DCS典型故障原因分析与防范对策[共五篇]

时间:2019-05-13 07:49:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《DCS典型故障原因分析与防范对策》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《DCS典型故障原因分析与防范对策》。

第一篇:DCS典型故障原因分析与防范对策

一、前 言

DCS在国内大型火力发电机组上应用始于上世纪八十年代后期,到目前为止只有十几年的运行经验。华能国际电力股份有限公司整套引进350MW机组,投资建设的南通、上安、大连、福州电厂是国内最早应用DCS的电厂。

随着火力发电机组自动化水平的不断提高,单元机组DCS系统的功能范围不断扩大。近两年新建和改造机组的单元控制室内除用于紧急停机、停炉用的后备手操外,其余操作全部依赖于DCS。因而,由于DCS本身故障引起的跳机现象时有发生。所以,如何提高DCS的可靠性作为一个重要课题摆在了从事热工自动化工作的各位人士的面前。

由于工作关系,有机会到过三十多家火电厂收资、交流或验收,接触到应用DCS的100~700MW单元机组近八十台,几乎覆盖了国内应用过的所有类型的DCS,对各种类型的DCS发生的故障有较多的了解,无论是进口DCS,还是国产DCS,尽管在原理、结构上迥异,包含的子系统也不一样多,但都或多或少地出现过一些相类似的故障,通过对典型故障进行深入细致地分析,找出故障的真正原因,举一反三,制定出防范措施,并正确地实施,可以很好地防止此类DCS故障的重复发生。本文列举了几个典型的DCS故障案例,供从事热工技术管理及检修人员参考。

二、案例一 控制器重启引发机组跳闸 2.1 事件经过

2001年11月1日,A电厂4号机组停机前有功负荷270MW,无功96MVar,A、B励磁调节器自动并列运行,手动50Hz柜跟踪备用。

14时26分,事故音响发出,发电机出口开关、励磁开关跳闸,“调节器A柜退出运行”、“调节器B柜退出运行”等报警信号发出,机组解列。对ECS控制系统检查、试验,发现#14控制器发生故障已离线,与之冗余的#34控制器发生重启,更换了#14和#34控制器主机板后,机组重新启动,不久,发变组与系统并列。2.2原因分析

根据历时数据分析,13时31分,#14控制器硬件故障而离线运行,热备用的#34控制器自动由辅控切为主控。14时26分,#34控制器由于通讯阻塞引起“WATCHDOG”误判断,致使控制器重启。由于控制器控制励磁调节器的方式为长信号,没有断点保护功能,#34控制器重启后,不能自动回到断点前的状态,导致A、B调节器自动退出运行,手动50Hz柜自动投入。由于发电机失磁,发电机端电压下降,导致厂用电源电压降低,手动50Hz柜输出电压继续降低,手动50Hz柜投入后发电机没有脱离失磁状态,直至切除励磁装臵,造成发电机失磁保护动作,发电机出口开关跳闸。#14控制器和#34控制器控制发变组设备,包括厂用电切换的备自投继电器接点BK,#34控制器重启后,BK自动复位,继电器接点断开,BK投到退出位臵,造成6KV电源开关6410、6420开关自投不成功。2.3防范措施

2.3.1将故障控制器更换。后来制造厂确认这一批主板晶振存在问题,同意免费更换,利用停机机会更换4号机组所有控制器主板。

2.3.2增加任一控制器、I/O卡、通讯卡离线报警功能。2.3.3程序内部“WATCHDOG”的时间设臵太短,易造成误判断,对所有控制器进行软件升级。

2.3.4调节器AQK、BQK方式开关和厂用电备自投BK开关组态图增加断点保护功能,防止控制器自启动后,励磁调节器和厂用电自投开关退出运行。

2.3.5检查ECS系统的所有组态,对存在以上问题的逻辑进行修改。

2.3.6联系调节器厂家,使调节器内部可以作到运行状态自保持,将控制器控制调节器的方式改为短脉冲信号控制。2.6.7在ECS内增加手动50Hz柜输出电压自动跟踪功能。

三、案例二在线传代码致使机组解列 3.1事件经过 2002年7月12日,B电厂#5机组监盘人员发现机组负荷从552MW迅速下降,主汽压力突升,汽轮机调门开度,由原来的20%关闭到10%并继续关闭,高调门继续迅速关闭至0%,机组负荷降低至5MW,运行人员被迫手动紧急停炉,汽轮机跳闸,发电机解列。3.2原因分析

DCS与汽轮机控制系统分别由两家国外公司制造,两系统差异较大,通讯问题没有很好地解决,存在一些难以消除的缺陷。热控人员在DCS工程师站上向负责DCS与汽轮机控制系统通讯的PLC传送通讯代码时,DCS将汽轮机阀位限制由正常运行中的120%修改为0.25%,造成汽机1、2、3号调门由20%关闭至0%,机组负荷由552MW迅速降至5MW。3.3 防范措施

3.3.1机组运行期间,禁止DCS传代码工作。

3.3.2机组停运期间,DCS传代码时,应经运行班长同意,并做好安全措施。

3.3.2将DCS操作员站对汽轮机控制系统操作员站画面进行操作的功能闭锁,但在DCS操作员站上仍能监视到汽轮机控制系统的信息。

四、案例三 DCS工作站时钟混乱引发DCS失灵 4.1事件经过: 2001年 8月3日,C电厂2号机组负荷200MW,#1至#9控制器处于控制方式,#51至#59控制器处于备用方式。8时23分,各控制器依次发NTP报警,历史站报警窗口显示如下: Aug 3 08:

3:

drop7

7>

NTP

:too many recvbufs allocated(30)Aug 3 08:

drop4

NTP

:too many recvbufs allocated(30)………

8时26分,#2控制器脱网,#52控制器切为主控;11时05分,#52控制器脱网;13时39分,#7控制器脱网,#57控制器切为主控,在#7控制器向#57控制器切换瞬间,由该控制器控制的A、B磨煤机跳闸;15时11分,#9控制器脱网,#59控制器切为主控,在#9控制器向#59控制器切换瞬间,由该控制器控制的E磨煤机跳闸;15时51分,#1控制器脱网,#51控制器切为主控,在#1控制器向#51控制器切换瞬间,由该控制器控制的A引风机动叶被强制关闭。

15时22分,重启操作员站drop213(备用时钟站),NTP报警未消失;15时35分,重启历史站,NTP报警未消失;15时59分,重启工程师站(主时钟站),NTP报警基本消失;16时09分,重启历史站,16时30分,系统恢复正常。4.2原因分析

NTP软件的作用就是维持网络时钟的统一,主时钟设臵在工程师站上,备用时钟设臵在操作员站上。控制器脱网原因为主时钟与备用时钟不同步造成系统时钟紊乱,从而造成NTP报警导致控制器脱网。

NTP故障的原因有两种可能,一种是主频为400MHz工作站,不同于1号机组的270MHz(SUN公司在400MHz工作站上对操作系统有较大改进)工作站,2号机组所用的1.1版本软件在400MHz工作站上未测试过,不能确保1.1版本软件在此配臵上不出问题。另一种是主时钟与备用时钟不同步,在8月3日控制器脱网后,曾发现Drop214的时钟比其它站快了2秒, 当时Drop214的画面调用速度较慢,经重启后正常,并且NTP时钟报警是在系统运行73-75天左右才出现的,估计是系统时钟偏差积累到一定程度后导致主、备时钟不同步,而引起系统时钟紊乱,最终导致控制器脱网。

NTP时钟故障使控制器脱网,处理不及时会使报警的控制器依次脱网,从而导致整个控制系统瘫痪。4.3防范措施

4.3.1根据本次故障现象,制造商将软件由1.1版本升级为1.2版本。

4.3.2为确保控制系统可靠运行,定期重启主时钟和备用时钟站。4.4 D电厂5号机组在2002年试运期间曾发生DCS时钟与GPS时钟不同步,引发DCS操作员站失灵事件。由于网 上传送的数据均带时间标签,时钟紊乱后会给运行机组带来严重后果,基本情况与C电厂2号机组类似。采取的措施是暂时断开GPS时钟,待软件升级和问题得到根本解决后,再恢复GPS时钟。

五、案例四 CABLETRON集线器总通讯板故障导致MFT误动 5.1事件经过

2002年 1月1日,E电厂1号机组负荷250MW,#51至#59控制器处于控制方式,#1至#9控制器处于备用方式,A、B、C、E、F磨煤机运行。18时57分,所有磨煤机跳闸(直吹炉),MFT动作,机组跳闸。5.2原因分析

经分析,确认是DCS集线器的总通讯板故障,导致连在其上的所有控制器同时发生切换,在控制器向备用控制器切换过程中,#

57、#

58、#59控制器PK键信号误发(这三个控制器属FSSS系统),即CRT上“磨煤机跳闸按钮”的跳闸和确认指令同时发出,使所有磨煤机跳闸,导致MFT动作。5.3防范措施

CABLETRON集线器属于早期产品,目前在市场上购买备件已比较困难,采用CISCO集线器来取代CABLETRON集线器。

六、案例五 冗余控制器失灵造成机组跳闸 6.1事件经过

2003年3月23日,F电厂#3机组停机前电负荷115MW,炉侧主汽压9.55MPa,主汽温537℃,主给水调节门开度43%,旁路给水调节门开度47%(每一条给水管道均能满足100%负荷的供水),汽包水位正常;其它各参数无异常变化。

监盘人员发现锅炉侧部分参数显示异常,各项操作均不能进行,同时炉侧CRT画面显示各项自动已处于解除状态。调自检画面发现#3控制器离线,#23控制器处于主控状态。运行人员立即联系热工人员处理,同时借助汽机侧CRT画面监视主汽压、主汽温,并对汽包电接点水位计和水位TV加强监视,主汽压在9.0~9.6MPa波动、主汽温在510~540℃波动、汽包水位在+75~-50mm波动,维持运行。

几分钟后,热工人员赶到现场,发现#3控制器离线、#23控制器为主控状态,但#23控制器主控下的I/O点(汽包水位、主汽温、主汽压、给水压力、等)均为坏点,自动控制手操失灵。经过多次重启,#3控制器恢复升为主控状态。在释放强制的I/O点时,监盘人员发现汽包水位急剧下降,就地检查发现旁路给水调节门在关闭状态,手动摇起三次均自动关闭,汽包水位TV和显示表监视不到水位,手动停炉、停机。6.2原因分析

根据能追忆到的历史记录分析,可以推断#3控制器(主控)故障前,#23控制器(辅控)因硬件故障或通讯阻塞,已经同I/O总线失去了通讯。当#3控制器因主机卡故障离线后,#23控制器升为主控,但无法读取I/O数据,造成参与汽水系统控制的一对冗余控制器同时失灵,给水自动控制系统失控,汽包水位保护失灵。在新更换的#3控制器重启成功后释放强制点的过程中,DCS将旁路给水调节门指令臵零(逻辑如此设计是为了在控制器故障时,运行机组向更安全的方向发展),关闭旁路调节门。而旁路调节门为老型号的阀门,相当于解除了自保持的电动门(接受脉冲量信号),切手动时不能做到电气脱扣,因此,紧急情况下不能顺利打开,造成汽包缺水。6.3防范措施

6.3.1更换#

3、#23控制器主机板,同时考虑增加主机板的备品储备。

6.3.2增加通讯卡,使控制器与I/O卡之间的通讯为冗余的。6.3.3对所有控制器、I/O卡、BC卡的通讯进行监测,增加脱网逻辑判断功能,生成报警点并进行历史记录。一旦控制器工作异常,可及时报警并处理。

6.3.4增加控制器超温报警功能,在控制器出现故障之前可以采取措施,将事故消灭在萌芽之中。

6.3.5汽包水位等重要调节、保护系统的输入信号,一般应为三路相互独立的信号,通过分流器将这三路信号变成六路信号,分别进六块端子板和AI卡件,送入两对控制器,一对控制器用于调节、保护,另一对控制器只参与保护。这样可以很好地解决一对冗余的控制器同时故障时,重要保护失灵的问题。

6.3.6更换重要自动调节系统的执行机构,使之具有完善的操作功能。

6.3.7 DCS失灵时,若主要后备硬手操或监视仪表不能维持正常运行,运行人员应立即停机、停炉。

6.3.8关闭MIS系统接口站中的所有硬盘共享功能,确保DCS系统同MIS系统只具备单向通讯功能。

七、结 束 语

以上案例只是在一定范围内发生的DCS故障的几个比较典型案例,即使将这些案例的反措全部应用到每套DCS中去,也不能避免DCS故障的再次发生。在更大范围内,由DCS故障引发的停机事件也不会太少,有些事件肯定会涉及到控制器负荷率高、网络通讯负荷率高等问题,由于目前还没有有效的手段监测控制器负荷率和网络通讯负荷率,找出这类事件的根本原因还有一定的难度,因此,消除这类缺陷也比较困难。

要防止各类事故的发生,必须从源头-DCS的设计和制造抓起,将国内应用的各种类型的DCS发生过的故障情况反馈到有关部门,由有关部门召集专家进行分析研究,制定出相应的标准、制度和反措,强制执行,并形成一个大的闭环质量控制体系,长期良性循环。

第二篇:直流系统典型故障分析与对策

直流系统典型故障分析与对策

设备工程部 张建全

【摘要】本文介绍了直流系统的常见配置、绝缘监察装置的原理和数学模型,针对发电厂直流系统的接地、交流窜入直流、寄生回路等典型故障,分析了不同故障产生的原因及分析方法,总结了应对直流系统典型故障的对策,以期为设计、检修及维护人员的直流改造、设备验收、故障消除等工作提供一定的参考。

【关键词】直流系统 直流接地 交流串入直流 寄生回路 引言

直流系统作为电力系统的重要组成部分,为一些重要负荷、继电保护及自动装置、交流不停电电源(UPS)、远动通讯装置、控制及信号回路提供稳定可靠地工作电源。发电厂直流系统所接设备多、回路复杂,常因回路设计不完善、误接线、元件生产工艺落后以及在长期运行中环境的改变、气候的变化引起的电缆及接头老化等问题,不可避免的会出现直流接地、交流串入直流、不同直流系统间形成寄生回路等故障,这些故障不仅会造成直流电源的短路、引起熔断器熔断或电源开关断开,使电力设备失去控制电源;甚至会引起信号装置、继电保护及自动装置、断路器的误动或拒动,引发电力系统故障乃至事故,从而对发电厂、电网的安全稳定运行构成威胁。因此关于直流系统的可靠性与安全性以及如何迅速有效的解决故障等问题,得到了研究、设计、检修及维护人员的广泛关注。2 直流系统的配置、绝缘监察原理和数学模型 2.1 直流系统的常见配置

直流系统的常见配置如图1所示。直流系统由两个子系统构成,每个子系统都有独立的充电机、蓄电池组和绝缘监察装置。两个直流子系统通过直流分电屏分别提供两组直流母线KM1(控制母线电源1)、BM1(保护母线电源1)和KM2(控制母线电源2)、BM2(保护母线电源2)。将保护装置的直流电源与操作控制的直流电源分开,以保证双重化配置的两套保护的直流电源、两个控制回路的控制电源相互独立[1]。

图1 直流系统的配置

2.2 绝缘监察装置的原理和数学模型

直流绝缘监察装置的原理如图2所示,虚线内为主机内部分,主机检测正、负母线对地电压,通过对地电压计算出正负母线对地绝缘电阻,当绝缘电阻低于设定值时,装置报警。

图2 直流绝缘监察装置原理

其中,R+为直流正母线对地电阻值,R-为直流负母线对地电阻值,V1为直流正母线对地电压值,V2为直流负母线对地电压值,R1、R2为装置内设定电阻,R1=R2,数学模型如下:

当K1闭合,K2打开,测得一组V1,V2实际数值,得出方程(1)

V1/V2=(R1//R+)/R-(1)

当K1断开,K2闭合,测得一组V1’,V2’实际数值,得出方程(2)

V1’/V2’=R+/(R2//R-)(2)联立方程(1)、(2)即可求得正、负母线的对地电阻值R+、R-,当计算值R+、R-低于设定值时,装置报出正、负接地告警信号。3 直流系统典型故障及分析 3.1 直流系统接地

直流系统接地故障因其发生率高、危害性大而成为发电厂电气维护工作中的一个顽疾。在丰润热电公司两台机组运行5年发现的电气二次缺陷中,直流系统接地故障占有很大的比例。仅2011年涉及直流接地故障就有5次之多。

当直流系统发生一点金属性接地时,因其不能形成回路,不会产生短路电流,故不会影响设备继续运行,但是必须及时消除。否则,再发生另一点金属性接地,就有可能构成接地短路,造成继电保护、信号、自动装置误动或拒动;造成直流保险熔断,使继电保护及自动装置、控制回路失去电源,从而引发电力系统严重故障乃至事故[2]。

3.1.1直流正极两点接地导致误动

直流正极两点接地有使继电保护及自动装置、断路器线圈误动的可能,如图3所示,若A、B两点接地,则KA1、KA2的接点被短接,KM将误动跳闸。若A、C两点接地,则KM接点被短接从而引起相关开关误跳闸。同理,正极两点接地还可能造成误合闸,误报信号。

图3 直流系统接地情况图

3.1.2直流负极两点接地导致拒动

直流负极两点接地有使继电保护及自动装置、断路器线圈拒动的可能,如图3所示,若B、E两点地,则KM线圈被短接,保护动作时KM线圈不动作,开关不会跳闸。若D、E两点接地,则LT线圈被短接,保护动作及操作时开关拒跳。同理,负极两点接地开关也可能合不上闸,信号不能报出。3.1.3正负极两点接地引起熔丝熔断

当直流正负极两端两点接地时,如图3所示,当A、E两点接地时,将引起熔丝熔断。当B、E和C、E两点接地,保护又动作时,不但断路器拒跳,而且熔丝会熔断、可能烧坏继电器的触点[3]。3.2 交流串入及耦合电容对直流系统的影响

在电厂、变电站现场除了直流回路外,还存在着大量而广泛的交流回路,例如照明及墙壁电源、低压电动机交流控制、电压互感器以及电流互感器二次回路等。由于他们的一端是连接大地的,这些回路与直流回路串电时,不仅导致直流系统接地[4],甚至引起保护及自动装置的误动作。

2010年6月丰润热电公司1号机机炉PC A段进线等三个进线开关跳闸,跳闸前DCS系统检测到直流负母线发生过接地故障。经检查发现某端子箱内交、直流相邻端子有短接烧黑痕迹,确定因此发生了220V交流电串入直流负端。直流负端串入交流电压后,DIC对DI的电位某些时刻超过动作电压值,同时因为DI端存在的耦合电容导致DI端的电位不能发生突变(电容特性),导致DI的两端存在大于动作值的电位差,测控装置检测到DI动作,开关发生跳闸。

图4 模拟实验原理图

我们对相关测控装置进行了交流串入直流的模拟实验,原理如图4所示,K1、K2、R1、R2为绝缘检查装置内部元件,监察原理如2.2所述,在控制回路负端加入交流220V电压,当耦合电容达到0.4μF时,光耦发生了偏转。

从而可以得出结论:因控制线路教长而存在耦合电容,当耦合电容达到一定量时,若发生直流负极接地或负极串入交流电源信号时将导致光耦电路产生电平变位。同理若直流正极或外部分闸接点下口线路发生交流串入,风险等同。3.2 寄生回路造成接地假象

2013年8月,丰润热电公司I、II段两独立直流系统的绝缘监察装置同时报警,I段母线发负接地信号,I号绝缘监察装置显示正母线对地电压为230V,负母线对地电压0V;II段母线发正接地信号,II号绝缘监察装置显示正母线对地电压为0V,负母线对地电压-230V。同时启备变B套保护装置告警。经查在B套保护装置的操作箱内“显示与复归”板件端子焊点处有短路烧黑痕迹。其板件原理图如图5所示,板件元件布置情况如图6所示。

图5 显示与复归原理图

图6 板件实际布置图

因板件焊点9J1ac4和焊点9J1ac5在板件上的距离接近,制造工艺不良,再加上环境变化及积尘的影响导致了两个焊点间的短路。从而形成寄生回路将II段直流正电与I段直流负电短接。两段直流短接后形成了一个端电压为460V的电池组,中点对地电压为零,又因为每组直流系统的绝缘监察装置均有一个接地点(原理见2.2),短路后直流系统中存在两个接地点。所以II段直流系统的绝缘监察装置判断为正极接地,I段直流系统的绝缘监察装置判断为负极接地。4 直流系统典型故障相应对策

鉴于直流系统的重要性、故障造成的危害性以及现场环境的复杂性,如何将风险降至最低,如何将缺陷消除于萌芽,如何迅速有效的解决故障成为继电保护设计、制造和检修维护人员紧迫问题。为此,本文针对上述直流系统典型故障进行分析并总结相应对策,已期能够为相关人员提供一定的参考。

(1)对于运行环境复杂、环境恶略的场所的直流电缆,在设计、建设施工期间的电缆选型应考虑足够的备用芯,检修维护人员可利用设备停修的机会,对直流回路进行绝缘测试做好记录,并进行劣化分析。对于绝缘水平低,或出现接地芯线时可及时更换。当直流系统发生一点接地故障时,虽不至引起危害,但必须及时消除,以免发生两点接地给系统造成影响。对于直流系统接地故障的查找方法和注意事项可参见相关规程,本文不再赘述。

(2)为避免交流串入直流的影响,应在端子箱或屏柜端子处将交流端子做明显的标识,并与直流端子以明显距离隔开。同时直流回路继电器与交流继电器、接触器、小开关等设备保持相当的距离,以免交流回路的电压切换中产生电弧将交流电压引入直流回路[2]。为避免直流长线路耦合电容的影响,可在控制回路,特别是跳合闸出口回路加装大功率的重动继电器。

(3)对于设备数量多、回路复杂的发电厂直流系统,由于输煤、除灰、废水等辅助系统的工况和环境恶略,建议将这些辅助系统的直流电源与主系统的直流电源分开布置,以提高主系统运行的可靠性。

(4)为防止出现寄生回路并造成影响,除了在直流回路的设计、改造、施工、验收中严格审核把关外,还可以在定期检验过程中以测量两组独立的直流系统之间的绝缘的方法进行检验。对于板件内回路应尽可能采用弱电源设计,且两组不同的直流回路之间应留有足够的绝缘距离,提高制造工艺,以防焊点接近虚接而形成寄生回路。

(5)加强日常巡检及特巡力度、保持电缆沟排水通畅,定期清扫灰、粉尘、检查接线端子发热情况,二次回路退出运行或多余的电缆头应包扎好,工作完毕注意清理现场勿将金属零件遗留屏内,保持好设备的运行环境。

参考文献

[1]甘景福 直流系统间的寄生回路造成的直流接地假象 华北电力技术 2004.2 41-42; [2]谭重伟,梅俊,欧阳德刚 500kV变电站直流系统故障分析与应对措施 湖北电力2006,30(6),9-11;

[3]毛锦庆,等。电力系统继电保护实用技术问答 中国电力出版社,1999;

[4]余育金 变电站直流系统接地故障分析、查找及处理 广西电业 2007.1(82)90-91;

第三篇:配电线路故障分析及防范对策(本站推荐)

配电线路故障分析及防范对策

10kV配电网是电力系统中不可缺少的组成部分,它直接关系到用电客户是否能够使用安全可靠的电能。由于长期处于露天运行,又具有点多、线长、面广,结线方式复杂多变等特点,因此在运行中10kV线路经常发生故障不但给供电企业造成经济损失,而且还影响了广大城乡居民的正常生产和生活用电。近年来,经过大规模的配电网改造,高低压配电线路网架有了明显的改观。但是,从近几年来实际运行看,仍然存在许多的问题。下面,我从以下几个方面来加以分析和探讨: 1、10KV配电网现状

现有10KV配电线路10条,其中农村供电线路6条,用户专用线路4条。10KV线路总长度123.7KM,其中公用线路总长度85.13KM,公用线路中绝缘导线线路5.081KM,占10.94,高压电缆2.894KM。

全所现在装配电变压器210台,总容量27209KVA。其中公用变配电变压器123台40350KVA,用户产权配电变压器90台56859KVA。有柱上开关45台。

2、配电网事故障碍异常运行情况

从近4年来的运行情况来看,配电网事故障碍异常次数下降趋势,但是距我们的生产目标相比,还有很大的差距。下面把2004年的运行情况与近年同期的运行情况做一下对比(见附表1):

2.1近4年配电网事故障碍异常次数对照表:总体分析可见有下降趋势,但下降幅度不大。从表中看中2002年发生次数较少,就当时工作及运行状况来看,可能是在统计过程存在的误差造成的。

2.2 配电线路历年历月事故障碍异常比较表(见附表2):从此图中可见,每年的3月份、从近4年的发展趋势看(见附表3),5月份、7月份是事故障碍异常发生机率高峰期。每2月份、8月份是事故发生的谷段,3月-5月份达到一次波峰,7月份达到全年发生次数的最大值,9月-12月份比较持平。究其原因:3-5月份是气候由寒冷变暖的时段,是雨季由少变多的时段,而7月份则是多雨多风的季节,可见气候的变化会给配电线路的运行带来很大的影响。

2.3 从事故障碍异常的分类来看:线路事故、障碍明显减少,线路跳闸次数也在逐年减少,接地线路分段开关动作次数有上升趋势,线路分支跌落开关动作持续上升(图表中事故指变电所开关跳闸重合不成功,障碍指变电所开关跳闸重合成功,接地指配电线路单项接地故障,跳闸指主干线路柱上开关跳闸,开关指分支线路开关跳闸,跌落指线路上分支跌落开关跳闸)。这说明了:由于配电线路上合理地安装配置了大量的柱上开关和跌落开关,将线路故障范围从技术上分割成几个部分,进而缩小了线路出口开关跳闸的机率。

3、配电线路故障原因分析

配电线路常见故障有外力机械性破坏和设备电气性故障两方面,但无论是机械性破坏方面的倒杆、断杆、断线、雷击,还是电气性故障方面的接地、短路或缺相,一般情况下可从下面几个方面分析:

3.1线路速断跳闸常见原因:

3.1.1配电变压器故障。由于配电变压器本身故障或操作不当引起弧光短路。

3.1.2伐树造成。由于带电伐树时采取的安全措施不到位,使树倒在导线上,或树枝搭落导线上造成相间短路。

3.1.3动物危害。如鼠、鸟、蛇等动物爬到母线或配电变压器上造成相间短路。

3.1.4雷电危害。由于雷击等原因使瓷瓶击穿或避雷器击穿等导致线路跳闸。

3.1.5大风、雨、覆冰等其它原因引起导线震荡、联线、断线或恶劣天气狂风刮倒大树砸断导线。

3.1.6外力撞击。如司机违规驾车导致车祸发生撞电杆,造成倒杆、断杆等事故发生。

3.1.7计量装置。由于雷雨天,线路高压计量箱及变压器低压总表烧坏着火,导致线路相间短路跳闸。

3.2过流跳闸的常见原因:

3.2.1低压线路发生短路。

3.2.2负荷电流过大。工矿企业大设备、大机床猛一启动,过高的冲击电流造成线路跳闸。

3.2.3线路老化等。由于负荷增长过快,线径过细,使线路长期处于不经济运行状态,久之,导线严重发热,在薄弱环节打火烧断导线、跳线或熔丝熔断,引起短路,产生短路电流,导致线路事故跳闸。

3.3线路接地的常见原因:

3.3.1清障不力。刮风时树枝碰线。

3.3.2绝缘子破裂,使导致接地或绝缘子脏污在雾雨天闪络、放电、绝缘电阻降低;跳线烧断搭到铁担上。

3.3.3导线烧断落到地上导致接地。

3.3.4避雷器击穿。

3.3.5小动物危害引起。

3.3.6导线、跳线因风偏对杆塔放电。

4、配电线路故障防范措施

4.1加大配网建设改造力度,使配网结构、变电站布置趋于合理,提高施工质量和工艺水平,提高线路的绝缘化水平,大力推广使用绝缘导线。对于施工中发现的缺陷隐患要及时消除,对设计、施工不合格的要予以返工。

4.2加强线路巡视工作。对线路有计划性的进行特殊及夜间巡视,进行线路故障巡视时,要细心查线,发现故障及时彻底排除,防止重复跳闸。定期进行电气设备的试验、检修工作,及时处理设备缺陷提高运行水平。如:定期清扫绝缘子、配电变压器,对变压器、避雷器等定期进行电阻测试及耐压试验;加强配电变压器高低压侧熔丝管理,禁止使用不合格保险。

4.3加大线路附近树木砍伐力度,保证线路通道符合规程要求,使线路运行不受树木生长干扰。

4.4合理安装线路开关设备,配置开关定值,防止线路因故障越级。安装位置要便于巡视检查,便于操作;避免开关停电时涉及面积过大;开关处要配备避雷器。新安装的柱上开关,一定注意导线与开关接线柱的连接,防止松动,防止过热。

4.5在雷雨季节到来前,线路、开关及配电变压器要装避雷器,并定期进行绝缘电阻、工频放电电压试验,对不合格或有缺陷的避雷器要进行更换。

4.6做好护线宣传工作。成立义务护线组织,通过张帖标语、宣传公告等形式,向广大群众进行线路保护宣传工作,特别是在伐树、拆除建筑物时要采取安全措施,禁止在电力线路附近及其上空放风筝、抛掷铁丝、包装带、绳索等物,禁止在线路下方堆放柴草、垃圾及易燃易爆物品。

4.7加强用户设备管理工作。在大部分的配电障碍中,由用户设备引起的占60以上。所以,要加强对用户的设备巡视,对用户设备的管理不能放松。对重大设备缺陷要及时下发线路防护通知书,积极跟用户做工作,改善设备的运行水平。必要时,可以通过正常手续,对用户设备进行停运。

5、结束语

通过对配电线路运行分析,找出线路故障的原因,总结规律,有针对性的加强预防,并采取有效的措施来保证线路的可靠运行。

第四篇:医疗纠纷的原因分析与防范对策

医疗纠纷的原因分析与防范对策

文章来源:2005-12-19 16:16:

31王建辉 2005-12-13 13:10:45 中华现代医院管理杂志 2003年12月第1卷第4期近年来,随着《执业医师法》和《医疗事故处理条例》等相关医疗法规的颁布实施,以及公民对法律意识不断增强和对医疗服务需求的逐渐提高,医患之间对医疗服务认识上的偏差和误解正在增大,使得医疗纠纷逐年上升,处理难度越来越大,医院为此给予的赔偿越来越多,成为困扰医院管理者和医务人员的难题之一。因此,正确认识和分析纠纷发生的原因,对研究相应的防范措施有一定积极意义。医疗纠纷的原因

1.1 医方的原因

1.1.1 违反规章制度和操作常规 一些医务人员不认真执行医疗规章制度,对医疗技术操作常规不熟悉,医疗工作中不细心、不严谨、不虚心、不请示、基础不牢、粗糙蛮干,导致诊疗和护理中的差错,有的人对诊疗过程中可能存在的风险估计不足,准备不充分,导致意外造成医疗纠纷。

1.1.2 与病人沟通缺少语言艺术 有一些医务人员缺乏与患者沟通的能力,说话缺少艺术和技巧,手术前谈话交待不清,正常治疗说明不详,对病人咨询的回答过于绝对,一旦不能达到病人或亲属所期望的,往往引发不必要的医疗纠纷。

1.1.3 对危重病人和疑难患者预期过高 有的医师,对危重病人随时有可能发生呼吸、心跳停止或其它并发症导致生命危险缺乏预知,对疾病(包括一些手术病人)的复杂性或特异性估计不足,与病人或病人亲属交待不明,当发生意外或病情急剧变化时,病人或病人亲属不理解,酿成医疗纠纷。

1.1.4 医疗文书不规范 有的医务人员工作不尽心,病历书写不及时,病史采集不全面,不能按要求认真及时完成相关医疗文书,有的病历记录不完整,分析不清楚,交待不明晰,诊断不确切,语句不通顺,用词不妥当;做各种特殊检查、特殊治疗和反复输血时,不严格履行签字手续。病人一旦对治疗效果有异议,容易引发医疗纠纷。

1.1.5 常规检查未按要求完成 手术病人术前检查不完善,漏项缺项,术后或出院不复查,事发后现行补救已为时太晚,引起医疗纠纷。

1.1.6 超越职能服务 一些科室为追求小团体经济利益,超越范围收治病人,超越技术能力诊

治,遇到疑难重危病人不请求会诊或转科,顾及个人面子,凭自己主观经验盲目施治导致不良后果。

1.1.7 医德医风存在问题 部分医务人员服务态度不端正,服务意识淡薄,有的人甚至向病人或及家属索要红包,接受吃请,为个人谋私利,贪图小便宜,在病人对诊疗效果不满意时,直接转化为医疗纠纷。

1.2 患方和其它原因

1.2.1 人们的法律意识增强 随着法制建设的进一步完善,人们依法维权和自我保护意识普遍增强。

1.2.2 媒体报道推波助澜近些年,不少新闻媒介对医疗纠纷大加炒作,医疗服务市场导向一度失衡,导致医疗纠纷增加,赔偿额度上涨。

1.2.3 对医学未知性的不理解 因受科学发展的限制,医学还有相当的未知领域,还有许多无法解释的医学难题,同时,医学上的“双重性”是伴随着每一项医疗行为而存在的,从许多临床实例来看,医师的初衷是好的,但有的结果却是无法预料 [1]。然而,患者及其亲属对此不理解、不配合,自我认为是医疗差错和医疗事故,无理取闹,纠缠不休。

1.2.4 提供病史不真实 病史采集需要患者及家属配合,但提供的是否真实,医疗单位无从把握。有的病人陈述不真实,或是无意识的提供了不正确的信息,如特殊药物过敏史,有的病人记不清楚或无意识的隐瞒,有的病人入院前或出院后曾在其它地方进行过治疗,也不能如实叙述等,造成医方的误诊、误治、漏诊。医疗纠纷的防范措施

2.1 加强医德医风教育 要教育广大医务人员树立全心全意为人民服务的思想,增强服务意识,改善服务态度,提高服务质量,深入开展以病人为中心、医患换位思考等服务活动,树立以人为本的服务理念;加强职业道德教育和德性休养,建立职业道德考核与考评制度,并纳入医疗质量检测范围,定期进行讲评和奖惩。

2.2 加强病历质量管理 《医疗事故处理条例》第九条明确指出:严禁涂改、伪造、隐匿、销毁或者抢夺病历资料。患者可以复印或复制病历。病历虽由医院保管,实质是医院只拥有病历有形载体的所有权 [2],一旦医疗纠纷发生,病人随时可以要求复印,这就要求医护人员要及时、准确、科学、真实地完成所有病历记录(包括各种必要的协议签字),完成各种必要的检查,它既是医务人员在发生医疗纠纷时用来保护自己的重要依据,也是医师的工作和职责。

2.3 加强法律知识学习医院管理者和医务人员要树立加强法律法规的学习,特别是涉及医疗

纠纷,警惕医疗安全的《医疗事故处理条例》、《执业医师法》、《病历书写规定》及医学问题用民事法规来处理的相关法律知识,不断增强侵权损害赔偿意识,增强自我保护意识,从而提高预防差错、事故的警觉性和责任感。

2.4 加强医疗操作常规制度的培训 医疗护理操作常规和医院管理工作制度是在总结以往医学科学和技术成果的基础上形成的理论和方法,是医疗过程的定义和所应用技术的规范和指南,在医疗活动中必须认真执行。广大医务人员应开展多种形式的教育和学习,熟练掌握其中的内容和要求,达到规范自己的医疗行为,减少医疗纠纷的发生。

2.5 加强语言艺术修养 语言交流是人与人之间交往的一种最基本的方式,医生与病人的谈话,对病人的病情、治疗有很大影响。首先在谈话之前要依据患者的病情或是要解决的问题来决定谈话的内容和方式;其次要分清谈话对 象,对不同文化水平和素质的人在语言、文字、词句上要有所不同;三是谈话中要注意礼貌。谈话时态度要和蔼,又不失严肃;反复解释,又要无懈可击;四是要加强自身学习,要通过阅读医学杂志,参加学术研讨和不断的研究总结经验教训,提高自身的知识水平,把自己掌握的医学知识传递给患者及家属,得到患者及家属认同,增加他们的信任感。

2.6 做好职业保险工作 医疗服务行业的高风险性,势必给医务人员带来一些担忧和畏缩,一些负面效应也会给医学事业的发展进步造成不利影响。及时做好医疗职业责任保险,对减轻医务人员心理承受力,使其轻松进行学术探索和研究是一种有益实践,对减轻医疗纠纷赔偿、当事人的负罪感是一种道义上的支持,是对医疗行业高风险的认可。

第五篇:DCS故障分析处理及维护防范措施

关键词: DCS 故障

摘要:本文结合火电厂DCS在生产运行中出现的故障实例,对DCS故障进行了分类和分析,并就如何维护DCS以及减少DCS故障提出了具体办法和措施。

一、分散控制系统(DCS)概述

DCS具有通用性强、系统组态灵活、控制功能完善、数据处理方便、显示操作集中、人机界面友好、安装简单规范化、调试方便、运行安全可靠的特点,在国内外电力、石油、化工、冶金、轻工等生产领域特别是大型发电机组有着较为广泛的应用。目前国内应用较多的的品牌主要有:

(1)国外品牌:美国ABB、西屋、德国西门子、日本横河、日立等;

(2)国内:国电智深、和利时、新华等。

DCS的安全、可靠与否对于保证机组的安全、稳定运行至关重要,若发生问题将有可能造成机组设备的严重损坏甚至人身安全事故。所以非常有必要分析DCS运行中出现的各类问题,采取措施提高火电厂DCS的安全可靠性。

二、DCS在生产过程中的故障情况

每个厂家的DCS都有其各自的特点,因此其故障的现象分析和处理不尽相同,但归纳起来由DCS引起机组二类及以上障碍可划分为三大类:

(1)系统本身问题,包括设计安装缺陷、软硬件故障等。

(2)人为因素造成的故障,包括人员造成的误操作,管理制度不完善及执行环节落实。

(3)系统外部环境问题造成DCS故障。如环境温度过高、湿度过高或过低、粉尘、振动以及小动物等因素造成异常。

2.1 DCS本身问题故障实例

此类故障在生产过程中较为常见,主要包括系统设计安装缺陷,控制器(DPU或CPU)的死机、脱网等故障,操作员站黑屏,网络通讯堵塞,软件存在缺陷,系统配置较低,与其他系统及设备接口存在问题等。

2.1.1 电源及接地问题:

(1)某电厂DCS电源系统采用的是ABB公司Symphony III型电源,但基建时仍按照II型电源的接地方式进行机柜安装,与III型电源接地技术要求差异很大。机组投产以来发生多次DCS模件故障、信号跳变、硬件烧坏的情况,疑与接地系统有关。同样,某电厂在基建期间DCS接地网设计制作安装存在问题,DCS系统运行后所有热电阻热电偶温度测点出现周期波动。

(2)某厂因电源连线松动而导致汽机侧控制系统失效。

经验教训:DCS没有良好的接地系统和合理的电缆屏蔽,不仅系统干扰大,控制系统易误发信号,还易使模件损坏。可见,UPS电源、控制系统接地等存在问题将给电厂投产后DCS的安全稳定运行留下极大隐患。因此,DCS系统电源设计一定要有可靠的后备手段,负荷配置要合理并有一定余量;DCS的系统接地必须严格遵守制造厂技术要求(如制造厂无特殊说明应按照DLT774规定执行),所有进入DSC系统控制信号的电缆必须采用质量合格的屏蔽电缆,并要同动力电缆分开敷设且有良好的单端接地。

2.1.2 系统配置问题:

(1)浙江某电厂DCS(T-ME/XP系统)频繁故障和死机造成机组停运事故。

7、8机组(2*330MW),从1997年2月试生产至5月,两台机组共发生22次DCS系统故障和死机,造成机组不正常跳闸8次。之后又多次 发生操作画面故障(8号机组有两次发生全部6台操作站“黑屏”),严重威胁机组安全。经分析认为其DCS系统存在以下几个方面的问题:(1)DCS工程设计在性能计算软件、开关量冗余配置上存在问题。(2)硬件配置不匹配(其中包括T-ME和T-XP两种系统的匹配和通信问题)。(3)个别硬件设计不完善。(4)进一步分析,关键的CS275(下层T-ME)通讯总线负荷率过高出现“瓶颈”问题现象。而欧洲T-ME/XP系统用户在配置合理的前提下,T-ME/XP系统使用情况基本良好。

(2)某电厂在200MW机组的热控系统自动化改造上使用的DCS,由于系统配置的负荷率计算不准且为了减少投资,技术指标均接近允许极限,加之该系统有运行时中间虚拟I/O点量大的特点,所以在改造后期调试时发现个别控制器的负荷率竟超过了90%,个别软手操操作响应竟接近1min,根本无法使用,后经过大幅度调整(系统重新增加配置),才解决了这个问题。

(3)东北某600MW机组,由于招标技术规范对I/O通道隔离性质表述不到位,因此DCS厂家做的配置很低,结果在调试时烧损了大量的I/O板,后来改变了隔离方式和更改换了硬件,电厂又花费了许多资金,也抵消了当初的招标价格优势。此外,电缆的质量与屏蔽问题也必须高度重视,重要信号及控制应使用计算机专用屏蔽电缆,许多改造工程正是由于电缆的问题导致电缆不得不重新敷设,影响了工期。

(4)某电厂300MW机组新华XDPS-400系统工程师站频繁死机,经检查发现其运行程序较多:多个虚拟DPU、历史数据记录、性能计算、报表等。把历史数据分配至别的人机接口站问题解决。

2.1.3 控制器(DPU或CPU)故障

(1)某电厂300MW #2机组HIACS-5000CM控制系统FSSS1的CPU故障,且未将控制权交出,从CPU未能切换为主控,导致该部分系统控制设备无法操作(设备保持原状态工作)。在对主CPU执行在线更换步序至停电时,从CUP切换主控CPU,系统设备受控,更换原主控CPU后系统一切正常。

(2)ABB早期某时间生产的SYMPHONY 同一PCU机柜内不同控制器之间通讯出现数据不一致的情况,通过升级固件这一问题得到解决;

(3)新华控制XDPS系统早期某批次DPU曾多次出现离线、死机现象,经检查为DPU卡件个别电容问题,经升级更换卡件问题解决。

由于目前DCS的控制器均为冗余配置,大大减少了主控制器“异常”引发机组跳闸的次数。但是,一旦一对冗余的控制器同时死机,将直接威胁到安全生产,对于此类情况一定要采取措施切实避免。

2.1.4 DCS网络故障

(1)某电厂西屋WDPF控制系统,由于多次改造系统增加了大量测点和自动控制回路,系统负荷率高达70%以上,造成网络通讯堵塞,多次出现操作员进行操作、切换画面时间过长、画面黑屏等问题。后经升级改造为OVATION系统,系统正常。

(2)某电厂600MW机组负荷508MW,工况稳定,汽轮机所有调门突然大幅摆动,经检查故障原因是机组运行时M5 控制器的转速信号短时间内由3000r/min 变成了0r/min,又马上恢复,调门摆动的原因也是M3和M5通讯时出现掉数据现象,导致Trip Bias(跳闸偏置)信号在机组运行时由0变为1,引起所有调门大幅摆动。对该问题采取措施:对PCU 控制总线的通讯信号进行多重化处理,对通讯信号增加一定延时,躲过通讯信号瞬间跳变;对重要的通讯信号采用了通讯冗余。

2.1.5 DCS软件问题

(1)某电厂300MW供热机组DCS调试过程中未对测点品质参数进行修改,致使其模拟量测点只有在断线的情况下才认为是坏品质测点,未充分起到品质校验功能。后对所有测点品质参数进行了设置,提高了设备运行的可靠性。

(2)HIACS-5000CM控制系统画面组态时,双击grab组态工具后,弹出 c++错误窗口无法正常使用。经检查发现grab.ini 文件被改动过,从其他机器拷贝文件覆盖后,工具恢复正常。因为grab 非正常退出后保留了错误的信息在grab.ini 文件中。

(3)某电厂除氧器水位控制回路逻辑是由高加水位控制逻辑拷贝修改而成,修改过程不彻底,PID参数未根据除氧器情况设置整定,造成运行中除氧器上水门发散调节,调节品质恶化。采取措施:检查逻辑,重新整定PID参数。

2.1.6 系统接口问题

某电厂200MW供热机组电气并网信号至DEH只有一路,在机组正常运行的过程中该电气并网辅助接点故障出现抖动,造成汽轮机跳闸。采取措施:使用屏蔽通讯电缆,增加冗余接点信号,并进行3取2逻辑判断。

2.2 人为因素造成DCS故障实例

人为因素造成DCS的故障,在生产过程中也较为常见。包括人员造成的误操作,管理制度不完善及未按规程规定执行工作步骤等。

2.2.1 未按规程规定执行工作步骤

(1)某电厂新华XDPS系统DEH的#12DPU故障,对其在线更换,使用的是小机MEH系统的DPU备品。在更换DPU后,只将#32主控DPU拷贝至#12副控未写电子磁盘,其实质只是将副控DPU的内存内容与主控保持一致,#12DPU电子磁盘内容仍为MEH小机控制逻辑。在系统停电吹灰后,按顺序启动#12DPU成为主控,由于其逻辑为MEH逻辑而非DEH逻辑,造成系统通讯异常、数据频闪、画面显示不正常,人机接口站无法操作。在重新对#12DPU送电,拷贝#32DPU逻辑并写盘后正常。

(2)某电厂HIACS-5000CM控制系统,循环水泵房远程I/O卡件更换,未执行在线更换操作步骤,其卡件未能激活进入工作状态,导致现场设备状态与DCS画面不符,设备无法控制。执行在线更换步序后,系统正常。

2.2.2 人员误操作

(1)某电厂机组运行中,在进行处理缺陷时工作人员误动DCS继电器柜继电器造成引风机跳闸,锅炉MFT。

(2)某电厂DCS卡件故障,在进行更换卡件过程中,由于工作人员未认真核对设备、卡件跳线错误,导致新更换的卡件烧损。

2.2.3 管理制度不完善

(1)某电厂DCS系统管理制度不完善,未对软件升级、备份等工作进行规定。其辅网水处理POK1操作员站在升级打补丁后,未进行备份。该操作员站硬盘出现故障在进行系统恢复后,由于其软件版本较低,导致与网络通讯不正常,数据不刷新。

(2)某电厂操作员站管理不严,其放置于集控室的主机USB端口及光驱未进行有效封闭,个别运行人员夜班期间利用操作员站玩游戏、看电影,导致操作员站死机。

2.3 外部环境因素造成DCS故障实例

外部环境因素造成DCS故障的数量相比于前两类问题而言相对较少,但在实际生产过程中也时有发生。

(1)某电厂电子设备间风道口正处于DPU机柜上方,由于设计和其他原因,机组运行中消防水通过风道流入DCS机柜,导致DPU、服务器等设备进水烧损,机组停运。

(2)某电厂循环水泵房远程IO柜,由于底部封堵不严,造成冬季老鼠窜入,在机柜上部温度较高处构筑巢穴,最终造成远程IO脱双网。

(3)某电厂电子设备间的封闭性较差,卡件、DPU积灰较为严重,曾多次出现故障。在采取完善电子间封闭、加装空调等措施后卡件、DPU等故障基本杜绝。

三、DCS系统故障防范及维护措施

通过以上诸多故障实例,我们不难看出,降低DCS系统的故障几率,必须做好分散控制系统从选型设计到运行、维护的全方位工作。

3.1 DCS的选型设计调试

3.1.1无论新建机组还是升级改造的DCS,系统和控制器的配置要重点考虑可靠性和负荷率(包括冗余度)指标。通讯总线负荷率设计必须控制在合理的范围内,控制器的负荷率要尽可能均衡,要避免因涉及规模大而资金不足所带来的、影响系统安全运行的“高负荷”问题的发生。

3.1.2系统控制逻辑的分配,不宜过分集中在某个控制器上,主要控制器应采用冗余配置。

3.1.3电源设计必须合理可靠。一是要强调电源设计的负荷率;二是要强调电源的冗余配置方式,同时一定要保证两路电源的独立性。

3.1.4要注重DCS系统接口的可靠性措施。强调重要接口的冗余度和接口方式的选择,主要是注意可靠性和实时性。

3.1.5对于DCS系统接地一定按厂家要求执行,避免接地问题造成系统大面积故障。应注重考虑系统的抗干扰措施、自诊断和自恢复能力,I/O通道应强调隔离措施。电缆的质量与屏蔽问题也必须高度重视,重要信号及控制应使用计算机专用屏蔽电缆。

3.1.6要充分考虑主辅设备的可控性,要根据设备的运行特点和各种工况下机组处理紧急故障的要求,配置操作员站和后备手操装置。紧急停机停炉按钮配置,应采用与DCS分开的单独操作回路。同时,不能盲目地追求人机界面的“简洁化”,系统配置还应以满足安全生产为第一位。特殊有关安全的紧急干预性操作不能完全建立在DCS完好的基础上。

3.1.7对涉及机组安全的执行机构、阀门等外围设备,在设计与配置时,要保证这些关键设备在失电、失气、失信号或DCS系统失灵的情况下,能够向安全方向动作或保持原位。

3.1.8对于保护系统,应采用多重化信号摄取法,并合理使用闭锁条件,使信号回路具有逻辑判断能力。

3.1.9在调试期间按照调试大纲和具体办法,对所有逻辑、回路、工况进行测试。

3.2 DCS运行、启停维护

3.2.1做好维护准备工作

做好DCS系统的维护工作,主要包括:

(1)维护人员应了解系统总体设计思路。熟悉DCS系统结构和功能构成,了解系统设备硬件知识,熟知各部件如控制器、IO卡件、电源等正常状态和异常状态,熟练掌握DCS组态软件。

(2)系统的备份:包括操作系统、驱动程序、引导启动盘、控制系统软件、授权盘、控制组态数据库,并控制组态数据是最新的和完整的。针对实际使用中的光盘容易磨损的缺点,注意多做备份,并采用移动硬盘、U盘、硬盘等备份形式确保各软件的保存。

(3)硬件储备: 对易损、使用周期短的部件和关键部件如键盘鼠标、I/ O 模块、电源、通讯卡等都应根据实际情况作适量的备份,保证各类型卡件、模块备品不少于1个,并按照制造厂要求存放,如有条件应对备品进行校验,切实掌握备品卡件模块状态。

(4)整理各类产品的售后服务范围、时间表,形成一份硬件生产厂家、系统设计单位技术支持人员通信录,充分利用DCS供货商和系统设计单位技术支持。

3.2.2 日常维护

系统的日常维护是DCS系统稳定高效运行的基础,主要的维护工作有以下几点:

(1)根据25项反措要求、DL/T774检修维护规程等制度文件规定,完善DCS系统管理制度。

(2)保证电子设备间的良好封闭,防止小动物窜入,减小粉尘对元件运行及散热产生的不良影响,保证温度、湿度符合制造厂规定,避免由于温度、湿度急剧变化导致在系统设备上的凝露。可考虑将DCS电子间的环境温度信号引入CRT中,并有报警。

(3)每天检查系统各机柜风扇是否工作正常,风道有无阻塞,以确保系统各设备能长期可靠地运行。

(4)保证系统供电电源质量且为两路电源可靠供电,当任一电源失去即报警。

(5)电子设备间禁止使用无线通讯工具,避免电磁场对系统的干扰,避免移动运行中的操作站、显示器等,避免拉动或碰伤设备连接电缆和通讯电缆等。

(6)规范DCS系统软件和应用软件管理,软件的修改、更新、升级必须履行审批授权及负责人制度。严禁使用非正版软件和安装与系统无关软件,做好主机USB端口、光驱等的封闭管理工作。

(7)做好各控制回路的PID参数、调节器正反作用等系统数据记录工作。

(8)检查控制主机、显示器、鼠标、键盘等硬件是否完好,实时监控工作是否正常。查看故障诊断画面,是否有故障提示。

(9)DCS设备包括DPU、人机接口站等上电应按照一定次序逐一进行,每台设备上电观察正常后再进行下一设备上电,避免出现异常难于分析。上电后,通信接头不能与机柜等导电体相碰,互为冗余的通信线、通信接头不能碰在一起,以免烧坏通信网卡。

(10)定期对DCS主系统及与主系统连接的所有相关系统的通信负荷率进行在线测试。检查冗余主从设备状态,条件许可或定期进行主从设备切换,对设备自行切换的原因进行检查分析。

(11)增加组态易读性:对重要组态页增加了中文描述;对重要保护系统编写与组态一致的详细逻辑说明书;编制试验操作卡并保证随时更新。规范DCS组态作业,机组运行中尽量不做重大组态修改。必须进行组态时应慎重,充分做好相应的技术措施和安全措施,确保DCS和机组的安全稳定运行。

(12)定期逐台重新启动所有人机接口站一次(建议2、3个月左右),以消除计算机长期运行的累计误差。

3.2.3 停运维护

机组检修期间应对DCS 系统应进行彻底的维护,主要包括:

(1)利用机组检修时间逐个复位DCS系统的DPU、CPU和操作员站及数据站;删除组态中的无效I/O点,对组态进行优化。

(2)系统冗余测试: 对冗余电源、服务器、控制器、通讯网络进行冗余测试。注意观察系统停运过程中各设备停电时,主从设备切换、网络、人机接口站是否正常;系统检修重新上电后对各设备进行切换测试。

(3)系统灰尘清除:系统停运的情况下,整个系统进行吹灰,包括计算机内部、控制站机笼、电源箱、风扇、机柜滤网等部件的灰尘清理。

(4)系统供电线路检修,对UPS进行供电能力测试和实施放电操作。同时注意检查DPU主机卡CMOS电池电量,进行定期更换,防止因电池而引起的CMOS数据丢失。

(5)接地系统检修。包括端子检查、对地电阻测试。

(6)现场设备检修,根据检修维护规程,参照有关设备说明书进行。

(7)检查DCS系统和其他系统的接口,重要信号冗余处理,与其他系统的通信视其具体情况,采取单向传输和加装防火墙措施。

(8)系统上电:系统大修后维护负责人确认条件具备,方可上电。并应严格遵照上电步骤进行。

3.2.4 故障检修维护

系统在发生故障后应进行被动性维护,主要包括以下工作:

(1)在日常工作中应认真按照25项反措要求,充分做好包括DPU(CPU)死机、网络通讯崩溃在内的各种事故预想,将运行紧急处理措施、安全措施、技术措施、检修步骤编写成册,确保机组的安全运行。

(2)处理DCS故障按照制造厂应用手册中的要求开展工作,更换前确认卡件模块型号、地址(应确保与其他设备地址不冲突)、跳线等与被更换卡件一致并严格执行在线更换程序。

(3)故障被动维护同样应严格执行工作票制度,避免抢修冒进,应结合具体故障表现进行详细分析。根据DCS系统自诊断报警、故障现象判断,找到故障点,通过报警的消除来验证维修结果。如:通信接头接触不良会引起通信故障,确认通信接头接触不良后,利用工具重做接头;通信线破损应及时更换。某个卡件故障灯闪烁或者卡件上全部数据都为零,可能的原因是组态信息有错、卡件处于备用状态而冗余端子连接线未接、卡件本身故障、该槽位没有组态信息等。当某一生产状态异常或报警时,可以先找到反映此状态的仪表,然后顺着信号向上传递的方向,用仪器逐一检查信号的正误,直到查出故障所在。

(4)现场设备故障检修必须开具工作票,做好DCS强制和隔离措施。阀门维修时,应起用旁路阀。检修结束后及时通知集控运行人员进行检验,操作人员应将自控回路切为手动。

(5)当出现较大规模的硬件故障、原因不明故障或超出本厂维护人员技术水平的故障时,除当时采取紧急备件更换工作外,要及时和厂家取得联系,由厂家专业技术支持工程师进一步确认和排除故障。

四、结束语

DCS应进行从设计、施工、调试、运行进行全过程全方位管理,作为系统维护人员应根据系统配置和生产设备控制情况,制定科学、合理、可行的维护策略和方式方法,做到预防性维护、日常维护紧密配合,进行系统的、有计划的、定期的维护,对运行中出现的各种故障,应具体问题具体分析。减少DCS的故障关键是要做到预防第一,保证系统在要求的环境下长期良好地运行。

下载DCS典型故障原因分析与防范对策[共五篇]word格式文档
下载DCS典型故障原因分析与防范对策[共五篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    企业避税原因及其防范对策分析

    企业避税原因及其防范对策分析 摘要本文论述了避税的定义,分析了企业避税的现状和原因,站在征税机构和办税人员角度上考虑分析了企业避税的原因,指出依法纳税是每一个企业和个......

    流动人口犯罪原因分析及防范对策

    流动人口犯罪原因分析及防范对策 流动人口犯罪原因分析及防范对策改革开放的不断深入和市场经济体制的建立,形成了人、财、物的大量流动,特别是大量的流动人口由欠发达地区向......

    流动人口犯罪原因分析及防范对策汇总

    流动人口犯罪原因分析及防范对策 流动人口的急剧增加是随着农村改革的深化,剩余劳动力向非农产业转移的客观反映,这也是改革开放和经济发展的必然。自改革开放以来,由于社会产......

    塔吊故障原因分析

    塔吊故障原因分析 塔吊从组装以来,大小故障一直不断,从而直接影响到工程施工进度,使工程无法正常运转,工期一再顺延,造成甲方对项目部有一种负面影响。 1、塔吊从4月7号开始组装,8......

    继电保护典型故障分析

    继电保护典型故障分析 摘 要 继电保护对电力系统的安全正常运行具有重要的作用,它能保证电力系统的安全性,还能针对电力系统中不正常的运行状况进行报警,监控整个电力系统。目......

    开关柜典型故障分析

    高压开关柜典型故障分析 电力系统广泛使用10kV(含6kV)—35kV开关柜,担负着发电厂用电、变电站和用户供电的任务,且用量大,分布广。由于1OkV-35kV开关柜的设计、制造、安装和运行......

    护理安全隐患的原因分析及防范对策

    护理安全是指在实施护理的全过程中,病人不发生法律和法定的规章制度允许范围以外的心理、机体结构或功能上的损害、障碍、缺陷或死亡[1]。在医疗护理工作中,护士与病人交流,接触......

    典型的蓝屏故障的原因和解决办法2012

    典型的蓝屏故障的原因和解决办法 以下内容为百度知道操作系统分类管理员Ctangel个人总结,并非网络复制,全是个人日常工作中遇到并且明确确定原因的。如需复制请注明出处。 这......