2021年中考数学三轮综合复习:二次函数
专题冲刺练习二
1、抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)在抛物线上求一点P,使S△PAB=S△ABC,写出P点的坐标;
(3)在抛物线的对称轴上是否存在点Q,使得△QBC的周长最小?若存在,求出点Q的坐标,若不存在,请说明理由.
2、已知抛物线的对称轴为直线x=2,且经过点A(0,3)和点B(3,0).(1)求抛物线的解析式;
(2)点C坐标为(2,-34),过点D(0,-54)作x轴的平行线l,设抛物线上的任意一点P到直线l的距离为d,求证:PC=d;
(3)点E在y轴上(点E位于点A下方),点M,N在抛物线上(点M,N均不同于点A,点M在点N左侧),直线EM,EN与抛物线均有唯一公共点,直线MN交y轴于点F,求证:点A为线段EF的中点.
3、在平面直角坐标系xOy中,直线l1:y=﹣2x+6与y轴交于点A,与x轴交于点B,二次函数的图象过A,B两点,且与x轴的另一交点为点C,BC=2;
(1)求点C的坐标;
(2)对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2>2时,总有y1>y2.
①求二次函数的表达式;
②设点A在抛物线上的对称点为点D,记抛物线在C,D之间的部分为图象G(包含C,D两点).若一次函数y=kx﹣2(k≠0)的图象与图象G有公共点,结合函数图象,求k的取值范围.
4、如图,二次函数的图象与轴交于点,与x轴负半轴交于B,与正半轴交于点,且.(1)求该二次函数解析式;(2)若是线段上一动点,作,交于点,连结当面积最大时,求点的坐标;(3)若点为轴上方的抛物线上的一个动点,连接,设所得的面积为.问:是否存在一个的值,使得相应的点有且只有个,若有,求出这个的值,并求此时点的横坐标;若不存在,请说明理由.
5、如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.
(1)求抛物线的解析式;
(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;
(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.
6、如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.
(1)求抛物线的解析式;
(2)当m为何值时,S四边形OBDC=2S△BPD;
(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
7、如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.
(1)求抛物线的解析式;
(2)判断△MAB的形状,并说明理由;
(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由.
8、如图,抛物线y=x2﹣2mx(m>0)与x轴的另一个交点为A,过P(1,﹣m)作PM⊥x轴于点M,交抛物线于点B.点B关于抛物线对称轴的对称点为C.
(1)若m=2,求点A和点C的坐标;
(2)令m>1,连接CA,若△ACP为直角三角形,求m的值;
(3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.
9、如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).
(1)求抛物线的解析式及它的对称轴方程;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)试判断△AOC与△COB是否相似?并说明理由;
(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
10、如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点.
(1)求抛物线的解析式;
(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?
(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.
11、已知,在以O为原点的直角坐标系中,抛物线的顶点为A(1,4),且经过点B(2,3),与x轴交于C、D两点.
(1)求直线OB的函数表达式和该抛物线的函数表达式;
(2)如图1,点P是x轴上方的抛物线上一动点,过点P作直线PF⊥x轴于点F,交直线OB于点E.若PE=3EF,求出P点的横坐标;
(3)如图2,点M是抛物上的一个动点,且在直线OB的上方,过点M作x轴的平行线与直线OB交于点N,T是抛物线对称轴上一点,当MN最大且△MDT周长最小时,直接写出T的坐标.
12、如图1,已知抛物线y=1a(x-2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点c.
(1)若抛物线过点T(1,-54),求抛物线的解析式;
(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.
(3)如图2,在(1)的条件下,点P的坐标为(-1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM的周长最小?请直接写出符合条件的点M的坐标.
13、如图,在平面直角坐标系中,点为坐标原点,直线与轴交于点,与轴交于点,过点的抛物线与直线交于另一点,点坐标为.
(1)求的值.(2)点是射线上的一个动点,过点在作轴,垂足为点,在轴上点的右侧取点,使,在的延长线上取点,连接,已知,求线段的长.(3)在(2)的条件下,过点作,使点在直线下方,且,连接,当以,的长为三边长构成的三角形面积是时,在轴左侧的抛物线上是否存在点,连接,使得与以、、的长为三边长的三角形全等?若存在,求出点坐标;若不存在,请说明理由.
14、如图1,对于平面内的点P和两条曲线L1、L2给出如下定义:若从点P任意引出一条射线分别与L1、L2交于Q1、Q2,总有PQ1PQ2是定值,我们称曲线L1与L2“曲似”,定值PQ1PQ2为“曲似比”,点P为“曲心”.
例如:如图2,以点O'为圆心,半径分别为r1、r2(都是常数)的两个同心圆C1、C2,从点O'任意引出一条射线分别与两圆交于点M、N,因为总有O'MO'N=r1r是定值,所以同心圆C1与C2曲似,曲似比为r1r2,“曲心”为O'.
(1)在平面直角坐标系xOy中,直线y=kx与抛物线y=x2、y=12x2分别交于点A、B,如图3所示,试判断两抛物线是否曲似,并说明理由;
(2)在(1)的条件下,以O为圆心,OA为半径作圆,过点B作x轴的垂线,垂足为C,是否存在k值,使⊙O与直线BC相切?若存在,求出k的值;若不存在,说明理由;
(3)在(1)、(2)的条件下,若将“y=12x2”改为“y=1mx2”,其他条件不变,当存在⊙O与直线BC相切时,直接写出m的取值范围及k与m之间的关系式.