第一篇:先进轨道交通重点专项2016年度定向项目公开课题申报指南
附件一
“先进轨道交通”重点专项 2016年度定向项目公开课题申报指南
作为最具可持续性的交通运输模式,轨道交通是国民经济大动脉、大众化交通工具和现代城市运行的骨架,是国家关键基础设施和重要基础产业,对我国经济社会发展、民生改善和国家安全起着不可替代的全局性支撑作用。轨道交通科技持续自主创新更是国家通过实施“创新驱动发展”战略全面支撑“新型城镇化”、“区域经济一体化”、“一带一路”、“制造强国”和“走出去”战略的全局性重要基础保障;对建设创新型国家、构建现代综合交通运输体系、在经济社会发展新常态下实现全面建成小康社会目标,具有重大意义。
依据《国家中长期科学和技术发展规划纲要(2006-2020年)》和《国务院关于深化中央财政科技计划(专项、基金等)管理改革的方案》,在交通领域技术预测及关键技术遴选工作成果以及面向相关部门、地方和机构广泛征集国家重点研发计划科技创新需求建议的基础上,科技部会同国家铁路局、交通运输部、教育部、中国科学院等部门组织专家编制了《国家重点研发计划——先进轨道交通重点专项实施方案》,在此基础上启动先进轨道交通重点
专项,并发布本指南。
本专项的指导思想是:以满足国家战略需求为目标,以国内外市场需求为导向,在既有轨道交通科技发展成果基础上,以产学研用协同创新为主要模式,强化国际合作创新,通过在轨道交通系统安全保障、综合效能提升、可持续性和互操作等战略技术方向进行覆盖“基础前沿研究、共性关键技术研发、集成与应用示范”的全链条部署、聚焦支持、有序推进,全面提升我国轨道交通系统技术、设施、装备和运营的安全、效能、绿色、体系化和国际化水平,支撑国家“十三五”发展战略的全面实现。
本专项总体目标是:创新“以我为主、兼收并蓄”原则下的国际化产学研用协同创新模式,到2020年,在轨道交通系统安全保障、综合效能提升、可持续性和互操作等战略方向形成包括核心技术、关键装备、集成应用与标准规范在内的成果体系,满足我国轨道交通作为全局战略性骨干运输网络的高效能、综合性、一体化、可持续发展需求,并具备显著的国际竞争优势,支撑国家“十三五”发展战略全面实现。
具体目标:
1.形成具备“凝聚、辐射、转移和协同”功能的全球化轨道交通创新能力网络体系;
2.形成满足国家社会经济发展和国家安全对轨道交通高效能、综合性、一体化、可持续需求的交通系统安全保障、综合效 — 2 —
能提升、可持续性和互操作核心技术、关键装备、集成应用与标准规范体系;
3.形成足以支撑国家“一带一路”、“走出去”和“制造强国”战略、满足全球市场需求的国际化轨道交通技术、标准、装备和服务能力体系;
4.形成具备“超越遏制”和“战略高地”特征的新型导向运输系统技术、标准、装备和集成能力体系。
到2020年,我国要具备交付运营时速400公里及以上高速列车及相关系统,时速120公里以上联合运输、时速160公里以上快捷货运和时速250公里以上高速货运成套装备,满足泛欧亚铁路互联互通要求、轨道交通系统全生命周期运营成本降低20%以上、因技术原因导致的运营安全事故率降低50%以上、单位周转量能耗水平国际领先、磁浮交通系统技术完全自主化的技术能力。
本指南围绕轨道交通系统安全保障技术的四项课题(含任务),各重点任务围绕创新全链条设计和一体化部署基础前沿研究、重大共性关键技术开发、应用示范和国际合作等内容。
针对任务中的研究内容,以课题为单位进行申报,课题设1名课题负责人。
各申报单位统一按指南二级标题(如1.1)的研究方向进行课题申报,申报内容须涵盖该二级标题下指南所列的全部考核指标。
本专项2016年拟启动公开择优的重点任务为:
1.轨道交通系统安全保障技术
总体目标:围绕轨道交通系统全局行为形成/致害机理、风险链构建与解耦、以及列车系统本构安全行为机理与改性等重大科学问题,攻克轨道交通系统运营状态全息化智能感知、快速辨识、风险评估、预警和应急处置,复杂环境下基于系统解耦的轨道交通系统安全控制与保障等重大技术瓶颈,形成包括轨道交通安全预测评估与本构安全分析设计理论方法体系、主动安全与本构安全成套技术标准规范、主动安全保障系统装备在内的适应我国复杂恶劣运营环境的轨道交通主动安全保障、应急管理与装备本构安全一体化技术体系,显著提高轨道装备本构安全水平,实现向主动安全保障模式的转变。
1.1高速铁路系统安全保障技术
1)高速铁路系统运营环境状态感知、评估与预警技术 研究内容:研究揭示高速铁路系统在复杂恶劣运营环境下安全状态动态演变规律,形成高速铁路系统安全服役状态建模分析预测与调控理论;研发运营环境区域内风沙雨雪、地质灾害、异物入侵、乘客安防等环境变化以及恶劣环境下基础设施、运载工具服役状态高效感知与预测技术,环境状态信息的列车-地面-控制中心网络化互联技术;研发运营环境与车辆多维感知体系下多层次环境状态信息融合与处理技术,接触网/车/路/环境多元耦合条件下高速列车运行状态安全评估与预警技术,复杂环境作用 — 4 —
下基础设施与高速列车安全服役性能控制与应急处置技术。研制高速列车运行安全综合感知与预测预警系统。
考核指标:建立高速铁路系统安全服役状态建模分析预测与调控模型,形成复杂恶劣环境下高速铁路主动安全保障与应急管理技术及知识产权体系,构建运营环境与车辆安全预警标准规范,研制复杂恶劣环境下高速列车运行安全综合感知、预测预警与应急管理系统并进行示范应用,具备运营安全预警完备率提升30%,运营安全应急响应效率提升30%的技术能力。
2)高速铁路系统解耦与安全综合保障技术
研究内容:研究揭示高速铁路系统安全相关因素复杂相互作用机制,形成系统全局行为产生机理、风险链构建与解耦理论;研发高速铁路系统接触网/车/路/环境/运输分层递阶互操作与多模态耦合建模技术,系统多层次多粒度风险链构建、风险辨识与解耦定位技术;研发高速铁路子系统失效全局传播影响分析、系统安全评估及动态预警体系构建技术;研发基于全局安全状态评估预警的协同保障技术,基于大数据的系统风险挖掘分析与智能研判技术。
考核指标:建立面向高速铁路系统全局行为建模、风险链构建与解耦理论,构建基于全局安全的运营安全综合保障新架构、安全状态评估指标体系和动态预警分级标准,形成基于风险链解耦与综合的全局安全性评估、预警和协同保障技术与知识产权体
系,研制基于全局安全分析与大数据的高速铁路系统综合安全保障平台系统并进行示范应用,具备T数量级安全信息大数据管理分析能力,因技术原因导致的高速铁路运营安全事故率降低50%的技术能力。
1.2城市轨道系统安全保障技术
1)城市轨道交通系统运营环境状态感知、评估与预警技术 研究内容:研究揭示城市轨道交通系统在复杂恶劣运营环境下安全状态动态演变规律,形成城市轨道交通系统安全服役状态建模分析预测与调控理论;研发运营环境区域内风沙雨雪、地质灾害、异物入侵、乘客安防等环境变化以及恶劣环境下基础设施、运载工具服役状态高效感知与预测技术,环境状态信息的列车-地面-控制中心网络化互联技术;研发运营环境与车辆多维感知体系下多层次环境状态信息融合与处理技术,接触网/车/路/环境多元耦合条件下列车运行状态安全评估与预警技术,复杂环境作用下基础设施与列车安全服役性能控制与应急处置技术。研制城市轨道列车运行安全综合感知与预测预警系统。
考核指标:建立城市轨道交通系统安全服役状态建模分析预测与调控模型,形成复杂恶劣环境下城市轨道交通主动安全保障与应急管理技术及知识产权体系,构建运营环境与车辆安全预警标准规范,研制复杂恶劣环境下城轨列车运行安全综合感知、预测预警与应急管理系统并进行示范应用,具备运营安全预警完备 — 6 —
率提升30%,运营安全应急响应效率提升30%的技术能力。
2)城市轨道交通系统解耦与安全综合保障技术
研究内容:研究揭示城市轨道交通系统安全相关因素复杂相互作用机制,形成系统全局行为产生机理、风险链构建与解耦理论;研发城市轨道交通系统接触网/车/路/环境/运输分层递阶互操作与多模态耦合建模技术,系统多层次多粒度风险链构建、风险辨识与解耦定位技术;研发城市轨道交通子系统失效全局传播影响分析、系统安全评估及动态预警体系构建技术;研发基于全局安全状态评估预警的协同保障技术,基于大数据的系统风险挖掘分析与智能研判技术。
考核指标:建立面向城市轨道交通系统全局行为建模、风险链构建与解耦理论,构建基于全局安全的运营安全综合保障新架构、安全状态评估指标体系和动态预警分级标准,形成基于风险链解耦与综合的全局安全性评估、预警和协同保障技术与知识产权体系,研制基于全局安全分析与大数据的城市轨道交通系统综合安全保障平台系统并进行示范应用,具备T数量级安全信息大数据管理分析能力,因技术原因导致的城市轨道交通运营安全事故率降低50%的技术能力。
1.3高速铁路装备本构安全技术
研究内容:研究揭示高速铁路轨道交通系统本构安全行为机理,形成高速铁路装备本构安全分析评估与设计改进理论方法;
研发高速铁路装备耐碰撞吸能结构设计与制备技术,车辆防火材料设计分析与应急疏散技术,高速列车转向架冰雪灾害分析与防治技术,本构安全实体试验与评估技术。
考核指标:建立高速铁路装备本构安全系统化分析、评估与设计理论方法和标准规范;形成高本构安全性的关键材料与结构的设计、制备和试验技术;搭建高速铁路装备本构安全综合试验系统,具备风雪环境下高速列车转向架区域积雪减少50%、整车防火能力提升30%、36km/h以上速度的高速列车整车碰撞试验的技术能力。
1.4城市轨道交通装备本构安全技术
研究内容:研究揭示城市轨道交通系统本构安全行为机理,形成城市轨道交通装备本构安全分析评估与设计改进理论方法;研发城市轨道交通装备耐碰撞吸能结构设计与制备技术,车辆防火材料设计分析与应急疏散技术,列车转向架冰雪灾害分析与防治技术,本构安全实体试验与评估技术。
考核指标:建立城市轨道交通装备本构安全系统化分析、评估与设计理论方法和标准规范;形成高本构安全性的关键材料与结构的设计、制备和试验技术;搭建城市轨道交通装备本构安全综合试验系统,具备风雪环境下转向架区域积雪减少50%、整车防火能力提升30%、25km/h以上速度的城轨列车碰撞试验的技术能力。
实施年限:不超过4年。
第二篇:先进轨道交通重点专项2017定向项目公开任务申报
附件1 “先进轨道交通”重点专项2017
定向项目公开申报指南
2017年“先进轨道交通”重点专项定向中国中车实施的3个重点研究任务中包括6个项目。针对6个项目的基础研究、前沿技术等需要公开择优的任务,拟对以下研究课题或任务进行公开择优,涉及公开课题或任务的预算将根据研究课题或任务的相关性,最终由项目、课题承担单位和申报单位共同协商确定。拟承担相应研究课题或任务的各申报单位统一按指南二级标题(如1)的研究方向进行申报,申报内容须涵盖该二级标题下指南所列的全部考核指标。
本专项项目2017年拟公开择优的研究课题或任务如下: 项目一:高性能牵引供电系统技术
1.虚拟同相柔性供电系统电磁耦合机理研究(任务级)研究内容:面向移动式大功率单相负荷在异相供电网络之间平滑过渡的应用需求,研究不同列车速度和无电区长度条件
下虚拟同相柔性供电装置电压、相位、频率实时动态调整转换的技术特性;研究柔性供电装置主拓扑结构下变流器与变压器及各供电网络之间的耦合机理;研究牵引供电柔性供电装置与列车牵引传动系统的适配性技术。
考核指标:形成满足电压波动在17.5kV~31kV条件下牵引供电侧柔性供电装置输出电压、频率及电能质量满足GB/T15945-2008、GB12325-2008、GB/T14549-1993、GB/T15543-2008等标准要求的技术实现方案;建立柔性供电装置变流器、变压器与牵引网的电-磁耦合模型;形成牵引供电侧柔性供电装置与列车牵引传动系统的适配方案;发表论文3-5篇,申请专利1-2项;实施年限:1-2年;拟支持数:1项。
2.同相柔性供电系统协同保护策略研究(任务级)研究内容:研究供电网、同相柔性供电装置与过分相列车的耦合关系;研究同相柔性供电系统多装置故障影响机理;研 —2 —
究正常正向行车、异常反向行车时同相柔性供电装置的协同控制时序;研究同相柔性供电系统失效状态下,供电网-同相柔性供电装置-过分相列车的高可用馈电通道冗余方案与协同保护策略。
考核指标:提出供电网-同相柔性供电装置-过分相列车的高可用馈电通道冗余方案,形成同相柔性供电系统可靠性协同保护策略和实现技术;发表论文3-5篇,申请专利1-2项;
实施年限:1-2年 拟支持数:1项。
3.轨道交通牵引供电系统动态稳定性方法研究(任务级)研究内容:基于现有的轨道交通牵引供电、接触网、列车牵引传动系统类型及方式的电路拓扑,构建“车-网”一体化耦合模型,研究“馈电网-受流机制-车”耦合谐振发生机理和稳定性分析方法,形成牵引供电-车载受能系统闭环稳定自适应控制策略及实现技术。
考核指标:提出“车-网”一体化耦合模型;形成牵引供电稳
定性测度指标和系统闭环稳定自适应控制策略;形成有效消除牵引供电-车载受能系统的高频及低频谐振的技术方案,并实施仿真验证;发表论文3-5篇,申请专利2-3项;
实施年限:1-2年; 拟支持数:1项。
4.车网等效阻抗频率特性测试方法研究(任务级)研究内容:研究牵引网等效多端口模型及阻抗频率特性测试方法;研究列车牵引传动系统等效多端口模型及阻抗频率特性测试方法;研究牵引网-列车串联网络系统的阻抗匹配原则及稳定域优化方法。
考核指标:形成牵引网与列车牵引传动系统多端口模型及阻抗频率特性测试方法;形成牵引网-列车阻抗匹配原则及稳定域优化方法。发表论文3-5篇,申请专利2-3项;
实施年限:1-2年; 拟支持数:1项。
项目二:轨道交通列车高效变流装置
—4 —
5.大功率车载电力电子牵引变压器故障隔离保护机制与控制策略研究(任务级)
研究内容:搭建电力电子牵引变压器的功率流模型,研究故障切换状态下主电路电磁暂态过程及对系统稳定性的影响规律;研究电力电子牵引变压器故障单元隔离保护机制,研究故障工况下故障隔离保护策略对数字控制系统的影响,提出适用于车载电力电子牵引变压器的快速平滑故障隔离保护控制策略。
考核指标:提出电力电子牵引变压器的故障隔离保护机制及对系统影响规律,形成电力电子牵引变压器系统快速平滑隔离保护控制策略和实现技术,完成仿真和原理性实验验证。发表论文3-5篇,申请专利2-3项;
实施年限:1-2年; 拟支持数:1项。
6.多电力电子变压器条件下车网耦合机理及稳定性控制策略研究(任务级)
研究内容:研究牵引供电网与多电力电子牵引变压器间的电气耦合特性及高频、低频谐振机理;研究带电弧弓网离线、网压突变、过分相、负荷突变等恶劣运行条件对电力电子变压器的影响;研究复杂工况下具有谐波优化及“车-网”谐振抑制能力的电力电子牵引变压器控制策略。
考核指标:提出牵引供电网-多台电力电子变压器耦合下高频、低频谐振机理;提出电力电子牵引变压器谐波控制策略。发表论文3-5篇,申请专利2-3项;
实施年限:1-2年; 拟支持数:1项。
项目三:轨道交通新型供电制式车辆与车载储能技术 7.动态移动状态下电能感应变换单元多目标优化控制策略研究(任务级)
研究内容:基于动态移动工况,计算分析无线电能传输系统磁、电和温度场的分布形态及结构受力特征,研究无线电能传输系统电磁能量传递特性及损耗分布;研究电能变换单元通 —6 —
用数学模型的建立方法;研究电能感应变换单元的高功率密度、电流/频率快速跟踪及低开关损耗等多目标优化控制策略。
考核指标:提出动态移动状态下无线电能传输系统电磁能量传递特性及损耗分布,形成动态移动状态下电能感应变换单元通用数学模型及多目标优化控制策略;发表论文3-5篇,申请专利2-3项;
实施年限:1-2年; 拟支持数:1项。
8.储能元件服役状态评估和安全预警防范技术研究(任务级)
研究内容:研究动力电池、超级电容等典型储能元件在轨道交通车辆服役过程中的应力(倍率、温度等)变化机理、耦合关系及相互影响规律;研究确定反映该类储能元件老化内部机理的特征参数,根据该类储能元件在单
一、耦合应力及实际工况下的寿命衰退数据,研究其失效物理模型及数据预测算法;研究基于该类储能元件健康状态的充电智能控制策略和安
全维护方法;研究面向故障导向安全的BMS与车载变换器的交互响应与保护机制。
考核指标:提出适用于轨道交通车辆运行环境和工况条件的动力电池、超级电容等典型储能元件状态评估和安全预警方法;提出基于温度、倍率、充放电深度的多变量耦合储能元件寿命测试评估方法;发表论文5-7篇;申请专利2-3项;
实施年限:1-2年; 拟支持数:1项。
9.基于全寿命周期成本的能源系统配置及综合管理策略研究(任务级)
研究内容:基于储能系统全寿命周期,构建各种不同储能元件组合配置模型,推演全寿命周期成本函数矩阵;依据各种储能元件组合配置模型,推演不同供电控制方式下系统运行成本函数矩阵;研究全寿命周期成本最低的能源系统配置和运行控制管理策略;研究基于大数据的车载储能系统全寿命周期健康状态动态评估及过程管理技术。
—8 —
考核指标:提出全寿命周期成本最低的能源系统配置和运行控制管理策略;形成轨道交通车载储能系统大数据平台,提出车载储能系统全生命周期健康状况评估方法、管理策略及标准规范;发表论文3-5篇;申请专利3-5项;
实施年限:1-2年; 拟支持数:1项。
10.基于统一数据模型的新型供电轨道交通系统全生命周期大数据实时处理技术研究(课题级)
研究内容:研究供电轨道交通系统全生命周期大数据模型,对新型供电轨道交通系统设计、制造、运维等各环节产生的多源异构大数据进行统一建模。研究轨道交通系统大数据的分布式存储技术,对新型供电轨道交通系统全生命周期大数据进行高效存储;研究基于批、流混合的大数据实时处理技术,对经过统一数据建模的新型供电轨道交通系统全生命周期大数据进行高实时、低迟滞的即席分析查询处理;研究复杂指标增量计算技术以及可扩展的轨道交通多维数据分析等大数据
分析接口技术,为实现新型供电轨道交通系统全生命周期运营管理、能量优化管理、状态监测、故障预警等应用提供支撑。
考核指标:搭建批、流混合的大数据实时处理平台,支持对百亿条数据的多维实时查询,数据处理响应时间≤100ms;为新型供电轨道交通系统全生命周期大数据平台构建及全生命周期运营管理、能量优化管理、状态监测与故障预警系统提供支撑;发表论文5-8篇,申请专利3-5项;
实施年限:2年; 拟支持数:1项。
项目四:面向全生命周期成本的轨道交通设计、节能与环境友好技术
11.轨道交通系统全生命周期成本关键要素辨识与分析方法研究(课题级)
研究内容:基于大数据融合与挖掘研究网/车/线/环耦合作用下轨道交通系统全生命周期安全、性能、环境与成本影响要素辨识与分析方法;研究性能与环境要素对安全的影响,分析 —10 —
与安全强相关要素的敏感度,确定关键要素;以安全域为边界条件,构建安全域、性能域、环境域的耦合关系,揭示其交互影响机制及演化规律;实现轨道交通系统全生命周期成本优化控制。
考核指标:形成轨道交通系统全生命周期安全域、性能域、环境域要素辨识及分析方法与标准、要素集及耦合关系;提高轨道交通系统综合可用性技术能力。发表论文5-8篇,申请专利3-5项;
实施年限:2年; 拟支持数:1项。
12.轨道交通系统效能涌现机理与全局效能评估及配置理论研究(任务级)
研究内容:分析轨道交通系统在服役过程中系统效能特征,研究轨道交通系统效能影响因素及关键环节辨识方法和指标体系,研究各影响因素交互协同作用后产生全局最优效能的机理;以轨道交通系统全局效能最大化为目标,基于系统服役
信息及系统间的耦合作用,研究不同服役环境、不同线路条件、不同车组的全局效能评估理论,同时基于轨道交通系统逻辑功能关系,研究分层、逐级效能配置理论。
考核指标:揭示轨道交通系统效能涌现机理;形成轨道交通系统效能评估及配置理论方法;形成轨道交通系统特征辨识方法和指标体系;具有全局效能提升10%的技术能力;发表论文3-5篇,申请专利2-3项;
实施年限:1-2年; 拟支持数:1项。
项目五:复杂环境下轨道交通系统全生命周期能力保持技术
13.复杂环境下轨道交通关键承载结构材料破坏特征及恢复技术研究(任务级)
研究内容:研究轨道交通关键承载材料(混凝土)结构经时行为特征建模及性能劣化机理;研究不同损伤形式下的结构性能恢复技术;开展材料和结构自修复技术工程可行性深化研 —12 —
究;研究修复后结构与材料功能及性能测试评估技术;研究海洋、酸雨、高寒等复杂环境下桥隧钢筋锈蚀及混凝土性能劣化的测试评估技术。
考核指标:形成关键承载混凝土结构的恢复方法;形成关键承载混凝土结构与材料功能、性能评估及测试方法,具备关键承载混凝土结构寿命延长20%的能力。发表论文3-5篇,申请专利2-3项;
实施年限:1-2年; 拟支持数:1项。
14.轨道交通全球典型环境要素辨识及分析(任务级)研究内容:辨识全球轨道交通的气候条件、地理条件、工业基础及人文特点等环境域要素;研究极端环境要素对轨道交通系统安全和成本的影响,提出关键环境域要素对轨道交通系统安全的技术需求及解决方案。
考核指标:形成轨道交通全球环境域要素研究报告;形成极端环境要素对轨道交通系统影响分析报告形成关键环境域
要素对轨道交通系统安全的技术需求及解决方案;发表论文3-5篇;
实施年限:1-2年; 拟支持数:1项。
15.极端环境条件下高速动车组通过大跨桥梁风险辨识及防控技术研究(任务级)
研究内容:研究极端环境条件下车-桥耦合动力学建模与分析方法;研究轨道交通系统大跨桥梁时空演化规律及失效机理,性能异常及结构薄弱环节辨识方法及风险分析与防控策略。
考核指标:形成极端环境条件下车-桥耦合动力学模型;形成极端环境条件下高速动车组通过大跨桥梁结构风险辨识及防控技术规范;发表论文3-5篇,申请专利2-3项;
实施年限:1-2年; 拟支持数:1项。
项目六:轨道交通货运快速化关键技术
—14 —
16.典型大宗货物联运安全与保性需求研究(任务级)研究内容:面向多式联运铁路货车实际运营需求,研究典型大宗运输货物属性及其表征与评估方法;研究典型货物长途及转接运输关键过程及保性需求;研究典型货物长途及转接运输关键过程的装备结构适配性;研究典型货物联运在途保性技术需求,并提出解决方案。
考核指标:形成典型货物长途及转接运输安全与保性需求规范;形成至少四种典型大宗货物联运过程和装备结构适配性需求规范;形成至少四种典型大宗货物联运在途状态保持技术方案,并完成仿真验证;发表论文3-5篇,申请专利2-3项;
实施年限:1-2年; 拟支持数:1项。
17.快速化货运过程状态全息化感知与过程管理系统配置技术研究(任务级)
研究内容:基于货物自身属性与运输特性,研究快速化货运过程货物状态辨识与获取方法;基于货物运输时空需求特征
和现有运输过程中的适配性装备,构建快速化货运安全保障与过程管理信息集成模型及系统架构,研究快速化货运全过程管理与服务系统架构与功能配置方法。
考核指标:形成基于典型货物的状态识别与获取技术规范;形成快速化货运安全保障与过程管理信息集成与系统设计总体需求规范;初步形成快速化货运全过程管理与服务系统设计总则;发表论文3-4篇,申请专利或软件著作权1-2项;
实施年限:1-2年; 拟支持数:1项。
18.高速重载货运列车安全性评估分析研究(任务级)研究内容:面向高速机动重载货运需求,突破高速客运专线承载瓶颈,分析时速250公里及以上重载货运动车组车辆系统及基础设施安全影响要素;研究基于多轴、走行部群配置的高速重载动车组载荷离散分布及传递特性,以及动车组安全性评估方法。
考核指标:形成时速250公里及以上重载货运动车组车辆 —16 —
系统及基础设施安全要素影响分析报告;构建基于多轴、走行部群配置的高速重载动车组载荷离散分布及传递特性模型,并进行仿真验证;形成基于多轴、多走行部分布式配置高铁线路中高速重载货运列车安全性分析评估理论。发表论文3-5篇,申请专利2-3项;
实施年限:1-2年; 拟支持数:1-2项。
19.时速250公里以上货运动车组载荷特征及安全保障技术研究(任务级)
研究内容:面向不同货物载荷以及典型线路条件,研究时速250公里以上货运动车组“车-货”动力耦合模型建立及解析方法;研究典型线路条件下货运动车组车体和转向架结构可靠性评估方法;研究基于现有基础设施条件下货运动车组运营安全保障技术需求,并提出解决方案。
考核指标:形成时速250公里以上货运动车组“车-货”动力学耦合模型;形成货运动车组结构可靠性评估方法与规范;形
成货运动车组运营安全保障技术方案,并完成仿真验证;发表论文3-5篇,申请专利或软件著作权1-2项;
实施年限:1-2年; 拟支持数:1项。
—18 —
第三篇:“先进轨道交通”重点专项2017项目(编制大纲)
“先进轨道交通”重点专项 2016年项目申报指南
项目申报全流程指导单位:北京智博睿投资咨询有限公司 — 1 —
作为最具可持续性的交通运输模式,轨道交通是国民经济大动脉、大众化交通工具和现代城市运行的骨架,是国家关键基础设施和重要基础产业,对我国经济社会发展、民生改善和国家安全起着不可替代的全局性支撑作用。轨道交通科技持续自主创新更是国家通过实施“创新驱动发展”战略全面支撑“新型城镇化”、“区域经济一体化”、“一带一路”、“制造强国”和“走出去”战略的全局性重要基础保障;对建设创新型国家、构建现代综合交通运输体系、在经济社会发展新常态下实现全面建成小康社会目标,具有重大意义。
依据《国家中长期科学和技术发展规划纲要(2006-2020年)》和《国务院关于深化中央财政科技计划(专项、基金等)管理改革的方案》,在交通领域技术预测及关键技术遴选工作成果以及面向相关部门、地方和机构广泛征集国家重点研发计划科技创新需求建议的基础上,科技部会同国家铁路局、交通运输部、教育部、中国科学院等部门组织专家编制了《国家重点研发计划——先进轨道交通重点专项实施方案》,在此基础上启动先进轨道交通重点专项,并发布本指南。
本专项的指导思想是:以满足国家战略需求为目标,以国内外市场需求为导向,在既有轨道交通科技发展成果基础上,以产学研用协同创新为主要模式,强化国际合作创新,通过在轨道交通系统安全保障、综合效能提升、可持续性和互操作等战略技术 — 2 —
方向进行覆盖“基础前沿研究、共性关键技术研发、集成与应用示范”的全链条部署、聚焦支持、有序推进,全面提升我国轨道交通系统技术、设施、装备和运营的安全、效能、绿色、体系化和国际化水平,支撑国家“十三五”发展战略的全面实现。
本专项总体目标是:创新“以我为主、兼收并蓄”原则下的国际化产学研用协同创新模式,到2020年,在轨道交通系统安全保障、综合效能提升、可持续性和互操作等战略方向形成包括核心技术、关键装备、集成应用与标准规范在内的成果体系,满足我国轨道交通作为全局战略性骨干运输网络的高效能、综合性、一体化、可持续发展需求,并具备显著的国际竞争优势,支撑国家“十三五”发展战略全面实现。
具体目标:
1.形成具备“凝聚、辐射、转移和协同”功能的全球化轨道交通创新能力网络体系;
2.形成满足国家社会经济发展和国家安全对轨道交通高效能、综合性、一体化、可持续需求的交通系统安全保障、综合效能提升、可持续性和互操作核心技术、关键装备、集成应用与标准规范体系;
3.形成足以支撑国家“一带一路”、“走出去”和“制造强国”战略、满足全球市场需求的国际化轨道交通技术、标准、装备和服务能力体系;
4.形成具备“超越遏制”和“战略高地”特征的新型导向运输系统技术、标准、装备和集成能力体系。
到2020年,我国要具备交付运营时速400公里及以上高速列车及相关系统,时速120公里以上联合运输、时速160公里以上快捷货运和时速250公里以上高速货运成套装备,满足泛欧亚铁路互联互通要求、轨道交通系统全生命周期运营成本降低20%以上、因技术原因导致的运营安全事故率降低50%以上、单位周转量能耗水平国际领先、磁浮交通系统技术完全自主化的技术能力。
本专项围绕轨道交通系统安全保障技术、系统综合效能提升技术、系统可持续性技术、系统互操作技术四大战略方向部署十项重点任务,各重点任务围绕创新全链条设计和一体化部署基础前沿研究、重大共性关键技术开发、应用示范和国际合作等内容。
针对任务中的研究内容,以项目为单位进行申报。项目设1名项目负责人,项目下设课题数原则上不超过5个,每个课题设1名课题负责人,每个课题参研单位原则上不超过5个。
各申报单位统一按指南二级标题(如1.1)的研究方向进行申报,申报内容须涵盖该二级标题下指南所列的全部考核指标。
本专项2016年拟启动公开择优的重点任务为: 1.空天车地信息一体化轨道交通安全与控制关键技术 总体目标:突破基于空天车地信息一体化的轨道交通系统运行状态全息化感知与信息集成应用技术;初步建成具备空天车地 — 4 —
一体化协同创新与综合试验能力平台,形成大范围状态实时感知、灾害识别预警、应急指挥调度、管理可视化的安全保障系统、装备和标准规范体系。突破基于动态间隔的运能可配臵列车运行控制技术;研制控制设备一体化、小型化轨旁设备、间隔可动态配臵的具有高可维护性的新型列车运行控制系统。满足承担国防安全功能的西部和边远地区低密度运输路网的安全、高效运营和持续能力保障的需求。
1.1 基于空天车地信息协同的轨道交通运营与安全综合保障技术
总体研究内容:面向空天车地信息一体化的静动态滞空平台技术;基于空天车地信息一体化的轨道专用网络技术;轨道交通系统状态信息实时获取与监测技术;轨道交通系统状态信息融合与处理技术;基于专网的车辆移动互联技术。
总体考核指标:构建满足轨道交通列车安全运行大范围、全天候、全覆盖、全方位实时监测需求的临近空间静态滞空平台与动态滞空平台、传感载荷及数据传输网络系统,以及轨道交通全息化安全保障和运营支持系统;进行应用示范验证。
1)面向空天车地信息一体化的静动态滞空平台技术 研究内容:研究面向先进轨道交通信息服务的专用临近空间静态滞空浮空器平台与动态滞空无人机平台的设计、集成和运维技术;突破临近空间静态滞空平台超长航时、超大载荷、定区域
定航线飞行及精确位臵驻留控制技术,突破动态滞空无人机平台长航时、定区域定航线巡航控制技术;实现对广域先进轨道交通系统的大范围无缝覆盖。
考核指标:静态滞空平台具备20km以上高度6个月以上区域驻留能力,区域驻留控制精度R≤2km,有效载荷能力大于500kg,覆盖面积≥7x105km2,提供有效载荷电源功率≥3kW;具有快速部署能力。专用动态滞空平台具备单次滞空时间≥4h,巡航监测距离≥200km,有效载荷≥10kg,具有快速部署建立应急通信通道及突发现场实时监测能力。
2)基于空天车地信息一体化的轨道专用网络技术
研究内容:研究空天车地立体环境下的信号传输机理,突破空间大范围、长距离宽带通信技术;研究空天车地动态节点一体化协同组网机制,突破空间动态组网、宽带移动接入和异构网关等协议的设计、仿真以及实现技术;研究空天车地网络安全保障技术,突破面向轨道交通安全监测信息的多优先级高效、可靠、安全传输技术以及网络安全预警技术。
考核指标:具备支撑卫星、浮空器、无人机与地面车载网络的一体化协同传输与信息有效共享能力,实现车辆位臵信息、重大安全信息以及列车安全监测信息的全天候接入和传输,临空平台载荷区域覆盖范围不小于300km、覆盖率达100%、高速移动节点业务接入带宽≥2Mbps、空地骨干链路通信带宽≥100Mbps; — 6 —
具备动态组网、一体化信息处理和协同传输的异构网关数据转发速率不低于300Mbps。
3)轨道交通系统状态信息实时获取与监测技术
研究内容:研究基于静、动态滞空平台的天空地轨道交通系统状态信息感知技术,获取列车运行环境信息、基础设施服役状态、列车运行状态信息及周边相关移动体分布态势信息等;研究空天地多维度轨道交通状态监测信息的时空关系、空间立体条件下的传感器布设与优化以及高可靠互联传输技术等。
考核指标:车载及地面监测节点通信带宽≥100Mbps,空天监测节点能够有效覆盖列车及周边基础设施的关键运行状态,监测半径≥300km,地面移动体位臵检测精度≤1m;能够结合相关区域的气象信息、大尺度地质变化等信息,实现立体多维的轨道交通系统状态信息获取与检测,实现轨道异物入侵等关键预警服务,其定点监测分辨率精度≤10cm;巡航监测特定区域与突发事件现场监测预警分辨率可达20cm。
4)轨道交通系统状态信息融合与处理技术
研究内容:研究基于空天车地一体化专网的轨道交通大数据处理技术;研究多元信息融合技术,多传感器协同优化处理与虚拟感知技术,轨道交通监测信息互操作技术,以及基于大数据的轨道交通系统状态辨识评价、预测预警与风险分析技术,全面评价轨道交通系统运行风险状态,并对隐患与风险进行预测评估。
考核指标:建立轨道交通系统运行状态大数据管理与分析系统,具备不同时空维度的轨道交通信息的统一处理、轨道交通运行风险及隐患的建模分析、预测预警与挖掘分析等能力。
5)基于专网的车辆移动互联技术
研究内容:研究车车协同信息交互技术、空天车地高速列车群移动互联技术以及基于车辆移动互联的安全保障技术,实现空天车地一体化传输网络覆盖下的高速列车群车联网。
考核指标:通过车辆移动互联技术,实现车-车、车-地信息无缝共享,支撑列车群关键安全信息的实时共享及主动安全防护和乘客服务信息的交互。
实施年限:不超过4年
拟支持项目数:2项(具有不同技术路线的2个项目)1.2 基于动态间隔的运能可配臵列车运行控制系统技术 总体研究内容:稀疏低运能路网列车运行控制系统关键技术;基于位臵信息融合的动态闭塞系统。
总体考核指标:形成适用于广域稀疏路网高安全性的具有空天车地一体化、多信息融合定位、动态间隔控制的新型列控系统成套装备、仿真测试验证平台、产业化平台;进行应用示范验证。
1)稀疏低运能路网列车运行控制系统关键技术
研究内容:研究多冗余高可靠安全计算技术;研究列控系统可测性设计技术、智能故障分析与诊断算法及运维决策支持系统; — 8 —
研制多核低功耗通用高性能安全计算平台;研究控制设备一体化和小型化技术;研究支持多模式的高可靠无线数据传输技术及低传输质量下数据恢复技术;研究列控地面设备虚拟化及快速动态重构与配臵技术及车载设备适配技术;研究列控系统动态闭塞配臵技术及运能动态配臵的智能综合调度技术。
考核指标:关键技术验证平台及原型样机、系列设备标准和示范验证。
2)基于位臵信息融合的动态闭塞系统
研究内容:研究车车通信的车载设备主动冗余安全防护技术,研究多种信息融合的列车定位技术;研究列车完整性自检测技术。研究基于移动闭塞的移动授权生成技术及故障安全防护机制;研究可动态配臵的列车安全制动模型及安全防护技术。研制新型列控系统成套装备、仿真测试验证平台。
考核指标:安全设备满足SIL4级安全完整度等级要求;系统可用度达到99.999%;运营时速80至250公里;运营追踪间隔可动态配臵,最小列车追踪间隔不大于三分钟。
实施年限:不超过4年 拟支持项目数:1-2项
申报要求
1.申报说明
1)鼓励以企业为项目牵头单位的产学研用联合体进行申报。2)各申报单位严格按指南规定的研究内容进行申报,各项目申报内容必须覆盖指南规定的项目范围和相应的研究内容与考核指标。
3)项目牵头单位,负责项目的组织实施和对项目课题进行过程管理,对项目总体目标负责,并承担落实相关项目实施所需的配套资金的责任。
4)各项目申请的国家财政资金原则上按照不低于12%用于基础研究、58%用于技术攻关与装备研制、不超过30%用于支持典型应用示范;鼓励各申报单位自筹资金配套。
2.申报咨询
第四篇:先进轨道交通重点专项2016时速400公里及以上高速客运装备关键技术项目公开任务申报指南
附件一
先进轨道交通重点专项2016
时速400公里及以上高速客运装备关键技术项目公开任
务申报指南
作为最具可持续性的交通运输模式,轨道交通是国民经济大动脉、大众化交通工具和现代城市运行的骨架,是国家关键基础设施和重要基础产业,对我国经济社会发展、民生改善和国家安全起着不可替代的全局性支撑作用。轨道交通科技持续自主创新更是国家通过实施“创新驱动发展”战略全面支撑“新型城镇化”、“区域经济一体化”、“一带一路”、“制造强国”和“走出去”战略的全局性重要基础保障;对建设创新型国家、构建现代综合交通运输体系、在经济社会发展新常态下实现全面建成小康社会目标,具有重大意义。
目前我国已基本掌握了高速客运装备关键技术,根据国内需求研制出20余种型号,涵盖时速200~250公里、300~350公里的各型动车组产品,动车组运营里程超过世界总和的60%,取得了良好的社会经济效益。本项目依据《国家中长期科学和技术发展规划纲要(2006-2020年)》和国家“十三五”科学和技术发展规划,以及2016年国家重点研发计划“先进轨道交通”重点专项,满足高速列车“走出去”的战略需求,开展时速400公里及
以上高速客运装备关键技术研究。
本项目的指导思想是:以满足国家战略需求为目标,以国内外市场需求为导向,在既有轨道交通科技发展成果基础上,以产学研用协同创新为主要模式,强化国际合作创新,通过在轨道交通系统安全保障、综合效能提升、可持续性和互操作等战略技术方向进行覆盖“基础前沿研究、共性关键技术研发、集成与应用示范”的全链条部署、聚焦支持、有序推进,全面提升我国轨道交通系统技术、设施、装备和运营的安全、效能、绿色、体系化和国际化水平,支撑国家“十三五”发展战略的全面实现。
本项目总体目标是:系统掌握满足“一带一路”沿线国家不同需求特征运营列车的系统集成、车体、转向架、牵引制动、供电、列车控制、列车运行控制、系统运维等关键技术及跨国互联互通运营的适应性技术,形成相关的设计、制造、试验、评估、运用、检修维护等技术标准体系;完善和健全既有相关试验验证手段与平台;完成运营时速400公里跨国联运高速列车和变轨距转向架研制。完成运营速度400公里以上速度级的高速动车组样车和变轨距转向架研制,列车人均能耗和车内外噪声水平达到国际领先水平;初步建成高速列车装备领域具备面向全球创新资源凝聚、技术辐射、产业转移和创新过程协同功能的创新能力网络化平台。
本项目研究内容:根据“先进轨道交通”重点专项中《时速 — 2 —
400公里及以上高速客运装备关键技术》要求,主要部署了变结构走行系统列车关键技术研究;列车多效应耦合及智能控制技术研究;基于噪声主动控制的综合舒适度控制技术研究;基于“重量-阻力-动力”多目标均衡的综合节能技术研究;面向高安全性的走行、结构、防火、电磁兼容技术研究;跨国互联互通高速动车组装备与运维系统研制等六项课题。
针对以上各课题理论及基础技术研究内容,拟对以下研究任务进行公开择优,拟承担相应研究任务的各申报单位统一按指南二级标题(如1.1)的研究方向进行申报,申报内容须涵盖该二级标题下指南所列的全部考核指标。
本项目2016年拟公开择优的重点任务及其所属课题如下: 1.变结构走行系统列车关键技术研究
课题研究内容:研究变轨距转向架各部件协同、悬挂参数按需调节与控制技术;研究转向架结构强度、系统可靠、动力响应技术;研究不同线路条件下的轮轨接触关系,轮轨接触关系与车辆悬挂参数之间的匹配技术。
课题考核指标:完成变结构走形系统样件研制及装车滚振和走行试验;转向架的临界速度不低于600km/h,适应轨距600-1676 mm,并对轨底坡和曲线半径具有良好的适应性。
1.1不同线路条件下的轮轨接触关系及与车辆悬挂参数之间的匹配技术研究
研究内容:建立适用不同轨距轨道系统的车轮踏面优化方法,设计适于跨国联运的高速车轮踏面。建立考虑变结构走行系统的轮轨滚动接触力学模型,研究不同轨道运行参数和服役环境下时速400公里高速轮轨滚动接触行为,提出不同运行条件下轮轨损伤维修限值。基于适用于跨国联运的新型轮轨关系,研究悬挂参数的适应性,对轮轨匹配参数敏感性进行多目标优化,确定适应新型轮轨匹配关系的动力学悬挂参数。
考核指标:提出适用不同轨距轨道系统的车轮踏面优化方法,设计适于跨国运行的高速车轮踏面;提出不同线路条件下轮轨关系和车辆悬挂参数之间的匹配方法,提出适应新型轮轨匹配关系的动力学悬挂参数;提出不同运行条件下轮轨损伤维修限值。
发表论文3-5篇。申请专利1-2项。实施年限:不超过4年 拟支持项目数:1项
2.列车多效应耦合及智能控制技术研究
课题研究内容:研究牵引动力系统多效应耦合仿真技术;建立列车动力学模型和能耗模型,研究列车启动、加速度、惰行、制动以及不同载荷、速度和线路参数等工况条件对牵引力、牵引功率、电压、电流、效率等要素的影响规律;研究运行过程中列车牵引动力的动态实时匹配管理和控制。
课题考核指标:确定列车多效应耦合计算分析方法,提出基于节能的列车智能控制优化方案,实现能耗降低10%。
2.1多效应耦合及智能控制技术研究
研究内容:研究高速运行及环境变化情况下轨面黏着系数、系统电气参数的变化机理及其自适应智能控制策略;研究列车高速运行及多车耦合情况导致的极端供电条件对高速列车稳定运行的影响及主动安全控制措施;研究多效应耦合因素共同作用下的牵引动力系统仿真模型构建方法;列车动力学性能优化等多约束条件下的列车牵引动力的动态实时匹配管理及再分配策略。
考核指标:确定列车多效应耦合仿真分析方法,提出基于节能的列车智能控制优化方案,实现能耗降低10%。
发表论文3-5篇。申请专利1-2项。实施年限:不超过4年 拟支持项目数:1项
3.基于噪声主动控制的综合舒适度控制技术研究
课题研究内容:研究不同工况下车内噪声模拟仿真方法;研究高速列车车外噪声源定位于主动控制及各种噪声源的位臵及在噪声中占得比重;研究车内噪声特性、噪声传入的途径,及降低车外噪声传入车内的方法;研究基于噪声的综合舒适度试验方法及评估方法。
课题考核指标:提出车内噪声控制技术评估优化系统方案,通过新技术应用,既有时速350公里列车车内噪声在既有水平基础上降低2dB(A)以上,时速400公里高速列车客室噪声水平不高于既有时速350公里高速列车客室噪声水平。
3.1时速400公里高速列车车内噪声模拟与仿真技术研究 研究内容:针对时速400公里高速列车,研究整车低噪声正向设计理论与方法,研究宽频域、广温域的高速列车车内噪声预测建模方法,研究车内噪声传递路径,研究速度、温度、线路类型与区段等不同工况下的车内噪声机理,研究时速400公里高速列车组合车体低噪声设计方法和结构减振降噪关键技术。
考核指标:掌握整车级别、涵盖50~5000Hz “低-中-高”宽频域、广温域(-50℃至+40℃)的车内噪声建模、预测与验证等先进仿真技术与方法;掌握时速400公里高速列车组合车体结构低噪声设计方法和减振降噪关键技术。
发表论文3-5篇。申请专利1-2项。实施年限:不超过4年 拟支持项目数:1项
4.基于“重量-阻力-动力”多目标均衡的综合节能技术研究 课题研究内容:研究高速列车轻量化材料应用技术;研究高速列车启动阻力分布特性及形成机理,建立列车外形结构对设计 — 6 —
参数—气动性能—运行速度广义映射模型,研究多目标气动优化设计、列车细部结构气动减阻精细优化及流动控制减阻技术;研究高速列车动力系统配臵优化技术;研究高速列车“重量—阻力—动力”等多目标节能匹配技术。
课题考核指标:形成高速列车基于“重量—阻力—动力”多目标均衡的综合节能技术和标准规范,与既有时速350公里高速列车相比实现单位人公里节能10%以上。
4.1 高速列车“重量-阻力-动力”等多目标节能匹配技术研究 研究内容:建立高速列车机电耦合动力学模型、运行阻力快速预测模型及综合节能系统指标评价体系,研究高速列车运行能耗构成、影响因素及权重,提出高速列车“重量-阻力-动力”多目标均衡的综合节能控制策略。
考核指标:形成高速列车基于“重量-阻力-动力”多目标均衡的综合节能技术方案与控制策略。与既有时速350公里高速列车相比,实现单位人公里能耗降低10%。
发表论文3-5篇。申请专利1-2项。实施年限:不超过4年 拟支持项目数:1项
5.面向高安全性的走行、结构、防火、电磁兼容技术研究 课题研究内容:研究面向安全性的走行系统设计、结构疲劳
可靠性、列车安全防火、电磁兼容和列车主动安全设计技术;搭建具有世界先进水平的轨道车辆及其部件碰撞试验研究平台,研究高速列车关键结构和部件材料的损伤容限评价技术;研究列车被动安全防护评估与设计技术。
课题考核指标:完成时速400公里以上的走行系统技术方案、车体及转向架的结构疲劳可靠性优化方案。提出基于目前高速动车组的电磁兼容优化方案,研制满足电磁兼容性测试试验的现场装配。完成列车安全性主动控制装臵方案及相应样件试制。搭建具有世界先进水平的轨道车辆碰撞试验研究平台。研发高速列车防脱轨装臵和具有耐撞击吸能结构的高速列车。
5.1 时速400公里转向架构架载荷谱研究
研究内容:研究覆盖构架变形特征的载荷谱基本力系构成模式,从构架模态特征、应力分布、结构强度、疲劳寿命等方面系统研究400km/h转向架构架动态行为和应力、载荷特征;基于我国200km/h~350km/h高速动车组转向架的载荷特征和关键部位损伤积累规律,研究建立400km/h转向架构架载荷谱。
考核指标:建立400km/h转向架构架损伤一致性载荷谱的方法,形成400km/h转向架构架载荷谱。
发表论文3-5篇。实施年限:不超过4年 拟支持项目数:1项
5.2高速列车被动安全设计及试验评估技术
研究内容:基于多国不同环境、线路、轨道以及列车防护碰撞标准要求,以现有的设计仿真、碰撞试验平台为基础,开展列车碰撞能量管理分配方法研究;开展高速列车撞击力传递路径及能量流动规律、各车辆能量控制策略及多体耦合碰撞规律研究;开展乘员碰撞动力学响应、损伤机制及保护对策研究;开展钩缓、防爬吸能装臵、车体端部结构多级可控有序变形吸能设计与试验研究;开展高速列车碰撞试验平台测试及验证技术研究;开展多车辆-乘员-线路-环境碰撞大系统环境下的碰撞安全评估研究。
考核指标:设计满足EN15227标准耐撞性要求的高速列车技术方案,提升高速列车碰撞试验平台能力并完成吸能装臵及车辆大部件结构型式试验,评估时速400公里高速动车组耐撞性能。
发表论文3-5篇。申请专利1-2项。实施年限:不超过4年 拟支持项目数:1项
第五篇:数控机床专项2013年课题申报指南
“高档数控机床与基础制造装备”
科技重大专项 2013课题申报指南
“高档数控机床与基础制造装备”科技重大专项
实施管理办公室 二〇一二年四月
第一章 申报须知
一、指南说明
“高档数控机床与基础制造装备”科技重大专项(以下简称“数控机床专项”)根据《国家中长期科学和技术发展规划纲要(2006-2020年)》的要求设立,其内容的依据是国务院常务会议审议通过的《数控机床专项实施方案》。
本次发布的课题申报指南,通过评审选择课题承担单位。
二、申报条件
1、凡在中华人民共和国境内注册、具有独立法人资格的内资或内资控股的生产企业、事业单位、大专院校等均可申报,不接受个人申报。
2、对课题责任单位的要求
(1)申报单位须是相关领域的生产企业或研究单位,具备较强的研究开发能力、良好的运行管理机制,能够提供足够数量的配套资金和相关的配套条件,单位财务状况良好。
(2)成立时间在2010年4月1日(含)之前。
3、对课题组长的要求
(1)具有中华人民共和国国籍;(2)1952年4月1日(含)以后出生;(3)具有副高级(含)以上职称;
(4)每年(含跨连续)离职或出国的时间不超过3个月;(5)过去三年内在申报和承担国家科技计划项目中没有不良信用记录。
(6)中央和地方各级政府工作人员不得作为课题负责人及主要参加人员申报课题。
(7)为保证课题组长及主要研究人员能将主要精力投入本专项课题研究工作,数控机床专项在研课题的课题组长,不得作为本次申报的课题组长;申报课题的课题组长及主要研究人员,已参与数控机床专项的课题数不超过两项;课题组长及主要研究人员参与数控机床课题投入时间不超过100%。专项总体组专家不得作为课题组长申报课题。
(8)为避免分散资源,鼓励各单位在自身优势领域深入开展研究工作,建议各申报单位集中力量参与本单位优势领域课题的申报与研究工作。各单位(包括企业、高校和科研院所)应避免本同时牵头或参与多项课题的申报。
(9)目前仍有在研(即2013年1月之后进行验收)课题的责任单位,如在同一技术领域有2项以上尚未验收的课题,原则上不得申报专项2013课题。
4、鼓励“产、学、研、用”联合申报课题。多个单位联合申报的,各方须签订联合申报合作协议,明确约定课题申报单位、参与单位承担的研究任务、考核指标、专项经费比例和知识产权归属等,并作为课题申报书的附件。
5.每个申报课题须对所研究的内容进行科技查新,并提供由部省级以上科技查新部门出具的查新报告,查新时间应在2012年1月1日以后。
6、申报单位应按照指南的要求提供相应的配套经费,否则不予受理。
7、课题申报书应经课题责任单位所在省(自治区、直辖市)或计划单列市工业主管部门盖章并签署意见。
8、关于课题申报名称的要求:申报单位应针对各自申报内容的主要特
点,在所申报课题名称上添加相关定语或使用具体名称,原则上不要直接使用指南上的课题名称。
9、课题预算书请按照《民口科技重大专项资金管理暂行办法》(以下简称“办法”),由申报单位财务部门组织编写;申报事前立项事后补助支持方式的课题,办法中规定,在课题验收前一般只拨付不超过中央财政经费30%的启动经费,其余中央财政经费待通过验收后方予拨付。
10、申请事后立项事后补助支持方式课题的申报单位,只需编报课题申报书,不必编报课题预算书。
11、专项实施管理办公室将对课题申报书进行形式审查。凡不符合申报要求的,视为无效,不进入评审程序。
形式审查的要点公示如下:
(1)课题组长应具有中华人民共和国国籍(千人计划引进人员除外),年龄在60岁(含)以下,具有副高级(含)以上职称;课题组长应为课题责任单位员工;
(2)已承担(在研)数控机床专项的课题组长,再次作为课题组长申报;申报课题的课题组长及主要研究人员,已参与数控机床专项的课题数超过两项;课题组长及主要研究人员参与数控机床专项课题投入时间累计超过100%;以上三类情况视为形式审查不合格;
(3)课题申报书:封面应加盖课题责任单位公章;“
一、课题基本信息”,必填;“
十、审核意见”,法定代表人签字、加盖单位公章,省(自治区、直辖市)或计划单列市工业主管部门盖章并签署意见;“
十一、声明”课题组长签字、课题责任单位法定代表人签字;“承诺书”,法人代表、课题组长、财务负责人签章;“中央财政资金以外其他渠道资金来源证明”,加盖出资单位(自筹、地方配套)公章;
(4)课题预算书:封面课题责任单位盖章、法人代表、课题组长、财务负责人签章;(5)企业须附营业执照,大学及科研院所可附营业执照或组织机构代码证复印件(须加盖公章,并附在课题申报书后);
(6)申报条件中如要求地方配套资金比例的,须提供地方配套资金承诺函(原件至少一份,附在课题申报书中);
(7)多个单位联合申报的,须提供联合申报合作协议(原件至少一份,必须包含经费分配比例,附在课题申报书后);
(8)科技查新报告(原件至少一份,由省部级以上有资质的科技查新部门出具,委托查新时间应为2012年1月1日以后,附在课题申报书后);
(9)申报条件中如要求提供采购合同的,则必须提供(附在课题申报书后);
(10)凡提供自筹经费的企业单位(牵头及参加单位),需附加盖公章的2010、2011两个财务报表(资产负债表、损益表和现金流量表,附在课题预算书后);
(11)申请中央财政经费支持的方式,应与课题指南中的要求一致;(12)课题申报书和课题预算书数据应保持一致。
三、申报要求
1、课题申报单位通过所下载的申报软件编制相关申报材料,须提交下列申报资料,并按顺序装订:
(1)《数控机床专项课题申报书》;
国家或部省级以上科技查新部门出具的查新报告(原件至少一份,附在课题申报书后);
申报单位(含参加单位)营业执照(大学或科研院所可提供组织机构代码证)(复印件,附在课题申报书后);
联合申报合作协议(原件至少一份,必须包含经费分配比例,附在课题申报书后);
自筹及地方配套资金承诺函(原件至少一份,附在课题申报书中); 中央以外渠道资金来源证明(原件至少一份,附在课题申报书中) 其他附件。
(2)《国家科技重大专项项目预算书》(事后立项事后补助课题不必填报);
凡提供自筹经费的企业单位(牵头及参加单位),需附2010、2011两个的财务报表(资产负债表、损益表和现金流量表,附在课题预算书后); 其他附件。
2、申报文件一律用A4纸,宋体小四号字打印,双面印刷(含附件),必须胶订成册,不要加塑料封皮。
3、课题申报书一式十二份(正本一份,并在封面注明,副本十一份);课题预算书一式五份(正本一份,在封面注明,副本四份);以上两类申报文件请分别装订;并附电子版(光盘)一份,光盘标签及电子版文件名称应为:“课题号—单位简称—课题名称”。
4、申报材料应经所在省(自治区、直辖市)或计划单列市工业主管部门审核汇总,行文统一报送至专项实施管理办公室。
5、申报材料报送时间为2012年5月23日-24日,5月24日17:00时截止(不接受邮寄申报材料),过时不予受理。
6、申报材料送达地址
地址:北京市西城区百万庄大街22号3号楼10层会议室 邮 编:100037 联系人及联系电话:王 心 010-88379309 吴振凯 010-88379305 宋桃桃 010-88379326 申报软件技术支持联系方式:
王晓飞 电话:010-64882018转807 手机:*** 徐耸 电话:010-64882018转804 手机:*** 预算编报系统软件技术支持:
联系电话:010-84263636-1(煤科总院软件所)
申报过程中,如对课题申报指南和申报程序有疑问,请及时与联系人进行联系。6
第二章 课题申报指南内容
课题1 大型翻板卧式加工中心
1、研究目标
针对大型航空结构件卧式加工工艺及设备需求,对国产数控系统、功能部件进行应用验证,研制大型翻板卧式加工中心,掌握相关核心技术,并进行生产试验验证。
2、考核指标
(1)工作台规格(宽度×长度): 2000mm×4000mm,工作台承载≥2000Kg;行程:X/Y/Z≥4000/2000/600mm;主轴:转速≥10000r/min。
工作台规格(宽度×长度): 2000mm×6000mm,工作台承载≥3000Kg;行程:X/Y/Z≥6000/2000/600mm;主轴:转速≥10000r/min。
机床几何精度满足飞机结构件精度要求;机床定位精度(X/Y/Z)≤0.040/0.030/0.020mm,机床重复定位精度(X/Y/Z)≤0.020/0.015/0.010mm;翻板重复定位精度≤0.080mm。
(2)针对两种规格分别完成1台样机试制;对国产数控系统和功能部件(丝杠、导轨、转台、刀库、主轴五类部件中至少选配三种,不包括自制及集团内部单位配套部件)进行应用验证;加工用户典型试件,精度符合HB5800-99要求。
(3)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时(刀库100万次)以上的模拟实际工况运行试验,并编写试验报告。
(4)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
(5)满足用户使用要求,所有机床在用户处实际应用一年以上方可申请验收。
(6)形成5项以上技术标准(企业标准、行业标准、国家标准)、5项以上发明专利。
(7)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容 研究航空结构件加工工艺(加工工艺方案、加工工艺参数、加工程序、工装、刀具及工件检测等);研究机床总体布局;研究机床关键结构,对关键部件引入可靠性设计理念;针对性的进行相关数控系统功能试验研究。整机结构动静刚度及优化设计技术、工作台翻转机构、大排屑量的排屑装臵、切削热变形及补偿技术的研究。
4、实施期限
2013年1月-2016年12月
5、课题设臵及经费要求
拟支持1项课题研究;中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究,自筹与地方配套资金合计数与中央财政投入经费比例不低于1:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政经费支持方式:前补助。
6、申报条件
课题牵头单位应是国内机床制造企业或飞机制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位须针对指南提出的全部研究内容和考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件);参加本项课题研究的每一个数控机床主机企业均应提交本单位制造的五轴联动加工机床 “S试件”检测报告(至少1份,由国家级或行业级检测机构出具)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。要求落实最终用户(应为国内主要飞机制造企业)。
课题2 国产高档数控机床与数控系统在飞机结构件制造中的研究应用
1、研究目标
构建面向多主机厂的国产数控机床数字化生产线,实现国产数控机床在飞机结构件加工中批量应用;构建基于用户生产环境的国产高档数控系统测试平台,建立数控系统生产应用测试规范,实现国产数控系统在飞机结构件加工中的研究应用;突破系列关键技术并技术集成,实现共性技术成果的规范化和工具化,开发国产数控机床应用技术集成平台,为国产数控机床与数控系统供应商提供面向航空制造的整体解决方案,提升机床行业的整体技术水平、服务能力和用户企业的技术水平。
2、考核指标
(1)构建数控系统试验平台一套,配臵不少于3种国产高档数控系统,形成面向飞机结构件制造的数控系统应用测试规范一套。
(2)构建国产数控机床飞机结构件数字化批量生产线不少于3条,用于飞机框、梁、壁板等结构件的加工。3条生产线应用国产数控机床数量不少于50台,其中五轴加工机床不少于15台。国产数控系统配套比例不低于30%(其中配套国产五轴数控系统应用不少于3套),国产功能部件(丝杠、导轨、转台、刀库、主轴五类部件中至少选配三种,不包括自制及集团内部单位配套部件)配套比例不低于10%,国产刀具配套比例不低于60%。
(3)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时(刀库100万次)以上的模拟实际工况运行试验,并编写试验报告。
(4)提出飞机结构件加工机床和生产线可靠性评价要求,国产机床设备完
好率不低于80%。课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
(5)建设面向飞机主机厂的国产高档数控机床应用技术支持平台,实现多轴联动加工、故障预警与诊断、在线监测及零件质量控制、数字化生产管理等技术的集成。
(6)满足用户使用要求,所有机床在用户处实际应用一年以上方可申请验收。
(7)形成20项以上技术标准(企业标准、行业标准、国家标准)、30项以上发明专利。
(8)课题各研究单位建立起不少于30人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人50人以上。
3、研究内容
(1)建设国产高档数控系统测试平台,研究基于用户生产环境的数控系统测试技术,并进行基于生产环境的国产数控系统功能扩充和工程化应用测试,实现数控系统远程监控、信息实时采集、状态监测与故障预警、精度控制与补偿、自适应控制等在国产高档数控系统的集成,并进行生产验证与推广应用。
(2)开展基于国产高档数控机床的数字化制造技术研究,面向批生产现场的信息化、网络化制造技术研究;建成智能生产管控中心,实现国产生产线的远程实时监控,实现数控机床网络化加工。
(3)结合航空制造企业设备维护制度,提出飞机结构件加工机床和生产线可靠性评价要求;开展传感器网络化技术研究,实现对数控机床故障的预警、记录及回放,提高加工效率和设备利用率。
(4)制定基于S样件切削的五轴联动加工机床精度检测规范;研究航空零件加工过程的精度预测、控制、补偿及在线检测技术,建立生产线零件加工过程质量保障技术体系。
(5)建立国产数控机床高性能加工及成果转化平台,扩展工艺知识库和切削参数库,重点开展典型飞机结构件基于特征的智能编程、加工过程仿真、精度与质量控制、绿色制造等技术在航空制造业的推广应用。
4、实施期限
2013年1月-2016年12月
5、课题设臵及经费要求 拟支持1项课题研究;中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究,自筹与地方配套资金合计数与中央财政投入经费比例不低于1:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:前补助。
6、申报条件
课题牵头单位应是国内飞机制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位须针对指南提出的全部研究内容和
考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件);参加本项课题研究的每一个数控机床主机企业均应提交本单位制造的五轴联动加工机床“S试件”检测报告(至少1份,由国家级或行业级检测机构出具)。原则上申报课题的参与单位不超过8家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。
课题3 飞机复杂结构件数控加工成套生产线
1、研究目标
推进“十一五”重大专项主机类产品的产业化,集成“十一五”进行的切削工艺、刀具的相关研究及各科技计划进行的有关数据库成果,通过航空结构件加工工艺、中高档数控产品开发和关键技术、航空结构件成线技术等研究,提升国产数控系统和国产数控机床的综合性能,提高航空结构件/系统件的加工效率和加工质量,实现国产中高档数控机床在航空领域的广泛应用;同时针对网络化管理系统、设备状态实时监控、设备保障体系等成线关键技术开展研究。在航空制造企业内应用国产中高档数控机床建成面向航空结构件/系统件加工的生产线并进行示范推广,为国产中高档数控机床设计制造水平提升提供支撑。
2、考核指标
(1)开发及应用不少于4个种类、45台以上面向飞机结构件加工的高档数控机床。
(2)完成钛合金/铝合金航空结构件高效加工工艺技术研究,形成支撑生产线运行的数据库。研究内容包括基于三维模型的工艺设计技术、国产数控机床加工仿真技术、国产设备后臵优化技术、建立切削参数数据库等,以上研究内容需在本课题研发的生产线上进行验证。
(3)完成国产高档数控机床DNC传输及监控管理系统、生产制造及执行管理系统、集成物流系统、自动上下料、半自动化搬运、生产线集成关键技术等技术研究,以上研究内容需在本课题研发的生产线上进行验证。
(4)组建飞机结构件数控加工成套生产线,实现基于MES的生产线集成;该生产线设备供应单位至少包括两家以上国产数控系统厂家,三家以上主机厂。所有设备中国产数控系统配套比例不低于50%,国产功能部件(丝杠、导轨、转台、刀库、主轴五类部件中至少选配三种,不包括自制及集团内部单位配套部件)配套比例率不低于30%,国产刀具配套比例不低于80%。
(5)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时(刀库100万次)以上的模拟实际工况运行试验,并编写试验报告。
(6)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
(7)满足用户使用要求,所有机床在用户处实际应用一年以上方可申请验收。
(8)形成20项以上技术标准(企业标准、行业标准、国家标准)、30项以上发明专利。
(9)课题牵头单位建立起不少于30人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人50人以上。
3、研究内容
利用重大专项在数控系统、国产功能部件、可靠性技术方面的研究成果,开发面向航空结构件的五轴联动钛合金强力切削机床、高速多轴联动立卧式加工中心及精速高效数控车床及车削中心,配以自动化物流系统,形成加工飞机大型钛合金结构件生产线,加工铝合金结构件生产线,加工精密系统结构件生产线。进行钛合金/铝合金航空结构件高效加工工艺技术研究,包括基于三维模型的工艺设计技术研究、国产数控机床加工仿真技术研究、国产设备后臵优化技术研究、多轴联动数控加工快速装夹技术研究、切削参数数据库构建技术研究等。面向多系列航空结构件加工的国产高档数控机床成线支撑技术研究,包括国产高档数控机床DNC传输及监控管理系统研究、生产制造执行及管理系统、航空结构件的加工生产线集成关键技术等研究
4、实施期限
2013年1月-2016年12月
5、课题设臵及经费要求 拟支持1项课题研究;中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究,自筹与地方配套资金合计数与中央财政投入经费比例不低于1:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:前补助。
6、申报条件
课题牵头单位应为国内机床制造企业,具有上述领域的研究基础,具备较强的专业研发团队和完善的试验、研究和开发条件。申报单位须针对指南提出的全部研究内容和考核指标进行申报。牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件);参加本项课题研究的每一个数控机床主机企业均应提交本单位制造的五轴联动加工机床“S试件”检测报告(至少1份,由国家级或行业级检测机构出具)。原则上申报课题的参与单位不超过8家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。
课题4 飞机钛合金尾段制造关键成套装备及示范应用
1、研究目标
针对飞机钛合金尾段制造装备能力瓶颈,研发大型钛合金薄壁构件塑性成
形、高效焊切、清洁热处理、数字化装配的成套装备与技术,实现钛合金尾段的精准制造,完成典型零件的生产应用,提升飞机关键制造装备的自主保障能力。
2、考核指标
(1)突破钛合金薄壁构件高效等温热成形、双作用激光焊接、高真空热处理并联五轴自动钻铆等关键工艺,开发钛合金塑性成形、高效焊切、清洁热处理、数字化装配四大工艺9台套关键制造装备,形成飞机钛合金零部件关键制造装备自主保障能力。
1)开发钛合金薄壁件拉伸成形装备1台。将钛合金薄壁件热拉伸成形工艺和热蠕变成形工艺相结合,实现高强低塑钛合金薄壁件的一次精确成形,贴模精度小于0.3mm。
2)开发钛合金型材精密三维拉弯装备1台。突破空间复杂钛合金型材的精确成形工艺,拉伸精度:±1mm。
3)开发钛合金薄壁结构大型超塑成形/扩散连接装备1台。针对飞机大尺寸多层空心构件,采用超塑成形/扩散连接技术实现一次性整体成形,主机公称压力9000KN,工作台尺寸2500×1800mm,最高工作温度1050‴。
4)开发飞机钛合金构件等温热成形成套装备1套。实现模具在热态下的快速装卡以及预热、成形、缓冷环节的热态转运,较进口单台热成形设备的生产效率提高2倍以上。
5)开发整体壁板T型接头双作用激光焊接装备1台。突破薄壁板焊接热变形控制工艺瓶颈,具备筋条自动定位压紧和焊缝自动跟踪功能,实现钛合金整体壁板T型接头空间曲线一次焊接双侧成型,加工范围4000mm×2300mm×750mm。
6)开发飞机钛合金承力结构件激光修复装备1台。实现飞机钛合金承力结构件的激光快速再制造,节约制造成本,行程5000 mm×2500 mm×1500mm。
7)开发超高压水切割设备1台。实现大厚度、大尺寸钛合金板材高效切割加工及大型结构件的轮廓粗加工,最大切割厚度100mm。
8)开发超大钛合金结构件高真空热处理设备1套。解决超大钛合金壁板类、框类等真空除氢、消除应力热处理问题,实现超大钛合金零件的均衡受热,提高热处理生产效率,有效加热区5000mm×2400mm×1200mm。
9)开发并联五轴高速高效自动制孔铆接系统1台。实现飞机钛合金尾段高效高精度快速制孔、锪窝、装钉、铆接、铣平等工艺,工作范围5000mm×5000mm×2000mm。
(2)结合专项前期成果,针对大厚度钛合金结构件开展高压真空电子束焊接装备示范应用,设备真空室尺寸8500mm×4000mm×2500mm;针对变厚度钛合金方形件焊接及壁板加强筋焊接,开展激光-电弧(TIG)复合焊接设备示范应用,加工范围4000mm×2700mm×1000mm。
(3)开展针对钛合金塑性成形、焊切、热处理、装配制造工艺优化与集成技术研究。结合工艺优化结果,对上述设备的设计制造提出6-8项优化方案。
(4)提供用上述装备制造的飞机钛合金典型零部件50件以上。
(5)每一台(套)设备交付用户使用前,应在设备制造企业处进行2000小时以上模拟实际工况运行试验,并编写试验报告。
(6)课题牵头单位应对投入实际使用的每一台(套)设备的运行故障予以记录,并形成故障统计和分析报告。
(7)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(8)形成20项以上技术标准(企业标准、行业标准、国家标准)、30项以上发明专利。
(9)课题牵头单位建立起不少于30人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人50人以上。
3、研究内容(1)开发飞机钛合金尾段制造关键成套装备。围绕钛合金塑性成形、高效焊切、清洁热处理和数字化装配工艺,开展钛合金薄壁件拉伸成形、大型构件热成形和超塑成形/扩散连接、超大厚度结构件电子束焊接、承力结构件激光修复、大厚度大尺寸钛合金板材高压水切割、高真空度超大结构件真空热处理、并联五轴自动制孔铆接、整体壁板T型接头双作用激光焊接及变厚度结构件激光-电弧复合焊接等工艺技术研究,突破相关装备关键技术,开发关键装备。
(2)研究钛合金构件制造工艺优化与集成技术。基于上述设备,针对钛合金构件制造流程,开展工艺研究,包括基于三维模型的工艺设计技术、工艺参数与知识库技术、工艺仿真技术、工艺与装备融合的集成控制与监测技术、基于轻量化模型的设备使用与维修三维可视化技术、面向航空应用的装备规范化设计技术。
4、实施期限
2013年1月-2016年12月
5、课题设臵和经费安排 拟支持1项课题研究,中央财政投入应主要用于关键技术研究、工艺技术研究、关键技术装备研制等,自筹与地方配套资金合计数与中央财政投入经费比例不低于1:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:前补助。
6、申报条件 课题牵头单位应为国内飞机制造企业,在钛合金零部件生产上具有较强的技术基础和较显著的工作业绩,合作单位在研发钛合金零件制造成套设备和技术具有良好的前期储备,具有完善的试验基本条件和专业团队;申报单位须针对指南提出的全部研究内容和考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过8家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。
课题5 航空发动机叶片数控磨削加工单元
1、研究目标
根据叶片不同区域特征,开发航空发动机叶片全型面无余量/小余量磨削加工单元,包括叶身磨削、进排气边自适应磨削、榫头加工和型面抛光,将叶片数控磨削与叶片在机测量结合起来实现叶片复杂型面精密加工。在满足叶身加工、叶片前后缘加工精度的基础上,实现300mm长度叶片磨削时间不超过60分钟/片的效率要求。
2、考核指标
(1)研制叶片数控磨削机床2台,叶片抛光设备1台。
(2)技术指标: 300mm长度叶片磨削扭转变形量±8'、叶身加工精度<0.03mm、叶片前后缘加工精度<0.05mm、表面粗糙度Ra≤0.4μm、叶片型面线轮廓度≤0.05mm、叶片型面波纹度≤0.01mm;效率指标:磨削加工300mm以下长度叶片的工时不超过60分钟/片;
(3)完成1条叶片磨削生产单元建设、完成4-8种叶片200件以上的磨削加工生产验证;单台机床MTBF≥1500h,Tk≥15000h;至少一台采用国产数控系统、国产功能部件和国产磨料磨具。
(4)每一台(套)机床、数控系统交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上的模拟实际工况运行试验,并编写试验报告。
(5)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统的运行故障予以记录,并形成故障统计和分析报告。
(6)满足用户使用要求,所有机床在用户处实际应用一年以上方可申请验收。
(7)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。
(8)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容
叶片全型面(包含叶身、进排气边、榫头)磨削加工生产线数字化、模块化设计、制造、控制及数据管理技术;叶片磨削成套夹具设计制造及叶片磨削加工变形抑制技术;叶片在机检测及自适应磨削技术;叶片自动抛光工艺技术研究;磨削、抛光表面质量控制及工艺参数优化技术;叶片磨削及抛光工艺过程优化技术;高效高精度叶片检测技术;提出提高生产线可靠性和加工精度稳定性的方法,开展相关技术规范或技术标准研究。
4、实施期限
2013年1月-2015年12月
5、课题设臵及经费要求
拟支持1项课题研究;中央财政投入经费应主要用于关键技术研究、性能测试与工艺技术研究,自筹与地方配套资金合计数与中央财政投入经费比例不低于1:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:前补助。
6、申报条件
课题牵头单位应是国内航空发动机制造企业或机床制造企业,在复杂曲面磨削机床制造、工艺研究和检测技术等领域具有较强的技术基础和技术开发队伍。申报单位须针对指南提出的全部研究内容和考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。
课题6 超快激光微细加工机床
1、研究目标
研发航空发动机关键部件微孔冷加工工艺的数控机床,开展高功率超快激光数控机床的性能和可靠性研究,建立不同材料的航空发动机叶片、火焰筒、喷油嘴等关键部件微孔加工的工艺数据库,增强超快激光器技术水平及国产高端高档数控机床的成套能力。
2、考核指标(1)研究开发3套针对航空发动机不同零件微孔加工的皮秒激光数控机床和1套针对碳化硅陶瓷基复合材料(CMC-SiC材料)微孔加工的飞秒激光数控机床。其中皮秒激光器平均功率:≥50瓦;脉冲宽度:≤10ps;飞秒激光器平均功率:≥20瓦;脉冲宽度:≤500fs。加工圆孔孔径范围:200微米—1500微米;孔径精度:≤2%孔径;深宽/孔径比:≥20:1;加工效率:≥0.002立方毫米/秒;具有簸箕孔、异型槽等加工功能。
(2)皮秒激光数控机床的微孔加工工艺:在国际航空检测标准下,满足镍基单晶材料加工无重铸层、无微裂纹、无再结晶等指标,形成一套完整的加工工艺方法和工艺参数数据库(容量≥1GB)。
(3)飞秒激光数控机床的微孔加工工艺:解决战略型CMC-SiC耐高温材料微孔(直径1mm以下)、微槽等微加工无法加工的技术空白,实现加工后的微孔无氧化层、无微裂纹等目标,形成一套完整的加工工艺方法和工艺参数数据库(容量≥1GB)。
(4)皮秒激光数控机床和飞秒激光数控机床在至少1家航空发动机公司进行示范应用。
(5)课题牵头单位应对投入实际使用的每一台机床的运行故障予以记录,并形成故障统计和分析报告。
(6)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验
收。
(7)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。
(8)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容
通过提升高功率皮秒激光器、飞秒激光器、复合光学扫描模块等超快激光数控机床关键部件的各项性能指标及可靠稳定性,集成开发稳定可靠的(皮秒、飞秒)数控机床;针对航空发动机镍基单晶叶片气膜孔、燃烧室喷油嘴,火焰筒等零部件,研究开发皮秒激光微孔无重铸层、无微裂纹加工机床和工艺解决方案;针对耐高温碳化硅陶瓷基材料的直径小于1mm的微孔加工工艺难题,研究开发飞秒激光高质量微孔加工机床及工艺方法;建立航空发动机关键部件和战略型耐高温碳化硅陶瓷基材料的加工工艺数据库。
4、实施期限 2013年1月-2015年1月
5、课题设臵及经费要求 拟支持1项课题研究;中央财政投经费主要用于产品关键技术研究、性能测试、工艺技术研究与检测验证;自筹与地方配套资金合计数与中央财政经费比例不低于1:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:前补助。
6、申报条件
课题牵头单位应是国内航空发动机制造企业或机床制造企业,课题牵头单位须有研发超快激光数控机床整机开发的基础,具备较完善的试验、激光器制造条件;申报单位应针对指南全部研究内容和考核指标进行申报。牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。要求落实最终用户。
课题7 中小型航空发动机零件铣车加工、检测关键装备研制
1、研究目标
针对中小型航空发动机叶片、叶轮、机匣、盘、轴等关键零件铣削、车削加工和检测的特殊要求,研制中小叶片、叶轮、机匣类零件的五轴加工中心、盘类零件超硬车削机床、细长轴类双主轴双刀塔车削中心,掌握高性机床结构分析设计制造、高速五轴铣削控制及在线测量技术,弱刚性零件定位夹紧、工艺参数优化等技术,并在航空发动机制造企业应用。机床功能、主要技术参数、工作可靠性和稳定性达到国际先进水平。
2、考核指标
研制航空发动机叶片五轴联动加工中心1台、叶轮加工五轴联动加工中心1台、机匣加工五轴联动加工中心1台、超硬材料盘类零件加工精密数控车床1台、细长轴类双主轴双刀塔车削中心1台。
(1)叶片五轴联动加工中心。工作台直径φ320mm;X、Y、Z轴行程:300mm、250mm、640mm;定位精度0.006mm,重复定位精度0.003mm;A、C轴定位精度7″,重复定位精度3″;主轴最高转速:24000r/min;直线轴移动速度30m/min;在线测量精度0.006+0.06×L/1000mm。
(2)叶轮加工五轴联动铣削加工中心。工作台直径:φ480mm,X、Y、Z轴行程:1100mm、500mm、300mm,定位精度0.008mm,重复定位精度0.004mm;A、B轴定位精度8″,重复定位精度4″;加速度1g;最大扭矩130Nm;最高转速:15000r/min;移动速度:X、Y、Z轴48 m/min、40 m/min、40 m/min。
(3)机匣加工五轴联动加工中心。工作台尺寸:800×800mm,X、Y、Z轴行程:1400mm、1200mm、1400mm;定位精度0.006mm,重复定位精度0.003mm;A、B轴定位精度6″,重复定位精度3″;摆动轴摆动范围:A轴-60°~+90°,B轴360°回转;主轴最高转速8000r/min;直线轴移动速度32m/min。
(4)盘类零件超硬数控车。机床主轴跳动:≤0.0003mm,X/Z轴重复定位精度:0.0002mm,运动控制分辨率:0.01μm;最高转速:6000 r/min;回转直径:φ200mm;X、Y轴行程:300mm;直线轴移动速度:15m/min。
(5)长轴类零件双主轴双刀塔车削中心。最大加工直径:φ200mm;第一、第二主轴最高转速: 5000 /5000 r/min;快速进给(X/Z轴)≥42/42 m/min;主轴径向跳动≤0.001 mm;主轴轴向跳动≤0.002mm ;进给分辨率0.0002 mm;刀塔的重复定位精度1.6″;零件最大加工长度1500mm。
(7)完成中小型航空发动机叶片、叶轮、机匣、盘、轴类等5类零件各10件以上的应用验证,机床MTBF≥1500h,Tk≥15000h;五轴联动机床要进行S试件切削,精度满足标准要求;其中至少有2台采用国产数控系统、国产功能部件(丝杠、导轨、转台、刀库、主轴五类部件中至少选配两种,不包括自制及集团内部单位配套部件)和国产刀具。
(8)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时(刀库100万次)以上的模拟实际工况运行试验,并编写试验报告。
(9)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
(10)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(11)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。
(12)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容
掌握中小型发动机关键零件加工机床的结构分析优化技术、多轴动态误差调试与补偿技术、五轴联动机床驱动参数优化技术、高精度静压主轴技术、双驱技术、叶片和机匣零件的自适应夹具技术、叶片叶轮测量技术、叶轮叶片铣削加工及难加工材料盘、轴类车削加工工艺优化与刀具优选技术等研究;提高中小航空发动机叶轮、叶片、机匣、盘、轴类零件的加工效率和质量。
4、实施期限
2013年1月-2015年12月
5、课题设臵及经费要求 拟支持1项课题研究;中央财政投经费主要用于产品关键技术研究、性能测试、工艺技术研究与检测验证;自筹与地方配套资金合计数与中央财政经费比例不低于1:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:前补助。
6、申报条件
课题牵头单位应为国内航空发动机制造企业,具有上述领域的研究基础,具备较强的专业研发团队和完善的试验、研究和开发条件。申报单位须针对指南提出的全部研究内容和考核指标进行申报。牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件);参加本项课题五轴联动加工机床研究的每一个数控机床主机企业均应提交本单位制造的五轴联动加工机床“S试件”检测报告(至少1份,由国家级或行业级检测机构出具)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。
课题8 大型航空发动机机匣成套装备
1、研究目标
针对航空发动机机匣的加工特点,研发适合航空发动机机匣加工特点的国产高效加工及检测装备,掌握此类设备的设计、制造、检测和系统集成等关键技术,主要功能、技术参数与精度指标达到当前国际先进水平。
2、考核指标
研制立式车铣复合加工中心 1台、五轴镗铣加工中心 1台和大型五轴测量装臵1台。
(1)立式车铣复合加工中心
用于航空发动机机匣内外表面的车削加工和端面形状铣削以及孔系加工。加工工件直径φ2500mm,高度1800mm;主轴转速:低速 2-40r/min,高速 40-120r/min;主轴最大扭矩:≥67000Nm,主轴功率:≥30kW ;铣削头扭矩 ≥1000 Nm,铣削头转速:≥4500r/min;定位精度: 0.01mm;重复定位精度:
0.005mm;机床验收标准VDI;快速移动速度:32m/min;空间任意位臵在线测量误差:0.01+8*L/1000;刀库容量≥32把;具有在机测量功能,实现加工尺寸的快速高效测量。
(2)五轴镗铣加工中心
用于航空发动机机匣零件的外轮廓形状铣削、型面及端面装配孔镗铣加工; 工作台:2500×2500mm;最大转速:≥6000r/min;主轴扭矩:≥1400 Nm;主轴功率:≥37kW;回转A轴转动范围:+110°/-110°,轴扭矩:≥1400 Nm;回转C轴:360°;C轴扭矩:≥1400 Nm;X/Y/Z快速速度:32m/min;A轴快速速度:6r/min;C轴快速速度:5r/min;X/Y/Z定位精度: 0.01mm;X/Y/Z重复定位精度:0.005mm;A轴定位精度:5″;A轴重复定位精度:3″;C轴定位精度:8″;C轴重复定位精度:5″;机床验收标准VDI;在线测量误差:0.01+8*L/1000mm;联动轴数:5轴; 刀库容量:≥60把;具有在机测量功能。
(3)大型五轴测量装臵
用于航空发动机机匣零件几何特性检测。测量范围:X轴3000mm;Y轴2000mm;Z轴1500mm;C轴0-360°;B轴0-360°;精度:空间测量精度0.004+4*L/1000mm;旋转轴定位精度2″;装备功能:实现Y轴双驱动机构;可实现两旋转轴无极分度;可激光扫描测量与接触测头互换。
(4)加工出至少两种典型机匣零件10件以上;机床MTBF≥1500h,Tk≥15000h;五轴镗铣加工中心要进行S试件切削,精度满足标准要求;其中至少有1台采用国产数控系统、国产功能部件(丝杠、导轨、转台、刀库、主轴五类部件中至少选配三种,不包括自制及集团内部单位配套部件)和国产刀具,完成一套国产数控系统的在线测量模块。
(5)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时(刀库100万次)以上的模拟实际工况运行试验,并编写试验报告。
(6)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
(7)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(8)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。(9)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容
掌握设计、制造和检测技术;结构分析与优化技术;双驱技术、伺服优化技术、动态精度调试与补偿技术;高温合金加工工艺技术的研究,形成国产刀具在国产设备上加工参数数据库;机匣在机测量技术的研究;
4、实施期限
2013年1月-2015年12月
5、课题设臵及经费要求 拟支持1项课题研究;中央财政投经费主要用于产品关键技术研究、性能测试、工艺技术研究与检测验证;自筹与地方配套资金合计数与中央财政经费比例不低于1:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:前补助。
6、申报条件
课题牵头单位应为国内航空发动机制造企业,具有上述领域的研究基础,具备较强的专业研发团队和完善的试验、研究和开发条件。申报单位须针对指南提出的全部研究内容和考核指标进行申报。牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件);参加本项课题研究的每一个数控机床主机企业均应提交本单位制造的五轴联动加工机床“S试件”检测报告(至少1份,由国家级或行业级检测机构出具)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。
课题9 航空发动机整体叶盘高效强力复合数控铣床
1、研究目标
针对航空发动机整体叶盘类复杂零件加工,研发整体叶盘高效强力复合数控铣床,大幅提高整体叶盘加工精度、效率和表面质量,显著降低制造成本;掌握设计、制造、综合性能检测等关键技术;主要技术参数、可靠性与精度稳定性达到当前国际同类产品水平,并形成批量生产能力。
2、考核指标
(1)加工产品范围为φ500~1000mm整体叶盘高效强力复合数控铣床研制,并在实际生产中应用,采用国产数控系统和国产功能部件(丝杠、导轨、转台、刀库、主轴五类部件中至少选配两种,不包括自制及集团内部单位配套部件);机床MTBF:1500小时;机床Tk:15000小时。
设备技术指标如下:
铣削主轴最高转速≥8000r/min,扭矩≥900Nm; 盘铣最高转速: 250r/min,扭矩≥19000Nm;快移速度(X/Y/Y′/Z轴)≥ 20m/min;工作台尺寸:Φ800mm,承重:1500kg;控制轴数:7,联动轴数:5。
机床主要行程参数:X轴行程≥3000mm,Y轴行程≥1200mm,Y′轴行程≥1200mm,Z轴行程≥1400mm,A轴行程:-15°-105°,B轴行程:-90°-90°,C轴行程:0°-360°。
机床定位精度:X/Y/Y′/Z:±0.02/1000mm,A/B/C:±8〞;重复定位精度:X/Y/Y′/Z:0.016/1000mm,A/B/C:7〞。
(2)开发出与七轴整体叶盘高效强力复合铣数控装备配套的数控加工专用
编程软件系统1套,并申请软件著作权;
(3)采用国产刀具完成2种整体叶盘强力复合铣加工生产验证,使整体叶盘通道开槽粗加工与现有工艺和装备相比,效率提高3-4倍;
(4)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时(刀库100万次)以上的模拟实际工况运行试验,并编写试验报告。
(5)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
(6)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(7)形成5项以上技术标准(企业标准、行业标准、国家标准)、5项以上发明专利。(8)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容
整体叶盘高效强力复合数控铣床设计与制造技术研究;整体叶盘高效强力复合铣机床动态特性研究;整体叶盘高效强力复合加工工艺方法研究;整体叶盘高效强力复合盘插铣切削余量和区间优化技术研究;整体叶盘高效强力复合盘插铣多轴数控加工编程技术研究;整体叶盘高效强力复合盘插铣无干涉刀具轨迹规划技术研究;刀具参数优化和工艺参数优化技术研究及刀具优选与切削参数评价优化软件;整体叶盘高效强力复合铣数控加工编程系统、曲面结构复杂母线刀具宽行铣削等软件开发。
4、实施期限
2013年1月-2015年12月
5、课题设臵及经费要求 拟支持1项课题研究;中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究;自筹与地方配套资金合计数与中央财政投入经费比例不低于1:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:前补助。
6、申报条件 课题牵头单位应为国内航空发动机制造企业,具有上述领域的研究基础,具备较强的专业研发团队和完善的试验、研究和开发条件。申报单位须针对指南提出的全部研究内容和考核指标进行申报,要求落实航空发动机企业做为最终用户。牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件);参加本项课题研究的每一个数控机床主机企业均应提交本单位制造的五轴联动加工机床“S试件”检测报告(至少1份,由国家级或行业级检测机构出具)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研
用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。
课题10 大幅三维空间曲面高功率高精度激光焊接技术与装备
1、研究目标
针对大型夹层筒状与箱体结构合金构件的激光深熔对接焊、角焊、搭接焊等制造需求,重点研究其激光自熔焊、填丝焊及焊缝跟踪工艺技术,研发三维五轴数控焊接机床、三维大幅空间曲面工装夹具、五轴联动数控软件集成控制系统;满足并保证焊接质量与整体变形控制,掌握核心工艺技术;实现三维大幅空间曲面高性能高精度高功率激光焊接的示范应用。
2、考核指标(1)开发三维五轴数控焊接机床和三维大幅面构件工装夹具成套装备一套 不锈钢材料夹层筒状构件规格:最大15m*Ф1.5m,最大厚度10mm。铝合金箱体构件规格:最大1.5*1.5,最大厚度5mm。高架龙门大幅面焊接机床:X、Y、Z轴行程分别为4000mm、2000mm、1000mm,三轴定位精度±0.04,重复定位精度±0.02;三维焊接头:A轴旋转角度±200°,B轴旋转角度±160°,两轴定位精度±0.015°,重复定位精度±0.005°,搭载焊缝跟踪系统:视场深度6.5mm,视场宽度6mm;实现五轴联动控制,使用五轴坐标转换功能,计算补偿聚焦实际控制点的旋转运动带来焊接头中心的附加移动。
(2)激光焊接工艺技术。夹层大型筒状与铝合金箱体构件的激光深熔对接焊、角焊、搭接焊:不锈钢最大熔深10mm,铝合金最大熔深5mm,焊接速度:0.8~2.5/min,激光填丝焊接工艺:实现激光热丝和冷丝填丝焊接。焊缝跟踪:横向分辨率±0.05mm,深度分辨率±0.04mm;焊缝成形良好,焊接变形控制在3mm以内。
(3)设备采用国产控制系统和关键功能部件比例不低于50%。
(4)每一台(套)设备交付用户使用前,应分别在设备制造企业处分别进行2000小时以上以上的模拟实际工况运行试验,并编写试验报告。
(5)课题牵头单位应对投入实际使用的每一台(套)设备的运行故障予以记录,并形成故障统计和分析报告。
(6)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(7)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。
(8)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容 高架龙门大幅面三维焊接机床研究:整机精度和动态性能(刚度)优化研究;三维焊接头研制;基于RTCP的多通道五轴联动控制技术,焊缝轨迹示教录返编程,自诊断、报警、功能检测、急停、故障内容显示及功率在线调试研究;在线
焊缝跟踪系统和送丝系统集成。曲面型面修正、曲面定位、曲面与曲型型材拼接、曲面分段激光拼焊装配工艺优化与工装定位方法研究。高功率激光精密对接焊、角焊、搭接(含未熔透搭接焊接)自熔焊,填丝焊专家数据库建立;高功率激光深熔焊接多相瞬态耦合行为、传热传质、冶金过程与组织性能调控、焊接缺陷控制方法研究;大型夹层筒状构件焊接变形规律和变形控制方法研究。
4、实施期限
2013年1月-2015年12月
5、课题设臵及经费要求 拟支持1项课题研究;中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究;自筹资金及地方配套资金与中央财政投入经费比例不低于2:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:事前立项事后补助。
6、申报条件
课题牵头单位应是国内焊接装备制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位须针对指南提出的全部研究内容和考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。本课题要求落实最终用户并附有采购合同。
课题11 大型复杂薄壁整体构件充液拉深装备
1、研究目标
针对大型铝合金构件整体式制造需求,研究掌握大尺寸复杂薄壁构件整体充液拉深成形工艺技术等,研制大型复杂薄壁构件充液拉深成形工艺及成套装备,总体指标达到国际先进水平。
2、考核指标
(1)研制大型复杂薄壁整体构件充液拉深装备1台。
(2)考核指标:公称力:150000KN;额定拉深力:120000KN;密封压边力:30000KN;最大液室压力:60MPa;液室压力控制精度±0.1MPa;压制速度:1-5.5mm/s;主缸压力控制精度±0.1MPa;压边缸压力控制精度±0.1MPa;主缸位移控制精度±0.1mm;工作台尺寸:4500mm×4500mm;热处理强化铝合金板材成形最大直径:φ3350mm;最大成形高度:1100mm;厚度:2.0mm-6.0mm;贴膜率:≤0.5mm。
(3)对国产控制系统进行使用验证,采用国产关键功能部件比例不低于50%。
(4)每一台(套)设备交付用户使用前,应分别在设备制造企业处分别进行2000小时以上以上的模拟实际工况运行试验,并编写试验报告。
(5)课题牵头单位应对投入实际使用的每一台(套)设备的运行故障予以记录,并形成故障统计和分析报告。
(6)完成φ3350mm运载火箭推进剂贮箱箱底整体式成形制造,满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(7)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。
(8)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容
(1)超大吨位双动柔性充液拉深液压机的研制:超大吨位双动框架式液压机主机结构的优化设计;大型液压机关键零件的优化设计及加工制造技术;主机、模具之间耦合刚度校核;主机超大工件加工制造技术;大流量高精度电液一体化液压控制技术;拉深滑块与充液系统协调泄压技术;超大吨位液压机安全控制与检测技术。
(2)专用柔性数控系统与集成技术研究:专用柔性数控系统集成技术;伺服控制与大流量流体压力控制技术研制;伺服控制系统模块化编程、功能组合及智能故障诊断技术;工艺流程、材料性能与高压、大容量充液拉深参数数据库存储技术;加载路径跟踪技术及数据采集技术;人机交互界面设计;基于模糊控制神经网络的控制技术。
(3)大型充液拉深设备装臵研制:大容量压力转换器高低压腔结构设计分析,强度校核,有限元结构分析及结构的优化设计、大容量压力转换器密封结构设计及密封调解结构设计;伺服液压系统的冷却、加热系统研制;控制系统电气系统硬件设计。
(4)典型大型复杂薄壁件充液拉深工艺研究与工程应用:液室结构设计优化;典型大型复杂薄壁件充液拉深有限元仿真;大尺寸充液拉深模具的结构设计、强度校核及型面补偿优化;典型大型复杂薄壁件充液拉深成形的回弹分析及精度预测;成形的缺陷分析与质量检测;预胀压力、液室压力、位移与压边力加载曲线协调控制技术。
4、实施期限
2013年1月-2015年12月
5、课题设臵及经费要求 拟支持1项课题研究;中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究,自筹与地方政府配套资金合计与中央财政投入经费比例不低于2:1,其中地方政府配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:事前立项事后补助。
6、申报条件
课题牵头单位应是国内成形装备制造企业或用户企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位须针对指南提出的2
个研究方向中的1个方向的研究内容和考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。本课题要求落实最终用户并附有采购合同。
课题12 轿车发动机缸体、缸盖加工生产线制造单元
1、研究目标
由国内重点机床制造企业与重点汽车制造企业合作研发适用于轿车发动机缸体、缸盖柔性加工的高档专用加工中心(制造单元), 包括带A轴和B轴功能。培养和提高国产轿车制造的设备开发和集成能力并进行批量应用、验证与考核。改进国产装备可靠性与精度稳定性,提高国产装备应用率,降低制造成本。掌握国际先进水平高精度发动机加工制造技术,形成整体解决方案能力,降低汽车制造成本,支撑汽车自主化制造。
2、考核指标
(1)主要技术参数: 行程600-800mm;主轴转速≥12000rpm;快移速度≥60m/min;加速度≥7m/s2; 定位精度≤0.005mm;重复定位精度≤0.003mm;换刀时间(C to C)≤4.5s。
(2)完成4台单元的生产验证;机床MTBF达到1500小时。(3)对国产数控系统和功能部件(丝杠、导轨、转台、刀库、主轴五类部件中至少选配两种,不包括自制及集团内部单位配套部件)进行应用验证,国产刀具配套率50%以上。
(4)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时(刀库100万次)以上的模拟实际工况运行试验,并编写试验报告。
(5)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
(6)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(7)形成5项以上技术标准(企业标准、行业标准、国家标准)、5项以上发明专利。
(8)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容 整机结构动静刚度及优化设计技术,模块化设计技术,高速主轴、转台的应用技术,机床热变形及其补偿技术,可靠性技术,控制系统的选型和配臵技术,制造单元的进线适应技术等。
4、实施期限
2013年1月-2015年12月
5、课题设臵及经费要求 拟支持1项课题研究;中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究,自筹与地方政府配套资金合计与中央财政投入经费比例不低于2:1,其中地方政府配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:前补助。
6、申报条件
课题牵头单位应是国内机床制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位须针对指南提出全部研究内容和考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。本课题要求落实最终用户并附有采购合同。
课题13:高精度轿车发动机缸体缸盖柔性生产线
1、研究目标
轿车发动机缸体、缸盖是发动机关键零部件,结构复杂,加工工序多,精度要求高。针对轿车发动机缸体、缸盖生产量大,加工精度要求高、稳定性要求高等特点。拟针对轿车企业年产30万台以上发动机的能力建设需求,在新建的发动机缸体缸盖混流生产线中,使用国产高速加工中心70台以上,并对国产数控系统和功能部件进行应用验证。通过建设培养和提高国产设备开发和集成能力, 并进行批量性应用、验证与考核。改进国产装备可靠性与精度稳定性,提高国产装备应用率,降低制造成本。掌握国际先进水平高精度发动机加工制造技术,形成整体解决方案能力,降低汽车制造成本,支撑汽车自主化制造。
2、考核指标
(1)用于缸体、缸盖加工的高速卧式加工中心主要技术参数: 数控转台500-630mm:主轴最高转数≥18000r/min,快移速度≥60/min;定位精度≤0.008mm,重复定位精度≤0.004mm。
(2)产品加工精度要求缸盖导管、阀座底孔:导管底孔,直径∮9.0(-0.04,-0.025),与两定位销孔以及底面的位臵度公差±0.1,孔椭圆度0.01以下,孔锥度0.01以下,角度偏差±0.5°;阀座底孔,直径∮31.4(+0.016,0),位臵度为与两定位销孔以及底面的公差±0.1,孔椭圆度0.01以下,孔锥度0.01以下。
(3)生产线上使用国产高速加工中心70台以上,国产设备占比80%以上。(4)工序保证能力CPK≥1.33。实现混流生产。生产线综合开动率OEE≥90%。(5)对国产数控系统和功能部件(丝杠、导轨、转台、刀库、主轴五类部件
中至少选配两种,不包括自制及集团内部单位配套部件)进行应用验证,国产刀具配套率50%以上。
(6)不少于10台套机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时(刀库100万次)以上的模拟实际工况运行试验,并编写试验报告。
(7)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
(8)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(9)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。
(10)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容 适应于轿车缸体、缸盖大批量生产的设备性能指标研究;机械机构设计开发验证: 设备结构刚性分析和验证, 设备关键部件的选型和可靠性评估, 设备精度测量标准和验证, 设备可维护性评估。
整线集成工艺研究,包括加工工艺的开发和优化, 尺寸链的计算和优化, 加工节拍的计算和平衡,切削参数设定和优化, 切削力计算。自动化生产线建模方法,自动化生产线布局与规划优化,自动化生产线协同仿真,自动化物流系统集成设计,建立产品质量验收流程。
4、实施期限
2013年1月-2015年12月
5、课题设臵及经费要求 拟支持1项课题研究;中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究,自筹与地方政府配套资金合计与中央财政投入经费比例不低于2:1,其中地方政府配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:前补助。
6、申报条件
课题牵头单位应是国内机床制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位须针对指南提出全部研究内容和考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。本课题要求落实最终用户并附有采购合同。
课题14 连杆裂解加工技术与成套设备
1、研究目标
针对汽车发动机行业裂解连杆的加工要求,开发研制成套的裂解加工工艺技术和生产设备,包括连杆裂解生产单元、连杆双端面磨床、连杆大小头孔精镗机床、连杆高精度珩磨机床等,形成拥有自主产权的生产工艺和一条年产量60万件以上连杆加工生产线,满足汽油发动机15万台以上的配套能力,可靠性与精度等指标达到国际先进的水平,并实现市场应用。
2.考核指标
(1)连杆裂解生产单元:加工工件的工件外轮廓缺损尺寸<1.5×2mm;工件胀断后大头孔变形量<0.05mm;批量废品率小于5%。连杆大、小头孔精镗床加工工件大孔直径公差-0.016mm;小孔直径公差<0.007mm;大小孔中心距公差<±0.02mm;
(2)连杆产品适用于欧五标准、缸内直喷、涡轮增压汽油发动机。
(3)掌握汽油机连杆关键的激光割槽裂解技术和精镗加工工艺技术,达到用户图纸精度指标。
(4)连杆大孔直径公差<0.014mm;大头圆柱度公差等级在0.007mm;小孔直径公差<0.006mm;小头圆柱度公差等级在0.005mm;大小孔中心距公差<±0.025mm;弯曲平行度公差等级在Φ0.075/100mm,扭斜度公差等级在Φ0.02/100mm,两侧面平面度公差<0.02mm;两侧面平行度公差<0.02mm。
(5)生产线能力Cmk值≥1.67;设备利用率≥85%。
(6)对国产数控系统和功能部件(丝杠、导轨、转台、刀库、主轴五类部件中至少选配两种,不包括自制及集团内部单位配套部件)进行应用验证,国产刀具配套率50%以上。
(7)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时(刀库100万次)以上的模拟实际工况运行试验,并编写试验报告。
(8)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
(9)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(10)形成5项以上技术标准(企业标准、行业标准、国家标准)、5项以上发明专利。
(11)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3.研究内容
连杆裂解生产工艺原理,工艺方法,连杆裂解规范的研究与制定,连杆生产过程的工艺尺寸等检测与缺陷检测,鉴定方法的研究。连杆裂解生产单元的研制,高精度镗床设备的研制;成套设备的组线集成技术研究
4、实施期限
2013年1月-2015年12月
5、课题设臵及经费
中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究及关键设备仪器的采购。自筹与地方配套资金合计数与中央财政投入经费比例不低于2:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:前补助。
6、申报条件
课题牵头单位应是国内汽车零部件制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位须针对指南提出全部研究内容和考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。本课题要求落实最终用户并附有采购合同。
课题15 汽车发动机曲轴数控磨床、凸轮轴磨床制造单元研制
1、研究目标
针对汽车发动机生产线上对数控磨床的需求,利用前期数控专项课题成果展开曲轴、凸轮轴磨床(磨削制造单元)可靠性研究及关键部件使用寿命研究,开发相关磨削用户工艺软件、磨削技术支持软件、异型轮廓磨削软件。采用数控专项成果的数控磨床4台以上示范应用,建成具有国际先进水平的汽车发动机曲轴、凸轮轴精密高效生产线并形成至少各一条实际应用于轿车曲轴、凸轮轴生产,满足汽车工业的需求。
2、考核指标
(1)汽车发动机曲轴生产线:研制2台曲轴以上磨床(应用前期数控专项成果),实现国产曲轴磨在发动机的主轴颈、连杆颈复合、高速磨削加工生产线上应用;工序能力指标CPK≥1.67;设备利用率≥85%;开发磨削用户工艺软件、磨削技术支持软件、异型轮廓磨削软件。
(2)汽车发动机数控凸轮轴磨床:研制2台凸轮轴磨床(应用前期数控专项成果),实现汽车发动机凸轮轴高速磨削加工,在汽车整机厂发动机凸轮轴生产线上应用。工序能力指标CPK≥1.67,设备利用率≥85%。开发磨削用户工艺软件、磨削技术支持软件、异型轮廓磨削软件。
(3)对国产数控系统和功能部件进行应用验证。
(4)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时以上的模拟实际工况运行试验,并编写试验报告。
(5)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
(6)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(7)形成5项以上技术标准(企业标准、行业标准、国家标准)、5项以上发明专利。
(8)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容
面向汽车整机厂发动机生产线的曲轴、凸轮轴磨床配臵策略研究;数控曲轴、凸轮轴磨床整机设计制造技术;在线测量装臵与误差补偿技术;高效磨削工艺研究;工艺软件与磨具数据库开发;基于生产线长期、高效加工、连续运转工况下的整机可靠性及关键部件使用寿命研究;砂轮在线修整及异型轮廓通用磨削软件开发。
4、实施期限
2013年1月-2016年12月
5、课题设臵及经费要求 拟支持1项课题研究;中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究,自筹与地方政府配套资金合计与中央财政投入经费比例不低于2:1,其中地方政府配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:前补助。
6、申报条件 课题牵头单位应是国内机床制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位须针对指南提出全部研究内容和考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。本课题要求落实最终用户。
课题16 汽车车身大型智能冲压生产线
1、研究目标 研究汽车车身大型智能冲压生产线,掌握汽车车身“轻量化”所需铝合金板、激光拼焊板等减重板材的冲压成形核心技术及相关高速冲压配套技术,并得到应用验证,拥有自主知识产权,形成行业标准。满足我国新能源汽车制造业精密高速冲压要求,技术指标达到国际先进水平。
2、考核指标(1)研制开发公称力50000kN以上适合于钢板、铝板、高强度板的钢铝混合汽车车身(外板)大型智能冲压生产线1条,滑块行程大于1200mm;工作台尺寸4500*2500mm;滑块位臵重复停止精度±0.02mm;滑块行程每分钟8~18次。
完成3~5种大型汽车外覆盖件的冲压应用。可靠性达到平均每小时生产零件(ASPH)大于540件、噪声低于80分贝,可自动识别模具并自动调整生产线参数,并得到应用验证。
(2)对国产控制系统和功能部件进行应用验证。
(3)课题牵头单位应对投入实际使用的每一台(套)设备的运行故障予以记录,并形成故障统计和分析报告。
(4)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(5)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。
(6)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容
针对自动冲压设备未来发展“绿色、智能、服务”的要求,研究适用于钢板、铝板、高强板的成型技术,连续拆垛、板料视觉对中、整线全自动智能换模、振动频谱轴承失效在线检测、高速冲压线自动送料系统模拟仿真、冲压车间生产管理网络控制、远程监控等技术。
4、实施期限
2013年1月-2015年12月
5、课题设臵及经费要求 拟支持1项课题研究,中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究,自筹与地方配套资金合计数与中央财政投入经费比例不低于2:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:前补助。
6、申报条件
课题牵头单位应是国内机床制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位须针对指南提出全部研究内容和考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。本课题要求落实最终用户。
课题17 数控内齿珩轮强力珩齿机
1、研究目标
为降低汽车变速箱齿轮传动噪音,提高加工效率,研制完成1台七轴数控内齿珩轮强力珩齿机,应用于实际生产,具备批量化生产的条件。
2、考核指标
(1)研制一台数控内齿珩轮强力珩齿机,加工直径≥φ300mm,加工模数0.5--4mm,最大加工齿宽≥60mm,珩轮最高转速≥1500rpm,工件最高转速≥5000rpm,能实现径向、轴向、摆动径向强力珩削加工方式,机床具备七轴四联动功能,加工精度4级及齿面粗糙度Ra0.4以上,机床的整体性能达到国外同类产品先进水平。
(2)对国产数控系统和功能部件进行应用验证,国产刀具配套率50%以上。(3)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时以上的模拟实际工况运行试验,并编写试验报告。
(4)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
(5)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(6)形成5项以上技术标准(企业标准、行业标准、国家标准)、5项以上发明专利。(7)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容
研究高精度回转珩轮架、精密摆动工作台的设计制造技术;机床整机结构动态优化设计;强力珩削加工工艺及自动余量均衡技术;金刚石修整轮修整珩轮工艺;珩轮特性技术研究;精密摆动工作台设计与试验;机床热变形控制及补偿技术;珩轮珩削力自适应技术及自动对齿技术;机床智能化软件开发。
4、实施期限
2013年1月-2015年12月
5、课题设臵及经费要求
拟支持1项课题研究;中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究,建立相关试验装臵和整机性能测试条件;自筹与地方配套资金合计数与中央财政投入经费比例不低于2:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:事前立项事后补助。
6、申报条件
课题牵头单位应是国内机床制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位须针对指南提出全部研究内容和考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。本课题要求落实最终用户并附采购合同。
课题18 轴类齿轮车削滚齿复合加工机床
1、研究目标
针对汽车齿轮加工自动生产线组线技术提升的需要,研制出我国第一台车滚复合齿轮加工机床,该机床具有国际同类产品的所有功能,使我国车滚复合加工机床达到世界先进水平。
2、考核指标
(1)研制一台车滚复合齿轮加工机床,加工工件外径Φ50-200 mm,长度500 mm,重量8kg,最大加工模数4 mm,滚刀主轴功率23 KW,滚刀主轴转数7000rpm,车削主轴功率14 KW,车削主轴转速3000rpm,转台刀库工位12个,A轴回转角+/-35°, 加工精度GB/T10095-2008 6级。
(2)对国产数控系统和功能部件进行应用验证,国产刀具配套率50%以上。(3)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时以上的模拟实际工况运行试验,并编写试验报告。
(4)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
(5)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(6)形成5项以上技术标准(企业标准、行业标准、国家标准)、5项以上发明专利。(7)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容
研究齿轮加工的车削与滚齿复合成套技术;研究车滚复合机床刀具主轴和工件主轴的高可靠性控制技术,满足齿轮高速干式切削对主轴刚性、振动及协调的控制要求;研究高速干切下的车滚复合机床床身抗振性与热平衡控制技术;研究车滚复合机床的优化运行支持技术、工艺参数智能决策支持技术、数控程序智能编制及仿真技术、加工过程能效监测与节能运行技术。
4、实施期限 2013年1月-2015年12月
5、课题设臵及经费要求
拟支持1项课题研究;中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究,建立相关试验装臵和整机性能测试条件;自筹与地方配套资金合计数与中央财政投入经费比例不低于2:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:事前立项事后补助。
6、申报条件
课题牵头单位应是国内机床制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位须针对指南提出全部研究内容和考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家。本课题要求落实最终用户并附采购合同。
课题19 汽车驱动桥螺旋锥齿轮干切加工成套技术与装备
1、研究目标
针对国内汽车行业对后桥锥齿轮加工装备的需求,开发能高效率、高精度干切加工汽车后桥锥齿轮的成套技术与装备,主要包括数控螺旋锥齿轮铣齿机、齿轮测量中心、新结构切齿刀盘以及实现数字化闭环制造的专家系统;掌握机床设计、制造、综合性能检测等关键技术;掌握螺旋锥齿轮干切加工机理及其相关工艺参数;所研制机床的主要技术参数、可靠性与精度稳定性达到当前国际先进水平,在用户生产现场构建生产示范线。
2、考核指标
(1)最大加工直径为350mm的数控铣齿机:该设备用于高效、高精度加工轻型车和微型车的后桥齿轮,既可湿切也可干切,既可用全工序法加工Gleason齿制、也可用刀倾全展成和刀倾半展成法加工Oerlikon齿制。机床的刀具主轴和工件主轴采用大力矩电机直接驱动。机床配臵在线测量系统,可实现自动对刀以及齿轮分度精度和齿形误差的在线测量。最大加工直径:Φ350mm;最大加工齿面宽:60mm;最大加工模数:10mm;刀盘转速:0-700rpm;加工Gleason齿制的刀盘直径:6″-9″;加工Oerlikon齿制的刀盘半径:76-105mm;工件主轴孔锥度:39#;加工效率:每两分钟加工一个齿轮;加工精度:GB5级以上。
(2)最大加工直径为650mm的数控铣齿机:该设备用于高效、高精度加工重型卡车、大型客车、工程机械的后桥齿轮,既可湿切也可干切,既可用全工序法加工Gleason齿制、也可用刀倾全展成和刀倾半展成法加工Oerlikon齿制。机床的刀具主轴和工件主轴采用大力矩电机直接驱动。机床配臵在线测量系统,可实现自动对刀以及齿轮分度精度和齿形误差的在线测量。最大加工直径:Φ650mm;最大加工齿面宽:110mm;最大加工模数:15mm;刀盘转速:0-450rpm;加工Gleason齿制的刀盘直径:7.5″-16″;加工Oerlikon齿制的刀盘半径:88-200mm;工件主轴孔锥度:60#;加工效率:每8分钟加工一个齿轮;加工精度:GB5级以上
(3)软件(闭环制造专家系统):所开发的、可实现螺旋锥齿轮数字化闭环制造的专家系统,包括螺旋锥齿轮的齿坯设计、强度校核、切齿加工参数计算、齿面接触分析、齿面坐标点计算、齿形误差修正等功能,整套专家系统的功能达到或接近国外同类专家系统的技术水平。特别要考核关于Oerlikon齿制的设计、分析、加工和测量软件部分。
(4)建立螺旋锥齿轮生产示范线,机床开动率≥80%,机床MTBF达到900小时;零件尺寸精度Cp值≥1.67。
(5)对国产数控系统和功能部件进行应用验证,其中1~2台机床采用国产数控系统和部分国产功能部件。国产刀具配套率50%以上。
(6)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时以上的模拟实际工况运行试验,并编写试验报告。
(7)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
(8)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(9)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。
(10)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容
研制出具有自主知识产权的成套螺旋锥齿轮数控加工装备,产品的性能和功能达到国外同类产品的技术水平;研究Gleason圆弧齿螺旋锥齿轮全工序法加工的设计、分析以及切齿加工参数计算软件;研究Oerlikon齿制摆线齿螺旋锥齿轮刀倾展成法和刀倾半展成法加工的设计、分析以及切齿加工参数计算软件;研究新结构刀盘的设计原理,研制具有自主知识产权的、可适用于干切和湿切加工且采用条形刀齿的新结构刀盘,并开发相应的条形刀齿磨刀机和装刀机;研制可实现圆弧齿螺旋锥齿轮和摆线齿螺旋锥齿轮精密、高效测量的齿轮测量中心;掌握螺旋锥齿轮成套加工装备的关键技术以及螺旋锥齿轮数字化闭环制造技术,采用项目研制的成套数控加工装备,在用户单位构建汽车驱动桥螺旋锥齿轮数字化闭环加工生产线。
4、实施期限
2013年1月-2015年12月
5、课题设臵及经费要求
拟支持1项课题研究;中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究,建立相关试验装臵和整机性能测试条件;自筹与地方配套资金合计数与中央财政投入经费比例不低于2:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:事前立项事后补助。
6、申报条件 课题牵头单位应是国内机床制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位须针对指南提出全部研究内容和考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明
材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。本课题要求落实最终用户并附采购合同。
课题20 汽车轴齿类零件智能化精密成形装备
1、研究目标
针对汽车复杂齿类零件和异型精密轴类零件汽车自动变速器复杂齿形件、精密轴类件切削加工低效率、高能耗的现状,研制具有单工位替代多工序、模具设备一体、五轴联动数控特点的大尺寸圆柱齿轮零件智能化精密锻造中心,研制调频调幅轴向数控成形设备,实现汽车复杂轴齿类零件的高效、精密成形生产。掌握设备设计、研发和制造等关键技术,突破传统工艺限制,提升汽车复杂轴齿形件柔性化生产能力与技术至国际先进水平。
2、考核指标 方向1:齿形件智能化精密锻造中心:
(1)研制1台大尺寸圆柱齿轮零件智能化精密锻造中心,实现复杂齿形件在单工位上实现多工序精密生产。
(2)技术指标:公称压力≥40000kN、工作台面≥3000mm×2000mm、滑块行程≥400mm,主油缸压力≥25000KN、行程≥500mm,主要结构件(包括上横梁、滑块、工作台、底座)刚度≤1/7000,滑块上下移动垂直精度≤0.1mm/1000mm;数控伺服智能控制联动成形液压系统压力精度不低于最大压力的±2%;成形圆柱齿轮最大直径150mm、齿轮精度8~9级。
(3)在汽车制造企业实现2种汽车自动变速器圆柱齿轮产品的示范应用。形成产业化能力,工作节拍﹤12s。
(4)设备采用国产控制系统和关键功能部件比例不低于50%。
(5)每一台(套)设备交付用户使用前,应分别在设备制造企业处分别进行2000小时以上的模拟实际工况运行试验,并编写试验报告。
(6)课题牵头单位应对投入实际使用的每一台(套)设备的运行故障予以记录,并形成故障统计和分析报告。
(7)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(8)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。
(9)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
方向2:研制调频调幅轴向数控成形设备
(1)研制调频调幅振动轴向成形机一台,模具10套,实现轴类件振动轴向精密成形。轴向成形力>100吨;伺服振动载荷>40吨;工件直径60-100mm,工
件最大长度>1000mm,允许工件最小壁厚0.5mm;振动频率:20-30赫兹;加工齿轮(花键)模数: 0.5-1.2;加工控制方式:CNC控制;成形速度:20-30 mm/s;模具寿命10万件;花键、齿轮成形精度:6-7级;
(2)设备采用国产控制系统和关键功能部件不低于50%。
(3)每一台(套)设备交付用户使用前,应分别在设备制造企业处分别进行2000小时以上的模拟实际工况运行试验,并编写试验报告。
(4)课题牵头单位应对投入实际使用的每一台(套)设备的运行故障予以记录,并形成故障统计和分析报告。
(5)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(6)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。(7)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容
方向1:研究不同加载方式对成形力的影响规律、齿形零件的单工位数控联动精密成形技术、高精度高寿命模具技术、精密锻造中心联动控制及与其配套模具的协调设计、智能化精密锻造中心的可靠性综合设计方法,研制满足复合工艺及智能化、柔性化要求的新型数控伺服单工位精锻压力机。
方向2:研究轴向振动成形机机构设计及优化技术:高响应、大负载伺服振动液压缸机构及其控制系统研究;振动幅度和频率对成形载荷的影响规律研究;振动轴向挤压过程金属流动过程分析,成形参数优化;模块化、可换花盘设计与实现,多模具同步技术,内外模具随动技术,成形用专家数据库建立。
4、实施期限
2013年1月-2015年12月
5、课题设臵和经费要求
拟支持2项课题研究,其中2个研究方向各支持1项课题研究;中央财政投入经费主要用于产品关键技术研究、性能测试、工艺技术研究及关键零部件制造;自筹与地方配套资金合计数与中央财政投入经费比例不低于1:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式: 事后立项事后补助。
6、申报条件
课题牵头单位应为国内成形装备制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位应对其中一个研究方向的全部研究内容和考核目标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵
头单位前期合作研究的证明材料)。要求落实最终用户并附有采购合同。
课题21 复合材料汽车零部件模压成形成套装备
1、研究目标
为发挥复合材料轻量化、变截面、整体一次高效成形的优势,解决复材零部件大批量生产一致性低、效率低等难题,开发汽车玻纤类复合材料成形用模压机、变截面径向缠绕机等成套工艺与装备,针对汽车覆盖件和承载件分别建成自动化生产线,并在典型汽车制造企业得到应用,使汽车领域复合材料的成形装备与技术达到国际先进水平。
2、考核指标
方向1:覆盖件复材立式模压成形装备(1)研制一台20000kN纤维增强热塑性复合材料在线立式模压成形压力机及自动成形单元,技术指标为:成形压力机:公称力20000KN,最大开口高度≥3000mm,滑块速度1-80mm/s(可调),开合模时间≤4s,滑块空程及回程速度≥800mm/s,保压压力波动值≤0.1MPa;自动成形单元:连续纤维粗纱数量≥60股,粗纱梳理速度30-50m/min,双配混挤出机最大挤出量≥480kg/h,生产节拍20-60秒/件,最大平面尺寸15501450mm。
(2)建成一条由所研制的快速成形压力机及自动成形单元组成的年产80-120万件纤维增强热塑性复合材料汽车覆盖件在线模压自动化生产线。
(3)验证产品:汽车后背门内板、气门室罩盖各1种,与现有钢板覆盖件相比,性能一致,覆盖件减重30%以上;
(4)设备采用国产控制系统和关键功能部件比例不低于50%。
(5)每一台(套)设备交付用户使用前,应分别在设备制造企业处分别进行2000小时以上的模拟实际工况运行试验,并编写试验报告。
(6)课题牵头单位应对投入实际使用的每一台(套)设备的运行故障予以记录,并形成故障统计和分析报告。
(7)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(8)形成5项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。
(9)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
方向2:承载件复材卧式模压成形装备(1)变截面径向缠绕机 : 研制一台复合材料变截面径向缠绕机及模具更换系统,实现板状件变厚变宽径向多模腔同时缠绕,缠绕全程张力可控,张力范围4.5-90N,控制精度5%以内,缠绕线速度最大可达100m/min,板状件纵横比最大可达20:1,厚度和宽度变化比例最大可达1:2。模具更换系统换模节拍小于6分钟/次。
(2)卧式模压机:研制一台8000kN纤维增强热固性复合材料卧式模压机,具有水平加压、与前后工序自动化对接功能,可实现连续生产。锁模力:800吨,台面尺寸:2.5m×1.5m,工作行程速度:1mm/s~100 mm/s可设臵,三级自动变速功能,台面平行精度:≤0.5 mm,模具“装、压、锁、卸”生产节拍﹤16分钟/循环。
(3)建成一条汽车复合材料板簧自动化生产线,产品径向长度范围1-2米,产品承载范围10KN-200KN,能够满足轻、中、重型汽车板簧的需要。生产线故障停机时间﹤900小时;生产线节拍﹤2分钟。
(4)产品验证:中型(6吨)汽车的悬架前、后、副簧以及横臵板簧各1种;与钢板弹簧产品相比,单件减重70%以上。
(5)设备采用国产控制系统和关键功能部件比例不低于50%。(6)每一台(套)设备交付用户使用前,应分别在设备制造企业处分别进行2000小时以上的模拟实际工况运行试验,并编写试验报告。
(7)课题牵头单位应对投入实际使用的每一台(套)设备的运行故障予以记录,并形成故障统计和分析报告。
(8)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(9)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。
(10)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容
方向1:研究纱束展开均匀分布控制技术、纤维自动输送匹配协调技术、表面处理与复配技术和梳理机寿命控制技术。研究分级混配挤出机快速喂料系统、挤出机温区设计与控制技术、基于纤维长度控制螺杆结构参数优化技术、坯料中纤维分布匀化控制技术等。研究满足快速成形要求的多泵-蓄能器联合供液快速驱动技术、位移速度反馈双闭环伺服控制技术、,压力机移动工作台快速精确定位和锁紧技术及四角调平控制技术。研究高动态响应、高精度的同步运动控制技术、虚拟仪器技术、生产过程专家优化控制技术、含镶嵌件整体化制品的模具设计技术及模具温度控制技术。
方向2:研究复合材料产品结构、工艺一体化技术、变截面径向缠绕全过程张力控制技术、缠绕组合式多模腔模具技术、连续自动化模具更换系统、复合材料板簧产品试验验证技术及复合材料缠绕模压多品种柔性自动化生产线集成控制技术。
4、实施期限
2013年1月-2015年12月
5、课题设臵及经费要求 拟支持2项课题研究,其中每个研究方向各支持1项课题研究;中央财政投
入经费应主要用于装备产品关键技术研究、性能测试与工艺技术研究;自筹与地方配套资金合计数与中央财政投入经费比例不低于2:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:事后立项事后补助
6、申报条件
课题牵头单位应为国内成形装备制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位应对其中一个研究方向的全部研究内容和考核目标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。要求落实最终用户并附有采购合同。
课题22 汽车ESP智能化检测装备开发及示范生产线
1、研究目标
针对我国汽车精密液压系统(ABS/ESP)自主产业化制造对关键制造装备及自动化装配线的迫切需要,通过对制造工艺、关键制造装备核心技术及高可靠性、一致性自动化检测装配线集成技术研究,重点研发高精度定位压装、智能在线性能检测、自动分拣分装及清洗、总成全工况性能模拟测试等四类装备,并针对ESP加工制造,进行精密加工中心、高压去毛刺清洗、激光焊接等专项成果的示范应用,建立ABS/ESP智能化、自动化制造与检测装配生产线,关键技术指标达到国际先进水平,形成汽车安全产品关键制造装备开发及推广应用能力。
2、考核指标
研究开发关键零部件高精度定位压装、智能在线质量检测、总成全工况性能模拟测试、自动分拣分装及清洗等四类技术及系统装备,实现多轴精密加工中心、高压去毛刺清洗、激光焊接等三类专项成果的示范应用,并进行高可靠性、一致性智能化检测装配线集成。
(1)高精度定位压装系统:开发包含15个工位的精密定位压装系统,主要技术参数:压机行程控制精度±0.005mm,本体移动控制精度±0.05mm,压装力0.5~10t不等,夹具定位精度±0.05mm,重复度±0.05mm。
(2)智能在线性能检测系统:开发包含11个工位的智能在线性能检测系统,主要技术参数:行程控制精度±0.05mm,供气压力≥200bar,进出油口6个压力传感器检测量程0~250bar,检测精度±0.05bar,生产节拍检测速度45s/个;等功能;主要技术参数:密封预紧力控制精度±1N,密封性检测充气压力0~500KPa、可调,气压稳定,阀口密封性检测真空度≥-102KPa、可调,生产节拍检测速度不高于20s/个。其中,高频开关阀动态响应特性检测设备:测量电压0~30V线性可数控调整;高速采集卡采集频率≥100KHZ;低压综合性能检测设备:行程控制精度±0.05mm;供气压力≥35Bar;进出油口6个压力传感器检测量程0~60bar,40
检测精度±0.05bar;生产节拍检测速度45s/个;高压综合性能检测设备:行程控制精度±0.05mm;供气压力≥200bar;进出油口6个压力传感器检测量程0~250bar,检测精度±0.05bar;生产节拍检测速度45s/个。
(3)总成全工况模拟测试系统:开发ABS/ESP全工况模拟与性能检测系统一台套。主要技术参数:工作温度精度±2‴;液压助力主缸压力控制精度±0.1Mpa;压力传感器最大量程30Mpa,精度0.3%;电流传感器量程60A,峰值电流120A(不超过150ms),最大电流60A(不超过10分钟)。台架支持主流车型动力学模型超过5个,ABS算法台架标定结果满足国标要求,ESP算法标定结果满足国际ESP法规FMVSS126法规要求。测试系统完成ABS/ESP控制代码超过总代码85%,降低匹配工作量超过70%。
(4)关键零部件自动分拣分装及清洗系统:开发微小零部件自动分拣分装系统1套,实现各零部件参数识别、缺陷识别的自动分拣分装及表面杂质的超声波清洗;主要技术参数:具备基于几何特征识别功能的智能6工位的物料自动传输,清洗后粘附颗粒直径不大于0.01mm;
(5)三类专项成果示范应用:A)“卧式车铣复合加工中心”专项成果示范应用不少于2台,实现ABS/ESP本体的精密加工,主要技术指标:主轴端部径向跳动小于0.002mm,轴向跳动小于0.002mm,回转工作台定位精度10″,重复定位精度6″,直线坐标定位精度0.001mm,重复定位精度0.001mm,旋转精度±0.02°,生产节拍不超过208s/件;B)“500bar高压清洗去毛刺设备”专项成果示范应用不少于2台,实现ESP本体的1次6面38孔的可编程高压去毛刺清洗,主要技术指标:设备供水压力可调0~50MPa,水温50‴,清洁度0.6mg/件,生产节拍达到90s/件(含装夹);水资源循环使用,用水不超过2T/月;C)“激光柔性焊接装备”成果应用不少于2台套,实现ABS/ESP的增压阀/限压阀的隔磁管与阀体、减压阀的隔磁管与定铁、吸入阀的阀体与阀座、吸入阀的隔磁管与定铁等薄壁高强度无泄漏焊接,主要技术指标:机械手放臵精度±0.1mm,激光器功率≥400W,功率控制精度±2%,焦距控制精度±0.02mm,夹具定位精度±0.2mm,夹具旋转精度0.05mm,夹具旋转角度控制精度±0.1°,夹具转速控制精度±0.01r/min,节拍5s/个。
(6)智能化检测装配线集成:实现各智能加工装备及在线检测、精密装配、自动分拣等智能检测装配装备和融合工件数字标识、制造工艺、装配信息、工作状态等于一体的信息集成系统的集成。装配生产线产能为50万套ABS/ESP,直线定位精度为0.02mm,重复定位精度为0.02mm,单件节拍小于36秒,产品可覆盖所有5座以下乘用车及微型、轻型卡车。自动化程度高,总装配线工人不超过10人。各项产品性能指标能够在生产线上得到保证,生产线产品合格率达到99.9%,出厂总成全工况模拟测试率100%。
(7)以上设备采用国产控制系统和关键功能部件比例不低于50%。
(8)每一台(套)设备交付用户使用前,应分别在设备制造企业处分别进行2000小时以上的模拟实际工况运行试验,并编写试验报告。
(9)课题牵头单位应对投入实际使用的每一台(套)设备的运行故障予以记录,并形成故障统计和分析报告。
(10)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(11)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。
(12)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容
(1)研究开发ABS/ESP多种部件的高效自动压装检测技术,包括自动精密定位技术、压装过程在线实时高精度力值及位移检测技术、高效压装的速度控制及位移控制技术,以及压装行程精密控制系统和压装质量自动评价系统。
(2)研究开发ABS/ESP多种部件的密封性能自动检测技术,包括自动定位及自动密封技术,压紧力控制技术,稳压技术及高效数据采集与处理技术;研究多种阀芯响应特性的自动检测技术。
(3)研究ABS/ESP研究开发、匹配用全工况模拟测试试验台。该试验台支持企业对所开发的ABS/ESP控制系统软硬件向待匹配车型上进行台架标定匹配;研究ABS/ESP控制下整车动力学软硬件在环仿真建模技术;ABS/ESP控制算法模块化与自匹配技术;研究开发全工况环境、道路、整车动力学状态多信息虚拟现实技术;ABS/ESP全工况模拟与性能检测技术,研究多种性能检测的专家评价系统。
(4)研究关键零部件自动分拣分装及清洗技术,包括精密小部件物料传输精确定位、基于特征的智能分拣分装技术、超声波清洗技术、清洗液循环过滤技术、细孔清洗及干燥技术等。
(5)研究本体机械加工、高压水去毛刺并清洗、ABS/ESP高频开关阀的薄壁高强度无泄漏激光焊接等应用工艺,研究ESP制造自动物料识别,防错,多喷头插入式可编程去毛刺清洗,高清洁度控制薄壁件的装卡,高精密度及高可靠性定位,旋转角度与速度协调控制,激光焊接功率精密控制,焊接点功率密度精密控制,激光器大功率自动对焦,快速冷却等关键技术。
(6)研究智能化检测装配线集成技术,包括研究物料的数字标识技术、自动传输技术、物料的防错控制技术、多系统的信息交互技术及信息智能管理技术,研究ESP制造装配生产过程统一实物标识、物料传输精确定位、数据实时交换以及小件的自动上料等工艺技术。
4、实施期限
2013年1月—2015年12月
5、课题设臵及经费要求 拟支持1项课题研究;中央财政投入经费应主要用于关键技术研究、性能测试与工艺技术研究;自筹与地方配套资金合计数与中央财政投入经费比例不低于
2:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:事前立项事后补助。
6、申报条件
课题牵头单位应为国内汽车零部件制造企业或装备制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位应对全部研究内容和考核目标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。要求落实最终用户并附有采购合同。
课题23 精密数控压力成形装备
1、研究目标
针对汽车、航空航天、发电设备等领域对高速精密数控压力成形技术装备的需求,重点研究数控重型高速精密压力机、高速精密冷镦成形装备,满足汽车领域薄壁精密冲压、航空领域高强度螺栓高速多工位冷镦成形成的需求。
2、考核指标
方向1:数控重型高速精密压力机(1)研制7500kN高速精密机械压力机1台:公称力≥7500KN;行程1.6mm;滑块冲程次数150~200min-1;滑块提升行程:80mm;最大装模高度:650mm;模高度调节量:100mm;适用材料宽度:800mm;离合器最大扭矩:大于81000Nm;停车制动角:小于200°; 工作台尺寸3650mm×1500mm;滑块底面与工作台平行度:左右≤0.10mm,前后≤0.04mm;滑块底面与工作台垂直度<0.016mm;整机动态重复精度:垂直方向±0.02mm,水平方向±0.05mm(2)设备交付用户使用前,应分别在设备制造企业处分别进行2000小时以上的模拟实际工况运行试验,并编写试验报告。
(3)课题牵头单位应对投入实际使用的每一台(套)设备的运行故障予以记录,并形成故障统计和分析报告。
(4)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(5)形成5项以上技术标准(企业标准、行业标准、国家标准)、5项以上发明专利。
(6)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
方向2:高速精密冷镦成形装备(1)研制多工位冷镦成形装备1台, 工位数≥5,生产节拍200件/分钟;可加工螺栓规格M8~M16,长度≤100mm。
(2)多工位冷镦成形装备1台,工位数≥6,生产节拍≥100件/分钟;可加
工螺栓规格M20~M24,工件长度≤200mm。
(3)研制产品在线检测系统1套,通过传感器和影像系统,分别对多工位冷镦机的镦锻力和成品外形尺寸进行监控和检测。满足GB/T 5782-2000<六角头螺栓>及相关标准对产品尺寸精度的检测要求,实现自动计数、筛选和装箱功能,覆盖M8~M24的螺栓产品线,长度范围为8mm~200mm,检测速度为最大200支/分钟。尺寸的量测精度0.05mm。提高良品率20%,减少模具不可修复性损耗30%。
(4)实现工件自动快速定位及模具离线换模。
(5)实现多参数显示、故障诊断、在线监控、模具寿命管理。(6)油雾处理后机器周围未见明显油雾溢出。
(7)采用国产控制系统和关键功能部件比例不低于50%。
(8)每一台(套)设备交付用户使用前,应分别在设备制造企业处分别进行2000小时以上的模拟实际工况运行试验,并编写试验报告。
(9)课题牵头单位应对投入实际使用的每一台(套)设备的运行故障予以记录,并形成故障统计和分析报告。
(10)实现主机装备在2家以上企业、5种以上典型产品的示范应用。满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(11)形成5项以上技术标准(企业标准、行业标准、国家标准)、5项以上发明专利。
(12)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。建立测试基地和产业化示范基地。
3、研究内容 方向1:数控重型高速精密压力机:重载、高速运转下的动态综合设计技术;抗冲击高速重载导向和支承技术;液压驱动的大扭矩离合器技术;数控重载高速精密压力机的智能控制技术;数控重载高速精密冲压系统可靠性增长技术;滑块部件的液压提升技术,使滑块处于上死点位臵时仍可带动上模提升80~120mm;采用运动学、动力学、热学理论分析以及有限元、多体系统的模拟仿真,揭示重型、高速冲压机床的振动和发热机理,并提出合理解决的技术方案;利用先进的动平衡和热补偿技术,减少温度变化以及高速状态下的振动对机床精度的影响,提高滑块下死点重复定位精度。
方向2:高速精密冷镦成形装备:高强度金属材料在高速冲击载荷下的变形行为、流动应力模型、温度效应、动态破坏现象及遗留效应;多工位连续成形过程数值精确模拟技术、辅助工艺设计技术及工艺优化设计技术;镦锻成形中的摩擦与润滑技术;机器构件在连续、高速、高冲击载荷及交变应力工况条件下的失效形式;运动机件在刚度条件下轻量化设计;油雾三相流体力学模型及油雾处理方法;动态故障诊断声量分析技术;在线检测/监测技术、故障诊断技术和在线质量控制技术;高强度园盘材料的校直及送料技术;模具在连续、高速、高温、高冲击载荷下的延寿技术。
4、实施期限
2013年1月-2015年12月
5、课题设臵及经费要求
拟支持2项课题研究,2个研究方向各支持1项课题研究;中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究,自筹与地方配套资金合计数与中央财政投入经费比例不低于2:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:事前立项事后补助。
6、申报条件
课题牵头单位应为国内成形装备制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位应对全部研究内容和考核目标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。要求落实最终用户并附有采购合同。
课题24 大型、高精度数控成形磨齿机
1、研究目标
针对舰艇减速器齿轮等部件,研制DIN3级以上的高精度数控成形磨齿机。
2、考核指标:(1)研制一台磨削直径可达4米、DIN3级精度的圆柱齿轮成形磨齿机,具有磨削外齿、内齿功能,研究同时兼顾磨削内孔及端面的方法。
加工范围:齿顶圆直径φ4000mm;齿根圆直径φ580 mm;模数 1-40mm;齿数任意;齿廓深度100 mm;螺旋角齿)+/-45°;最大直齿宽度1450mm;砂轮主轴磨削功率40KW;砂轮线速度50m/s;回转工作台直径φ2500 mm;承重40000kg;内齿参数:齿根圆直径φ3500mm;齿顶圆直径φ800mm;螺旋角+/-35º;模数1-25mm;齿廓深度60mm ;最大直齿宽度400mm。
(2)研制一台磨削直径1米、DIN2级精度的圆柱齿轮成形磨齿机,具有磨削外齿、内齿功能。
加工范围:齿顶圆直径φ1000mm;齿根圆直径φ10 mm;模数1-25mm;齿数任意;齿廓深度60 mm;螺旋角+/-45°;最大直齿宽度800mm;砂轮主轴磨削功率20KW;砂轮线速度50m/s;回转工作台直径φ1000 mm;承重8000kg;内齿参数:齿根圆直径φ1000mm;齿顶圆直径φ150mm;螺旋角+/-35º;模数1-25mm;齿廓深度35mm ;最大直齿宽度400mm。
(3)对国产数控系统和功能部件进行应用验证。
(4)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000
小时以上的模拟实际工况运行试验,并编写试验报告。
(5)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
(6)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(7)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。
(8)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容
研究成形砂轮齿轮磨削技术;高刚性和可重构性技术;机床热变形及其补偿技术;精密力矩电机直驱回转工作台制造技术;精密力矩电机直驱回转工作台控制技术;大型精密机床的静压导轨及静压轴承技术;砂轮主轴的大功率直接驱动技术及内臵动平衡技术;磨齿机专用计算和编程软件;机床在线测量技术;典型行业用户的大规格齿轮磨削工艺技术;制造工艺技术以及相关试验、检测技术;成形磨削专家系统。
4、实施期限
2013年1月-2015年12月
5、课题设臵及经费要求
拟支持1项课题研究;中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究,建立相关试验装臵和整机性能测试条件;自筹与地方配套资金合计数与中央财政投入经费比例不低于2:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:事前立项事后补助。
6、申报条件
课题牵头单位应为国内机床制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位应对全部研究内容和考核目标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。要求落实最终用户并附有采购合同。
课题25 大型船用曲轴加工用车铣复合加工中心研制
1、研究目标 开发曲轴加工车铣复合加工中心;掌握设计、制造、综合性能检测等关键技术;主要技术参数与精度稳定性达到当前国际先进水平,并在曲轴加工生产线中进行应用。
2、考核指标
(1)完成回转直径≤φ1250mm、加工长度≤5000mm的2个以上规格系列产品设计。完成2-3台应用,用于曲轴零件的加工。设备完好率大于等于85%。
(2)至少1台主机配套国产数控系统和功能部件(丝杠、导轨、转台、刀库、主轴五类部件中至少选配三种,不包括自制及集团内部单位配套部件)。
(3)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时以上的模拟实际工况运行试验,并编写试验报告。
(4)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
(5)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(6)形成5项以上技术标准(企业标准、行业标准、国家标准)、5项以上发明专利。
(7)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容
大型车铣中心设计与制造技术;机床动态特性研究;大扭矩B轴技术;大中心架布臵技术;双主轴同步驱技术研究;曲轴加工工艺技术的研究。
4、实施期限 2012年1月-2015年12月
5、课题设臵及经费要求 拟支持1项课题研究。中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究;自筹与地方配套资金合计数与中央财政投入经费比例不低于2:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:前补助。
6、申报条件
课题牵头单位应为国内机床制造企业,在上述领域具有较强的技术研发队伍和技术基础。申报单位应针对指南提出的全部研究内容和考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。
课题26 大型低速船用柴油机机架、机座精加工数控龙门镗铣床
1、研究目标
在前期开展的数控龙门镗铣床基础上,以大型船用低速柴油机机体、机架及
缸体的曲轴瓦座、导板面及缸体的最后精加工为目标,开发高精度重型数控龙门镗铣床,实现船用柴油机的精加工设备国产化装备。
2、考核指标(1)、龙门加工宽度5米,滑枕行程>3米,滑枕截面适于加工柴油机机座、机架、缸体等主要零部件;主电机功率100KW,滑枕全行程伸出时其主轴输出功率40KW;
(2)、产品定位精度(X、Y、Z向):≤Pa=10+L/250 um;(3)、产品配有490〫可自动更换附件头功能,所配臵的附件头可实现工件在一次装夹下五面的粗加工或精加工成品;
(4)对国产数控系统和功能部件进行应用验证。
(5)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时以上的模拟实际工况运行试验,并编写试验报告。
(6)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
(7)设备应用于用户的柴油机机架、机座的最后精加工工序上,满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(8)形成5项以上技术标准(企业标准、行业标准、国家标准)、5项以上发明专利。
(9)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容
面向低速柴油机机机座、机架、缸体等工艺需求的长行程、小截面滑枕研究开发,满足工艺精度、加工效率与自动化性能要求;重型机床提高研究定位精度与重复定位精度的技术与方法;面向低速柴油机机机座、机架、缸体等工艺需求的附件头开发技术。
4、实施期限
2013年1月-2015年12月
5、课题设臵及经费要求
拟支持1项课题研究;中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究,建立相关试验装臵和整机性能测试条件;自筹与地方配套资金合计数与中央财政投入经费比例不低于2:1,其中地方配套资金不低于中央财政投入经费的20%。
中央财政投入经费支持方式:事前立项事后补助。
6、申报条件 课题牵头单位应为国内机床制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位应对全部研究内容和考核目标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体
要求参见附件:数控机床专项申报课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。要求落实最终用户并附有采购合同。
课题27 船用大型全纤维整体曲轴镦锻成形工艺与成套装备
1、研究目标
以8L58/64大型曲轴为典型产品,研发具有自主知识产权的船用大型全纤维整体曲轴镦锻成形工艺与成套装备,实现主轴径Φ340~470mm船用全纤维整体曲轴的批量生产,以满足我国造船业对精细、优质、低成本、长寿命大型全纤维曲轴锻件的需求。整体工艺与技术装备达到国际先进水平。
2、考核指标
(1)研制完成2×150MN船用大型全纤维整体曲轴镦锻成形成套装备1台,垂直压力30MN,水平镦锻力两侧各150MN;双肘杆机构增力系数﹥5;弯曲力能参数、镦锻力能参数与行程参数可单独调整;各拐柄间角度定位偏差<2°;坯料轴向强力定位偏差<2mm;左右镦锻滑块行程同步精度<0.5mm;镦锻模块与弯曲模块行程匹配精度<0.5mm;
(2)研发曲轴全纤维弯曲镦锻工艺,轴向单边加工余量<10mm,径向单边加工余量(拐轴径除外)<15mm;材料利用率>80%;
(3)建成大型曲轴整体全纤维弯曲镦锻模拟分析平台,具有弯曲镦锻过程模拟、微观组织分析预测、弯曲镦锻成形工艺优化和压机的动力学与运动学分析等功能;
(4)成形整体曲轴技术参数:典型产品为8L58/64大型全纤维整体曲轴,缸径Φ580 mm,主轴径Φ470 mm,法兰径Φ870 mm,拐轴偏心距R320mm,总质量约21吨;
(5)对国产控制系统进行应用验证,采用国产关键功能部件比例不低于50%。
(6)每一台(套)设备交付用户使用前,应分别在设备制造企业处分别进行2000小时以上的模拟实际工况运行试验,并编写试验报告。
(7)课题牵头单位应对投入实际使用的每一台(套)设备的运行故障予以记录,并形成故障统计和分析报告。
(8)研究成果8L58/64大型曲轴在船舶企业进行示范应用,满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
(9)形成5项以上技术标准(企业标准、行业标准、国家标准)、5项以上发明专利。
(10)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
3、研究内容