中考数学专题复习练习二次函数与三角形面积最值

2021-04-29 03:00:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《中考数学专题复习练习二次函数与三角形面积最值》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《中考数学专题复习练习二次函数与三角形面积最值》。

二次函数与面积的关系

如图①,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(),中间的这条直线在内部的部分的长度叫△ABC的“铅垂高”().我们可得出一种计算三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半.【例题1】如图②,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)

求抛物线对应的函数解析式;

(2)

若点M为第三象限内抛物线上一动点,其横坐标为,的面积为,求关于的函数解析式,并求出的最大值.【变式训练1-1】如图,抛物线与轴交于、两点,与轴交于点.

(1)求点,点和点的坐标;

(2)在抛物线的对称轴上有一动点,求的值最小时的点的坐标;

(3)若点是直线下方抛物线上一动点,求四边形面积的最大值.

【拓展总结】若抛物线上y1=ax2+bx+c,它与y轴交于C(0,4),与x轴交于A(﹣1,0)、B(k,0),P是抛物线上B、C之间的一点.

(1)当k=4时,求抛物线的方程,并求出当△BPC面积最大时的P的横坐标;

(2)当a=1时,求抛物线的方程及B的坐标,并求当△BPC面积最大时P的横坐标;

(3)根据(1)、(2)推断P的横坐标与B的横坐标有何关系?

【练习】如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连接CD.

(1)求该抛物线的解析式;

(2)点P为该抛物线上一动点(与点B,C不重合),设点P的横坐标为t.当点P在直线BC的下方运动时,求△PBC的面积的最大值.

【练习】如图,二次函数的图象与x轴交于点A.B两点,且A点坐标为(−2,0),与y轴交于点C(0,3).(1)求出这个二次函数的解析式;

(2)直接写出点B的坐标为___;

(3)在x轴是否存在一点P,使△ACP是等腰三角形?若存在,求出满足条件的P点坐标;若不存在,请说明理由;

(4)在第一象限中的抛物线上是否存在一点Q,使得四边形ABQC的面积最大?若存在,请求出Q点坐标及面积的最大值;若不存在,请说明理由。

【练习】已知一次函数y=kx+3与二次函数y=﹣x2+bx+c的图象的一个交点坐标为A(3,0),另一个交点B在y轴上,点P为y轴右侧抛物线上的一动点.

(1)求此二次函数的解析式;

(2)当点P位于直线AB上方的抛物线上时,求△ABP面积的最大值;

(3)当此抛物线在点B与点P之间的部分(含点B和点P)的最高点与最低点的纵坐标之差为9时,请直接写出点P的坐标和△ABP的面积.

1.如图,抛物线W的图象与x轴交于A、O两点,顶点为点B(﹣1,﹣1).

(1)求抛物线W的表达式;

(2)将抛物线W绕点A旋转180°得到抛物线V,使抛物线V的顶点为E,试通过计算判断抛物线V是否过点B;

(3)在抛物线W或V的图象上是否存在点D,使S△EBD=S△EBO?若存在,请求出点D的坐标.

1.如图抛物线y=ax2+bx+6的开口向下与x轴交于点A(﹣6,0)和点B(2,0),与y轴交于点C,点P是抛物线上一个动点(不与点C重合)

(1)求抛物线的解析式;

(2)当点P是抛物线上一个动点,若△PCA的面积为12,求点P的坐标;

下载中考数学专题复习练习二次函数与三角形面积最值word格式文档
下载中考数学专题复习练习二次函数与三角形面积最值.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    中考数学复习二轮冲刺高频考点模块练习(二次函数与线段、面积最值综合题型)

    2021年中考数学复习二轮冲刺高频考点模块练习(二次函数与线段、面积最值综合题型)一.突破与提升策略:1.面积最大值(1)三角形有一条边在坐标轴上:以在坐标轴上的边为底边,过不在坐标轴......

    二次函数最值问题

    《二次函数最值问题》的教学反思 大河镇第二中学姚朝江 本节课的教学目标是:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数知识解决实际问题......

    2015二次函数与最值问题

    2015年中招专题---二次函数与最值问题 1.(2014•四川绵阳)如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,且与x轴交于A、B两点,与y轴交于C点. (1)求抛物线的解析式; (2)点P为抛物线对称轴上的......

    二次函数与实际问题(面积最值问题)教学设计解读

    [教学设计 ] 二次数学的实际运用 ——图形面积的最值问题 【知识与技能】 :通过复习让学生系统性地掌握并认识如何用函数的思想解决几何问题中面积最值问题, 培养其 整体性......

    二次函数的最值问题

    二次函数的最值问题 雷州市第一中学 徐晓冬 一、 知识要点 对于函数fxax2bxca0, 当a0时,fx在区间R上有最 值,值域为 。 当a0时,fx在区间R上有最 值,值域为 。 二、 典例讲解 例1......

    二次函数的最值问题

    涟水县第四中学(红日校区)周练专用纸 初三:年级 数学:学科 出核人:杨守德 审核人:高阳 时间:12月26日 1.若二次函数y=x-3x+c图象的顶点在x轴上,则c=( ) 24411A. B.- C. D.- 9999222.抛物线y=ax+bx......

    二次函数的最值教案

    丰林中学 任志库 一、教学目标(一)知识与技能 1、会通过配方或公式求出二次函数的最大或最小值; 2、在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求......

    中考三轮复习数学:二次函数专题冲刺练习二

    2021年中考数学三轮综合复习:二次函数专题冲刺练习二1、抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)在抛物线上求一点P,使S△PAB=S△ABC,写出P点的坐......