善动物的体脂构成

在饲料中添加适量的大豆磷脂可提高屠宰率、降低腹脂和改善肉质。由于大豆磷脂产品含有一定量的不饱和脂肪酸,如二十碳五烯酸(EPA)和二十二碳六烯酸(DHA),动物采食含大豆磷脂的饲料,其体脂中这些不饱和脂肪酸的含量会相应提高,从而达到改善体脂的目的。邵邻相等(1996)在高脂日粮中添加大豆磷脂饲喂大鼠,结果大鼠血清中胆固醇、甘油三酯及极低密度脂蛋白含量明显降低,这说明大豆磷脂有降低血脂的作用。曹俊明等(1997)的试验表明,用含5%磷脂的饲料饲喂草鱼,52d后肝、胰脏的脂肪酸组成发生了变化,EPA和DHA含量显着升高,说明大豆磷脂可改善草鱼体脂构成。王若军等(1997)的试验表明,大豆磷脂可完全替代肉鸡日粮中的豆油,可提高屠宰率,降低腹脂和改善肉质。

4.3提高生长效率和饲料转化率

4.3.1猪

国内外的研究表明,在仔猪断奶后14d内由于胆汁分泌不足,仔猪对脂肪的乳化能力较弱。在仔猪饲料中添加磷脂可提高日粮粗蛋白质和能量的消化率,减少因消化不良导致的腹泻,促进代谢,改善增重和饲料转化率。Gunther(1994)研究表明,在断奶仔猪日粮中添加0.2%脱油大豆磷脂,仔猪的日增重比对照组提高9.5%,料重比降低7.5%;添加0.6%日增重提高17.1%,料重比降低12%.甘溢凌(2000)进行的大豆磷脂对断奶仔猪的试验表明,添加大豆磷脂组仔猪日增重提高6.8%,节约饲料约5.4%.在生长猪日粮中添加大豆磷脂也有同样的效果。李立(1999)的试验表明,生长猪日粮中添加5%大豆磷脂,日增重可提高7%.4.3.2牛

有研究证实,添加磷脂可显着改善小牛对人造奶中非乳脂的消化率。在小牛饲料中添加大豆磷脂40~50g/d,5个月中试验组平均日增重为870~880g,比对照组提高53%~64%.同时在饲料中添加磷脂和脂肪,可解决给小牛喂酪蛋白、乳糖、矿物质和维生素的合成日粮时出现的代谢紊乱和生长迟缓问题。

4.3.3家禽

有研究报道,在肉仔鸡料中添加磷脂可改善仔鸡的生长状况,并可增加肝中维生素A的贮存,促进骨的生长。耿庆辉(1996)的试验表明,在肉鸡日粮中添加2%改性磷脂,可提高增重7%~10%,饲料报酬提高5%~8%;给产蛋鸡饲喂含1.5%大豆磷脂的饲料,产蛋率提高9.9呢,饲料报酬提高9.2%.常开成(1998)用浓缩大豆磷 脂全部替代蛋鸡日粮中3%的油脂,添加磷脂组蛋鸡多产蛋7.l%,蛋白质消耗减少7.2%.4.3.4水产动物

鱼类在孵化后的快速生长中,需要丰富的磷脂来构成细胞的成分,当磷脂的生物合成不能充分满足仔鱼的需求时,需要在饲料中添加磷脂。另外,饲料中的磷脂还能促进甲壳动物对胆固醇的利用,提高甲壳动物的生长和成活率。虾在不同生长时期对磷脂的需要量不同,幼虾因不能合成足够的磷脂供生长和代谢的需要,因而幼虾对磷脂的需要量高。Abramo等(1981)的研究证明,龙虾需要卵磷脂以确保它在脱壳期间的生存。日本科学家指出,日粮中含0.5%~l%的磷脂对幼虾的生长和成活是必需的。薛永瑞等(1989)的试验表明,在鲤鱼饲料中添加2%的改性大豆磷脂,比对照组增产30.7%,饲料系数降低0.21,饲料成本降低了9.63%.Poston(1990)在饲料中添加4%或8%的大豆磷脂,明显降低了大西洋鲑的饵料系数。Kanagana等(1985)报道,在虾料中添加1%大豆磷脂可提高虾的生长速度和成活率。

5影响大豆磷脂应用的因素

随着畜牧业和饲料工业的飞速发展,饲料在市场上的竞争日趋激烈。大豆磷脂产品作为一种替代植物油,降低饲料成本的能量原料,被越来越多的厂家、养殖业户所重视和使用。但是,由于这种产品在国内处于刚刚开发阶段,技术尚不十分成熟,产品质量良莠不一,国内饲料行业又没有制定相应的质量标准,再加上有的使用单位对其性能与质量不清楚,所以该产品也给一些饲料加工企业及养殖户带来了很大的损失。近年来,东北地区的很多饲料加工企业应用磷脂后的质量事故;如饲料发霉、变质、肉鸡发生脑组织软化、白肌病、免疫力下降、腹泻、采食量下降,甚至拒食等。很多事故是由磷脂导致的或与磷脂有直接关系。

其次,由于粉末磷脂加工成本及使用成本较高,饲料工业中使用的基本上是粗制大豆磷脂,常温下为半固态,粘度非常大,用于饲料添加不能混合均匀,即便是高温流动状态下加入也难于混合。为解决磷脂在饲料中的混合问题,复合磷脂粉(粉状大豆磷脂)在近些年得到了很好的发展。

6复合磷脂粉的生产

复合磷脂粉的生产工艺很简单,就是将玉米膨化后与磷脂油混合即可。

目前,东北地区有众多厂家生产复合磷脂粉,我公司的膨化机用户也有很多从事该产品的生产。需要注意的是,复合磷脂粉中的膨化玉米比普通膨化饲料玉米膨化度高,要求较高的吸附性能,以生产出含脂肪及磷脂较高的产品。我们的用户一般采用45~50%的膨化玉米粉吸附50~55%的磷脂油,终产品为浅黄色至棕黄色粉状,具有大豆磷脂及膨化玉米固有香味,含磷脂、豆油、蛋白质、碳水化合物、胆碱(0.8%-1.1%)、必需脂肪酸(16-20%)VE等,主成分:粗脂肪≥50%、粗蛋白4-7%、磷脂≥30%、水分≤6%、酸 价≤20%、粒度(目)20-30、能量(大卡/千克)≥6000.7复合大豆磷脂粉的应用

复合大豆磷脂粉可提高饲料的能量和营养价值;提高饲料转化率,降低饲料系数;改善饲料的适口性,具有诱食作用;提高制粒的物理质量和产量,减少饲料在挤压成形时的粉料损失和能量消耗;防止粉尘飞扬和饲料自动分级;减少水产饲料中水溶性营养素的溶失;改善水产饲料在水中的漂离和沉降;减少饲料浪费和水质污染;促进脂质消化吸收,预防脂肪肝;促进幼龄动物生长发育,提高成活率;提高动物生长速度和生产性能;提高动物繁殖能力,增强动物机体抗病能力;便于饲料加工,可替代部分油脂和合成氯化胆碱。

7.1 肉禽用

改善适口性,缓解应激,缩短出栏时间。

提高免疫系统,增强抗病力,有效预防脂肪肝、腹水综合症及猝死症。提高屠宰率,降低腹脂,改善肉质风味,有效增加肝重。全增重率提高5%,成活率提高1.5%,料肉比降低2%,代谢能≥5.69MCal/kg直接添加 ,前期1.5~3%,中期2.5~4%,后期3.5~5%.7.2 蛋禽用

提高蛋壳质量,减少破蛋、白班蛋及肉班蛋,改善蛋黄质量,增大蛋卵个头。提高受精率、孵化率。增强免疫系统活力,缓解应激。

产蛋率提高越5%,枚蛋增重2.5克左右。产蛋高峰期延长半月之久。直接添加,蛋禽2~5%.7.3乳猪、仔猪、育肥猪用

有效降低粉料的粉尘量。

改善适口性,促进生长,提高成活率,缩短出栏时间,缓解应激。增强抗病力和仔猪的御寒能力。成猪皮薄细腻,皮毛光亮,瘦肉率提高。提高增重:仔猪5%,生成猪3%,降低料肉比,仔猪:2%,生长猪:1%左右。消化能5.19MCal/kg.7.4水产用(鲤、鲫、鳗、虹鳟、鲑鱼、罗非鱼及虾、蟹、甲鱼等)

提高饲料颗粒质量,减少水溶性维生素在水中的散失,具有诱食作用改善适口性。提高成活率,特别是甲壳类在幼苗和脱壳期的成活率。增强免疫系统活力,缓解应激;有效预防脂肪肝,肾脏和肠内出血、贫血等疾病,磁降低体侧弯及大腹腔发生率,保持自然条形。提高越冬和运输成活率。

有利色素沉积,保持天然体色,并提高机体组织磷脂含量,改善肉质风味鲤鱼增重越15%,成活率提高2%,饲料系数降低15%.消化能直接添加,3~5%.

第三篇:RFID飞机维修中的应用

RFID技术在飞机维修中的应用

如果RFID应用于维修领域,航空公司的获益最显著。以查找氧气罐的维修记录为例,维修人员在飞机停场后便可立即进入客舱利用阅读器进行快速扫描,按照每个氧气罐的序列号查询其上一次维修记录,包括维修时间、维修类型。但目前,大多数情况下要想得到这些信息,需要等到飞机停场后逐个拆卸氧气罐,其中还涉及机舱顶部行李舱的拆装,这是一项非常耗时的工作。另外,维修人员有时还需要仔细搜查每个氧气罐的维修记录,因为有时很难查到。

RFID标签在航空维修领域的应用早在2005年就已开始,当年,美国联邦航空局颁布了有关被动式RFID装置的政策,该政策开启了RFID技术应用于飞机部件的大门。但是要深究其对维修业的潜在影响,还必须理解标签自身的含义以及它将为当前带来的理念。

RFID标签与识别型标签不同,识别型标签内存很小,通常仅为96比特,用于记录电子产品编码,而且其微型芯片也只保证可利用通信协议与阅读器传输信息即可。内存较大的RFID标签则是嵌在单片存储器中。目前有两种RFID标签类型可供选择;一是双记录标签,内存为1~8kB;二是多记录标签,内存为8~16kB。Tego公司认为,航空维修领域所使用的RFID标签一般需要8kB。RFID标签除了微型芯片还配有一个小型天线,数据传输主要通过超高频电波,无线电频率在北美为915MHz,在欧洲为865MHz。信息传输是双向的,阅读器也可以将最新的维修数据写入标签。RFID标签符合EPC全球第二代(Gen2)硬件标准,包括无线射频协议标准、标签与阅读设备的相关接口标准等。

内存大的RFID标签通常使用闪存(EEPROM)作为其内部存储技术,可存储数据长达5~10年。但Tego公司已经研发出了另一种可在150℃的环境下存储数据长达30年的新技术。Tego公司认为正是有了这项技术,RFID标签才能在航空业中得以推广和应用。

通常,部件的RFID标签最初包含的信息为OEM写入的新部件出厂时的一些数据,包括件号、功能描述、序列号等。随着部件在后续使用中维修次数的增多,维修数据更新和积累越来越多,则要求标签的内存越来越大。

部件OEM粘贴RFID标签的方法通常有三种,不同部件方法不同。例如,座椅架上的是粘在其背后,氧气罐上的则是用绳子系在其上,航电部件和发动机部件的标签则是使用铆接或螺接方式。空客推出的A350飞机中将使用Tego公司提供的双记录和多记录标签,覆盖范围包括350个零件编号,大约需要900个标签,甚至包括了起落架、可修复的发动机部件以及救生衣等耗材,这将会是存储式标签在空客产品中的首次应用。

粘贴RFID标签的具体流程为,Tego公司将标签直接供给部件供应商,然后由部件供应商将部件的出厂信息写入标签后交付给空客,空客接收部件时便可读取部件标签完成验收。Tego公司认为,将标签直接交付部件制造商有利于制造商为每个部件选择最适合的标签类型,以及最好的粘贴方式,并且可以根据标签的状况更改部件设计。更为重要的是,标签中要加载的部件出厂数据和数据交换标准本身就需要由部件OEM提供并制定。

空客已决定将RFID标签推广至其所有在产机型中,首先从座椅和救生衣入手。

RFID标签的价值在外场试验中也已得到证明。2008年,波音公司与日本航空公司、美国航空公司、新加坡航空公司合作就RFID的应用完成了多项案例研究,包括氧气罐、客舱顶棚、座椅及机组休息区。以检查氧气罐的有效期为例,在应用RFID标签后,检查时间由原来的6.5小时缩短至8.5分钟,节约了98%的时间,为机库、库存备件等资源的管控赢得了更大空间。

空客A350使用大容量内存RFID标签项目是航空维修领域一项重要里程碑。在2008年,空客公司提出了大容量内存RFID标签应用于A350飞机时寿件的要求,其中涉及罗克韦尔•柯林斯提供的30种航电部件。包括通信、导航和着陆有关的驾驶舱航电部件等,其上均要粘贴8KB内存容量的RFID标签。通过RFID标签,空客公司和罗克韦尔•柯林斯公司都将从此项应用中获益。当航电箱运送到装配线时,空客通过标签便可容易地识别并快速安装在正确的位置上。作为部件的OEM,罗克韦尔•柯林斯公司在维护航电部件时通过获取其标签中的精确信息可以更快速地识别故障,缩短排故时间。如果空客公司和罗克韦尔•柯林斯公司应用RFID标签能够成功,将带动更多的OEM和航空公司使用RFID标签。

在2011~2012年间,阿拉斯加航空公司也曾与波音公司合作,在其波音737机队中试验了波音商用航空服务公司的RFID集成型解决方案,而且获得了局方的认可,许多客户也产生了兴趣,但在推广应用过程中并不积极,导致丧失了良机,迫使波音商用航空服务部将此项目在一年前撤销,继续等待市场需求的发展。

罗克韦尔•柯林斯公司认为,当时波音公司并没有提出其大容量内存RFID标签存在的一些问题,而且阿拉斯加航空也没有提出。直至2008年,空客提出要求时,许多问题才浮出水面。例如,当时波音试验所用的阅读器技术尚未成熟,存在着许多可靠性问题。而且当时的阅读器供应商数量非常有限,也可以说,这项技术真正的成长是在最近两年。当然,最重要的推手是2013年航空运输协会(ATA)SPEC2000标准,推动了大容量存储RFID的实施,使其成为了一种电子商务工具。

美国西南航空公司的报告称,尽管其没有计划将大容量内存RFID标签作为一种维修新方法引入,但其企业资源计划(ERP)正在考虑通过RFID技术将原有标签升级。当然,美国西南航空公司依然很谨慎,因为在使用RFID技术时,应确保其数据的高度完整性。这对于美国西南航空公司而言,意味着数据收集准确度超过99%,为达到这一标准则必须重建新的IT基础设施。而且,当新一代维修企业ERP变得非常成熟,可以确保近100%的数据完整性时,航空公司将面临从原有ERP到新一代ERP系统的巨大转变。

应用大容量内存RFID或者其他自动数据采集流程将给传统维修企业ERP系统的数据接口问题带来严峻挑战。因为在传统的ERP系统中没有规定大容量内存RFID标签的数据类型和适用范围。很多集成的工作将是维修企业ERP下一步的升级工作,但其投资回报可能会成为问题,因为有的航空公司本打算在5年或者更长时间后才考虑升级其维修ERP系统。

第四篇:松木桩复合地基的应用

松木桩复合地基的应用

作者:王瑞杰

摘要:本文通过对软土地基以及松木桩复合地基工程特性的分析,建立了松木桩复合地基的力学模型,提出了松木桩复合地基的设计方法。

关键词:软土地基 松木桩 复合地基 承载力

前 言

软土地基是一种不良地基,它的成因和物质都较为复杂,按成因可分为第四纪后期在滨海、湖泊、河滩、三角洲等地质沉积而成;人工填土;吹填土等,普遍存在于我国沿海地区。软土地基是一种呈软塑到流塑状态饱和(或接近饱和)的粘性土,常含有机质,其天然孔隙比常大于1。当天然孔隙比常大于1.5时,称为淤泥质土(淤泥质粘土,淤泥质亚粘土)。软土地基由于含水量较高,孔隙比较大,因而导致软土地基的承载力低,抗剪强度低,压缩性强,渗透性小。软土地基浅基础的承载力特征值一般只有40-70Kpa,不能承受较大的荷载。在软土地基上的建筑往往会出现地基强度和变形不能满足设计要求的问题。对于一般四层至七层的砌体承重结构房屋,最终沉降量约为0.2—0.5m,对于荷载较大的构筑物(水池、储罐)基础的沉降一般达到0.5m以上,有些达到2m以上。过大的沉降和不均匀沉降将引起建筑物基础标高的降低,影响建筑物的使用功能,或造成倾斜、开裂破坏。因而常常要采取措施进行地基处理。

对软土地基常见的处理方法有换填法、砂石挤密法、水泥搅拌桩、预制桩等。目前,在江浙一带使用较多的是予应力混凝土管桩。以上几种地基处理方法造价偏高,对场地和施工要求高,常用于较大的建筑物。而松木桩复合地基对于处理一些低层建筑、水池、机器设备基础,则具有施工方便、建筑材料易取、经济效益明显的优点。

一、加固软土地基的原理

采用松木桩加固的软土地基属于复合地基。复合地基是由天然地基土和桩体两部分组成。松木桩复合地基同其它复合地基相比,除桩的材质不同外,其余均有相似之处,其加固机理:一是桩体的支撑作用:松木桩复合地基以松木桩取代了与桩体体积相同的低模量、低强度土体,在承受外荷时,地基中应力按桩土应力比重新分配。应力向桩体逐渐集中,桩周土体所承受的应力相应减少,大部分荷载由松木桩承受。由于桩的强度和抗变形能力均优于土体,故而形成后的复合地基承载力、模量也优于原土体,从而达到减小变形,提高承载力的效果。二是挤密作用:松木桩施工时,采用锤击打入,桩孔位置原有土体被强制侧向挤压,使桩周一定范围内的土层密实度提高,起到挤密作用。松木桩复合地基在施工中对桩间土体的挤密作用,使桩间土密实,从而使桩间土的承载力得到提高,压缩性降低。

二、松木桩复合地基的设计计算原理

1、松木桩复合地基承载力确定;

松木桩复合地基同其它复合地基相比,除桩的材质不同外,其余均有相似之处。根据桩、土相互组合共同承受上部荷载的特点,这种地基可参照《建筑地基处理技术规范》(JGJ79-2002)中复合地基计算公式进行设计,即:

Fsp,k=m*Ra/Ap+ß(1-m)fsk 1

式中:Fsp,k为复合地基承载力特征值,kpa;

m为面积置换率,m= Ap/ Ac;

Ac 为一根桩承担的处理面积;

Ra 为单桩竖向承载力特征值,Kn;

Ap为桩身截面积,m2;

ß为桩间土承载力折减系数,宜按地区经验取值,如无经验时取0.75-0.95;

fsk为处理后桩间土承载力, kpa, 宜按地区经验取值,如无经验时,可取天然地基承载力特征值;

2、松木桩单桩承载力特征值Ra确定;

松木桩单桩承载力特征值Ra由摩擦力和桩端承载力组成,即;

Ra=Up Σqsi li+qpAp 2

式中:Up为松木桩有效周长, m;

qsi 为第i层土的侧阻力特征值, kpa;

qp 为桩端土层的端阻力特征值, kpa;

li为第i层土的厚度, m;

Ap为桩身截面积,m2;

为防止桩的破坏,须对桩身容许承载力进行核算,并取较小值,即;

Ra=ΨσаAp 3

式中:Ψ为纵向弯曲系数,与桩间土有关,一般取1.0;

σ为桩身材料的容许应力,kpa,松木桩可参见《木结构设计规范》(GB50005-2003),取为3600 kpa;

а为桩身材料的应力折减系数,木桩取0.5;

Ap为桩身截面积,m2;

3、松木桩桩长与桩径的确定;

桩长主要取决于需要加固土层的厚度,一般视建筑物的设计要求和地质条件而定。应满足地基的强度和变形控制要求,通常桩长不宜长于5米,过长则施工困难,且不经济。桩径应根据工程地质等因素选用,一般为100-150mm,软基较深的地基宜选用较大的桩径。

4、单位面积松木桩的确定:

在桩长和桩径一定情况下,松木桩复合地基承载力主要取决于单位面积的桩数。设计中,我们可以根据设计要求的地基承载力值来确定单位面积松木桩的数量,即:

K=(Fsp,k-ß*fsk)/(Ra-ß*fsk* Ap)4

式中:K为单位面积松木桩数(K= m/ Ap),根/ m2;

其它符号同前。

5、桩距的确定:

松木桩布桩通常采用三角形和正方形两种形式,其桩距可按以下公式计算,即:

三角形布置 L=1.08√1/K

正方形布置 L=√1/K

式中:K为单位面积松木桩数(K= m/ Ap),根/ m2;

L为松木桩间距。

6、沉降计算:

复合地基的沉降包括两部分:一部分为计算复合地基加固区内的压缩量,另一部分为计算加固区下卧层的压缩量。所以,近似将加固区复合地基沉降与下卧土层沉降之和作为复合地基的总沉降量。

三、松木桩复合地基的适用条件

软土地基设计之前必须进行地质勘察和土工试验,只有查清土层和土质的情况,才能正确进行设计和施工。再者,必须从场地土层和土质的特点出发,对地基与基础的结构、施工及使用等方面进行综合考虑,通过方案比较,合理地选择地基处理方案。一般软土厚度小于8米较为适宜用松木桩处理。为了便于打桩,桩长5-7米为宜,可作端承桩。为保证桩尖能贯穿入持力层上部,可先开挖至基础埋深后再打桩。因松木含有丰富松脂,松脂能很好地防止地下水和细菌对其腐蚀作用,且价格也较为便宜。松木桩适用于地下水位较高的地层中,在这种条件下桩能抵抗真菌的腐蚀而保持耐久性。对于地下水位变化幅度大且有较强腐蚀性的地区,则不宜采用松木桩基础。松木桩复合地基对地基承载力的提高是有限的,所以只适用于三层及三层以下建筑,对沉降有要求的构筑物,设备基础等较小荷载的地基处理。

四、松木桩的构造要求、施工及检测

(一)、松木桩加固地基的设计构造要求:

1、它可应用于砂土、素填土、杂填土、粘性土及淤泥质土等地基土的浅层加固,加固深度一般为基底下1.5—8米,桩端应进入持力层0.5米。

2、松木桩应选用梢径100—150厘米的活性或尚有活性的松木或松木树梢。这类松木在地下水位以下,可经数百年而不烂,保持完好。

3、松木桩完成后,桩顶应设柔性褥垫层,褥垫层使桩间土的有效接触应力增加,提高了桩周土的抗剪强度,使得桩体承载力得到提高,对于地基的不均匀沉降也有一定的补偿作用。褥垫层一般采用15—25厘米厚碎石垫层。

(二)、松木桩施工及检测

在施工中,为使地基的挤密效果好,必须由基础四周由外至内施打松木桩,且桩宜梅花形布置,桩间距应大于3倍桩径。木桩采用松木,干燥后去皮,用防腐剂浸泡充分,端头削尖,以便沉桩,锤击端应以铁丝箍匝牢固,以防锤击时锤击端损坏。为保证桩尖能进入较坚硬的持力层,上部可先开挖至基础的埋深后再打桩。打桩完毕后,清除浮土,锯平桩头,然后铺设垫层。

对于处理后地基是否达到设计要求,可用长杆贯入仪来验证处理后地基的承载力。

五、结束语

实践证明,松木桩处理软弱地基时,具有施工方便,处理效果明显,材料来源广泛,施工速度快,工程造价省等优点,它可避免大量的土方开挖,因而在松木资源较为丰富的地区,用松木桩处理软弱地基在经济和技术上是可行的,它不失为一种处理软弱地基的有效手段。

第五篇:《复合地基理论及工程应用》读后感

《复合地基理论及工程应用》第二版,为龚晓南著,中国建筑工业出版社出版发行。

《复合地基理论及工程应用(第2版)》全面地介绍了复合地基理论和工程实践方面的研究成果,在《复合地基理论及工程应用》(第一版)的基础上对复合地基理论框架作了进一步完善,较系统地介绍了复合地基理论和实践的新发展。

全书共16章:绪论,土和复合土的基本性状,复合地基荷载传递机理和位移场特点,复合地基的形成条件,复合地基在基础工程中的地位,复合地基常用形式及选用原则,桩体复合地基承载力,水平向增强体复合地基承载力,复合地基沉降计算,基础刚度对复合地基性状的影响,垫层对复合地基性状的影响,复合地基振动反应与地震响应,复合地基和上部结构共同作用分析,复合地基优化设计和按沉降控制设计,复合地基工程应用及实例,以及复合地基发展展望。

读完本书,我对复合地基有了进一步的了解和理解,目前在我国复合地基浅基础和桩基础,已经成为常用的三种基础形式。复合地基在建筑工程、市政工程、道路工程以及堤坝工程中得到广泛应用。复合地基已经不是陌生的词汇,但对复合地基,无论是学术界还是说工程界至今尚无统一的认识,复合地基是一个新概念。

复合地基的形式、组成复合地基增强体的材料、复合地基增强体的施工方法均对负荷地基的效用产生影响。复合地基的效用主要有桩体作用、垫层作用、挤密作用、加速固结作用、加筋作用。

了解了土和复合土的基本性状,让我明明白了地基加固区的组成,对形成复合地基的常用增强体材料也有了进一步的理解,知道了复合地基的荷载传递机理以及复合地基的形成条件,学习了复合地基桩体承载力以及水平向增强体复合地基承载力、复合地基沉降计算。

通过复合地基工程应用及实例学习,知道了复合地基有初期的局限于采用散体材料加固软土地基(碎石桩复合地基)发展到各类柔性桩复合地基、刚性桩复合地基以及水平向复合地基(水泥土桩复合地基、低强度桩复合地基、桩网复合地基、钢筋混凝土桩复合地基、加筋土地基等),知道了各类复合地基的适用范围和优缺点。

复合地基概念源自国外,但是近年来在我国发展很快。复合地基理论与工程应用发展与我国国情息息相关,我国深厚软弱地基分布广、种类多、数量大,自改革开放以来土木建设规模大、发展快,我国又是发展中国家,建设资金短缺,这些给复合地基理论与工程应用的发展提供了很好的机遇,可以相信在未来的几年,我国复合地基和工程实践两个方面都将有长足的发展,取得更大的进步,复合地基的理论也会得到进一步的完善。

下载飞 机 复 合 材 料 及 应 用word格式文档
下载飞 机 复 合 材 料 及 应 用.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    复合人才参考

    1981年8月,在财政部第一机械工业部和中国会计学会的支持下,在中国人民大学和第一汽车制造厂联合召开的“财务、会计、成本应用电子计算机专题讨论会”上,正式将“电子计算机在......

    浅析飞机维修中的工具管理应用

    摘要:航空维修离不开工具,工具的科学管理有利于提高飞机维修的质量,有利于提高劳动效率,有利于加速资金周转。工具的科学管理需要在工具的供给、工具的分类编号、工具的清点......

    工程塑料在飞机、汽车上的应用

    工程塑料在飞机、汽车上的应用 工程塑料在飞机上的应用 工程塑料作为质量轻,耐冲击,比强度大,电绝缘性能优良,耐腐蚀,耐磨和成型工艺简便的材料,工程塑料在飞机上的应用极为广泛,几......

    飞机蒙皮柔性检测工装的应用

    飞机蒙皮柔性检测工装的应用 甘忠,蒲理华(西北工业大学现代设计与集成制造技术教育部重点实验室) 许旭东,袁胜(成都飞机工业(集团)有限责任公司) 随着国内外航空技术的不断......

    JS复合防水涂料在工程上的应用(模版)

    JS复合防水涂料在工程中的应用 闫志强 河北保定城乡建设集团 河北保定 071051 摘要:建设工程使用涂料防水受到普遍关注。JS复合涂料,满足结构整体防水的实践证明,JS防水材料施......

    复合包装材料在酸奶软包装中的应用

    复合材料在药品包装上的应用及发展方向 酸奶传统上常采用玻璃、陶瓷瓶罐进行包装。随着包装技术、新型包装材料的发展和包装设备的现代化,塑料、复合软包装材料及容器在酸奶......

    飞机教案

    你见过哪些飞机 卞晓莉 一、教学目标: 认知目标:通过欣赏飞机画面与实物等形式,引导学生探究飞机的起源、外形、种类等相关知识。 操作目标:学会理解飞机的基本构造与外形特点,......

    飞机电力系统

    电力系统:电力源的电气系统包括配电系统和连接到该系统上的负载。 本书中使用的术语“电力系统”是指那些飞机产生,分发,使用电能,包括他们的支持和附件的一部分。 一个典型的飞......