2021年中考数学第三轮冲刺复习:二次函数解答题专题练习

2021-07-13 08:40:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《2021年中考数学第三轮冲刺复习:二次函数解答题专题练习》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2021年中考数学第三轮冲刺复习:二次函数解答题专题练习》。

2021年中考数学第三轮冲刺复习:二次函数

解答题专题练习

1、如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.

(1)求抛物线的函数表达式;

(2)若点P在第二象限内,且PE=OD,求△PBE的面积.

(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.

2、如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合).

(1)求抛物线和直线l的解析式;

(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;

(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.

3、如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=﹣(x﹣m)2+m+2的顶点.

(1)当m=0时,求该抛物线下方(包括边界)的好点个数.

(2)当m=3时,求该抛物线上的好点坐标.

(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.

4、如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.

(1)求直线DE和抛物线的表达式;

(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P的坐标;

(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.

5、如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.

(1)求抛物线C函数表达式;

(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;

(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离?若存在,求出定点F的坐标;若不存在,请说明理由.

6、在平面直角坐标系中,正方形ABCD的四个顶点坐标分别为A(﹣2,4),B(﹣2,﹣2),C(4,﹣2),D(4,4).

(1)填空:正方形的面积为  ;当双曲线y=(k≠0)与正方形ABCD有四个交点时,k的取值范围是: ;

(2)已知抛物线L:y=a(x﹣m)2+n(a>0)顶点P在边BC上,与边AB,DC分别相交于点E,F,过点B的双曲线y=(k≠0)与边DC交于点N.

①点Q(m,﹣m2﹣2m+3)是平面内一动点,在抛物线L的运动过程中,点Q随m运动,分别切运动过程中点Q在最高位置和最低位置时的坐标;

②当点F在点N下方,AE=NF,点P不与B,C两点重合时,求﹣的值;

③求证:抛物线L与直线x=1的交点M始终位于x轴下方.

7、如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.

(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;

(2)当点C在l下方时,求点C与l距离的最大值;

(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;

(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.

8、在平面直角坐标系xOy中,顶点为A的抛物线与x轴交于B、C两点,与y轴交于点D,已知A(1,4),B(3,0).

(1)求抛物线对应的二次函数表达式;

(2)探究:如图1,连接OA,作DE∥OA交BA的延长线于点E,连接OE交AD于点F,M是BE的中点,则OM是否将四边形OBAD分成面积相等的两部分?请说明理由;

(3)应用:如图2,P(m,n)是抛物线在第四象限的图象上的点,且m+n=﹣1,连接PA、PC,在线段PC上确定一点M,使AN平分四边形ADCP的面积,求点N的坐标.

提示:若点A、B的坐标分别为(x1,y1)、(x2,y2),则线段AB的中点坐标为(,).

9、若二次函数y=ax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,﹣2),且过点C(2,﹣2).

(1)求二次函数表达式;

(2)若点P为抛物线上第一象限内的点,且S△PBA=4,求点P的坐标;

(3)在抛物线上(AB下方)是否存在点M,使∠ABO=∠ABM?若存在,求出点M到y轴的距离;若不存在,请说明理由.

10、如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=(x>0)经过点D,连接MD,BD.

(1)求抛物线的表达式;

(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;

(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)

11、如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.

(1)求这条抛物线对应的函数表达式;

(2)问在y轴上是否存在一点P,使得△PAM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

(3)若在第一象限的抛物线下方有一动点D,满足DA=OA,过D作DG⊥x轴于点G,设△ADG的内心为I,试求CI的最小值.

12、如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.

(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;

(2)在(1)中,当MN取得最大值,HF+FP+PC取得最小值时,把点P向上平移个单位得到点Q,连结AQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G.在旋转过程中,是否存在一点G,使得∠Q'=∠Q'OG?若存在,请直接写出所有满足条件的点Q′的坐标;若不存在,请说明理由.

参考答案

2021年中考数学第三轮冲刺复习:二次函数

解答题专题练习

1、如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.

(1)求抛物线的函数表达式;

(2)若点P在第二象限内,且PE=OD,求△PBE的面积.

(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.

【解答】解:(1)点A的坐标是(2,0),抛物线的对称轴是直线x=﹣1,则点B(﹣4,0),则函数的表达式为:y=a(x﹣2)(x+4)=a(x2+2x﹣8),即:﹣8a=﹣2,解得:a=,故抛物线的表达式为:y=x2+x﹣2;

(2)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:

直线BC的表达式为:y=﹣x﹣2,则tan∠ABC=,则sin∠ABC=,设点D(x,0),则点P(x,x2+x﹣2),点E(x,x﹣2),∵PE=OD,∴PE=(x2+x﹣2﹣x+2)=(﹣x),解得:x=0或﹣5(舍去x=0),即点D(﹣5,0)

S△PBE=×PE×BD=(x2+x﹣2﹣x+2)(﹣4﹣x)=;

(3)由题意得:△BDM是以BD为腰的等腰三角形,①当BD=BM时,过点M作MH⊥x轴于点H,BD=1=BM,则MH=yM=BMsin∠ABC=1×=,则xM=,故点M(﹣,﹣);

②当BD=DM(M′)时,同理可得:点M′(﹣,);

故点M坐标为(﹣,﹣)或(﹣,).

2、如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合).

(1)求抛物线和直线l的解析式;

(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;

(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.

【解答】解:(1)将点A、D的坐标代入直线表达式得:,解得:,故直线l的表达式为:y=﹣x﹣1,将点A、D的坐标代入抛物线表达式,同理可得抛物线的表达式为:y=﹣x2+3x+4;

(2)直线l的表达式为:y=﹣x﹣1,则直线l与x轴的夹角为45°,即:则PE=PE,设点P坐标为(x,﹣x2+3x+4)、则点F(x,﹣x﹣1),PE+PF=2PF=2(﹣x2+3x+4+x+1)=﹣2(x﹣2)2+18,∵﹣2<0,故PE+PF有最大值,当x=2时,其最大值为18;

(3)NC=5,①当NC是平行四边形的一条边时,设点P坐标为(x,﹣x2+3x+4)、则点M(x,﹣x﹣1),由题意得:|yM﹣yP|=5,即:|﹣x2+3x+4+x+1|=5,解得:x=2或0或4(舍去0),则点P坐标为(2+,﹣3﹣)或(2﹣,﹣3+)或(4,﹣5);

②当NC是平行四边形的对角线时,则NC的中点坐标为(﹣,2),设点P坐标为(m,﹣m2+3m+4)、则点M(n,﹣n﹣1),N、C,M、P为顶点的四边形为平行四边形,则NC的中点即为PM中点,即:﹣=,2=,解得:m=0或﹣4(舍去0),故点P(﹣4,3);

故点P的坐标为:(2+,﹣3﹣)或(2﹣,﹣3+)或(4,﹣5)或(﹣4,3).

3、如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=﹣(x﹣m)2+m+2的顶点.

(1)当m=0时,求该抛物线下方(包括边界)的好点个数.

(2)当m=3时,求该抛物线上的好点坐标.

(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.

【解答】解:(1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,函数图象如图1所示.

∵当x=0时,y=2,当x=1时,y=1,∴抛物线经过点(0,2)和(1,1),观察图象可知:好点有:(0,0),(0,1),(0,2),(1,0),(1,1),共5个.

(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5.如图2.

∵当x=1时,y=1,当x=2时,y=4,当x=4时,y=4,∴抛物线经过(1,1),(2,4),(4,4),共线图象可知,抛物线上存在好点,坐标分别为(1,1),(2,4),(4,4).

(3)如图3中,∵抛物线的顶点P(m,m+2),∴抛物线的顶点P在直线y=x+2上,∵点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),当抛物线经过点E时,﹣(2﹣m)2+m+2=1,解得m=或(舍弃),当抛物线经过点F时,﹣(2﹣m)2+m+2=2,解得m=1或4(舍弃),∴当≤m<1时,顶点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点.

4、如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.

(1)求直线DE和抛物线的表达式;

(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P的坐标;

(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.

【解答】解:(1)将点D、E的坐标代入函数表达式得:,解得:,故抛物线的表达式为:y=﹣x2+x+2,同理可得直线DE的表达式为:y=x﹣1…①;

(2)如图1,连接BF,过点P作PH∥y轴交BF于点H,将点FB代入一次函数表达式,同理可得直线BF的表达式为:y=﹣x+1,设点P(x,﹣x2+x+2),则点H(x,﹣x+1),S四边形OBPF=S△OBF+S△PFB=×4×1+×PH×BO=2+2(﹣x2+x+2+x﹣1)=7,解得:x=2或,故点P(2,3)或(,);

(3)当点P在抛物线对称轴的右侧时,点P(2,3),过点M作A′M∥AN,过作点A′直线DE的对称点A″,连接PA″交直线DE于点M,此时,点Q运动的路径最短,∵MN=2,相当于向上、向右分别平移2个单位,故点A′(1,2),A′A″⊥DE,则直线A′A″过点A′,则其表达式为:y=﹣x+3…②,联立①②得x=2,则A′A″中点坐标为(2,1),由中点坐标公式得:点A″(3,0),同理可得:直线AP″的表达式为:y=﹣3x+9…③,联立①③并解得:x=,即点M(,),点M沿BD向下平移2个单位得:N(,﹣).

5、如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.

(1)求抛物线C函数表达式;

(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;

(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离?若存在,求出定点F的坐标;若不存在,请说明理由.

【解答】解:(1)由题意把点(﹣1,0)、(2,3)代入y=ax2+2x+c,得,解得a=﹣1,c=3,∴此抛物线C函数表达式为:y=﹣x2+2x+3;

(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(﹣1,0)、(2,3)代入y=kx+b中,得,解得,k=1,b=1,∴yAB=x+1,设点M(a,﹣a2+2a+3),则K(a,a+1),则MK=﹣a2+2a+3﹣(a+1)

=﹣(a﹣)2+,根据二次函数的性质可知,当a=时,MK有最大长度,∴S△AMB最大=S△AMK+S△BMK

=MK•AH+MK•(xB﹣xH)

=MK•(xB﹣xA)

=××3

=,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S最大=2S△AMB最大=2×=,M(,);

(3)y=﹣x2+2x+3

=﹣(x﹣1)2+4,∴对称轴为直线x=1,当y=0时,x1=﹣1,x2=3,∴抛物线与点x轴正半轴交于点C(3,0),如图2,分别过点B,C作直线y=的垂线,垂足为N,H,设抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离,其中F(1,a),连接BF,CF,则BF=BN=﹣3=,CF=CH=,由题意可列:,解得,a=,∴F(1,).

6、在平面直角坐标系中,正方形ABCD的四个顶点坐标分别为A(﹣2,4),B(﹣2,﹣2),C(4,﹣2),D(4,4).

(1)填空:正方形的面积为 36 ;当双曲线y=(k≠0)与正方形ABCD有四个交点时,k的取值范围是: 0<k<4或﹣8<k<0 ;

(2)已知抛物线L:y=a(x﹣m)2+n(a>0)顶点P在边BC上,与边AB,DC分别相交于点E,F,过点B的双曲线y=(k≠0)与边DC交于点N.

①点Q(m,﹣m2﹣2m+3)是平面内一动点,在抛物线L的运动过程中,点Q随m运动,分别切运动过程中点Q在最高位置和最低位置时的坐标;

②当点F在点N下方,AE=NF,点P不与B,C两点重合时,求﹣的值;

③求证:抛物线L与直线x=1的交点M始终位于x轴下方.

【解答】解:(1)由点A(﹣2,4),B(﹣2,﹣2)可知正方形的边长为6,∴正方形面积为36;

有四个交点时0<k<4或﹣8<k<0;

故答案为36,0<k<4或﹣8<k<0;

(2)①由题意可知,﹣2≤m≤4,yQ=﹣m2﹣2m+3=﹣(m+1)2+4,当m=﹣1,yQ最大=4,在运动过程中点Q在最高位置时的坐标为(﹣1,4),当m<﹣1时,yQ随m的增大而增大,当m=﹣2时,yQ最小=3,当m>﹣1时,yQ随m的增大而减小,当m=4时,yQ最小=﹣21,∴3>﹣21,∴yQ最小=﹣21,点Q在最低位置时的坐标(4,﹣21),∴在运动过程中点Q在最高位置时的坐标为(﹣1,4),最低位置时的坐标为(4,﹣21);

②当双曲线y=经过点B(﹣2,﹣2)时,k=4,∴N(4,1),∵顶点P(m,n)在边BC上,∴n=﹣2,∴BP=m+2,CP=4﹣m,∵抛物线y=a(x﹣m)2﹣2(a>0)与边AB、DC分别交于点E、F,∴E(﹣2,a(﹣2﹣m)2﹣2),F(4,a(4﹣m)2﹣2),∴BE=a(﹣2﹣m)2,CF=a(4﹣m)2,∴=﹣,∴a(m+2)﹣a(4﹣m)=2am﹣2a=2a(m﹣1),∵AE=NF,点F在点N下方,∴6﹣a(﹣2﹣m)2=3﹣a(4﹣m)2,∴12a(m﹣1)=3,∴a(m﹣1)=,∴=;

③由题意得,M(1,a(1﹣m)2﹣2),∴yM=a(1﹣m)2﹣2(﹣2≤m≤4),即yM=a(m﹣1)2﹣2(﹣2≤m≤4),∵a>0,∴对应每一个a(a>0)值,当m=1时,yM最小=﹣2,当m=﹣2或4时,yM最大=9a﹣2,当m=4时,y=a(x﹣4)2﹣2,∴F(4,﹣2),E(﹣2,36a﹣2),∵点E在边AB上,且此时不与B重合,∴﹣2<36a﹣2≤4,∴0<a≤,∴﹣2<9a﹣2≤﹣,∴yM≤﹣,同理m=﹣2时,y=y=a(x+2)2﹣2,∴E(﹣2,﹣2),F(4,36a﹣2),∵点F在边CD上,且此时不与C重合,∴﹣2<36a﹣2≤4,解得0<a≤,∴﹣2<9a﹣2≤﹣,∴yM≤﹣,综上所述,抛物线L与直线x=1的交点M始终位于x轴下方;

7、如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.

(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;

(2)当点C在l下方时,求点C与l距离的最大值;

(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;

(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.

【解答】解:(1)当x=0吋,y=x﹣b=﹣b,∴B

(0,﹣b),∵AB=8,而A(0,b),∴b﹣(﹣b)=8,∴b=4.

∴L:y=﹣x2+4x,∴L的对称轴x=2,当x=2吋,y=x﹣4=﹣2,∴L的对称轴与a的交点为(2,﹣2);

(2)y=﹣(x﹣)2+,∴L的顶点C()

∵点C在l下方,∴C与l的距离b﹣=﹣(b﹣2)2+1≤1,∴点C与1距离的最大值为1;

(3)由題意得,即y1+y2=2y3,得b+x0﹣b=2(﹣x02+bx0)

解得x0=0或x0=b﹣.但x0#0,取x0=b﹣,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).

∴点(x0,0)与点D间的距离b﹣(b﹣)=

(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x

直线解析式a:y=x﹣2019

联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值

都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;

∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点

∴总计4042个点,∵这两段图象交点有2个点重复,∴美点”的个数:4042﹣2=4040(个);

②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x2+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之

间有1009个偶数,并且在﹣1和2019.5之间还有整数0,验证后可知0也符合条件,因此“美点”共有1010个.

故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.

8、在平面直角坐标系xOy中,顶点为A的抛物线与x轴交于B、C两点,与y轴交于点D,已知A(1,4),B(3,0).

(1)求抛物线对应的二次函数表达式;

(2)探究:如图1,连接OA,作DE∥OA交BA的延长线于点E,连接OE交AD于点F,M是BE的中点,则OM是否将四边形OBAD分成面积相等的两部分?请说明理由;

(3)应用:如图2,P(m,n)是抛物线在第四象限的图象上的点,且m+n=﹣1,连接PA、PC,在线段PC上确定一点M,使AN平分四边形ADCP的面积,求点N的坐标.

提示:若点A、B的坐标分别为(x1,y1)、(x2,y2),则线段AB的中点坐标为(,).

【解答】解:(1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式得:0=a(3﹣1)2+4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x﹣3;

(2)OM将四边形OBAD分成面积相等的两部分,理由:

如图1,∵DE∥AO,S△ODA=S△OEA,S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM,∴S△OME=S△OBM,∴S四边形OMAD=S△OBM;

(3)设点P(m,n),n=﹣m2+2m+3,而m+n=﹣1,解得:m=﹣1或4,故点P(4,﹣5);

如图2,故点D作QD∥AC交PC的延长线于点Q,由(2)知:点N是PQ的中点,将点C(﹣1,0)、P(4,﹣5)的坐标代入一次函数表达式并解得:

直线PC的表达式为:y=﹣x﹣1…①,同理直线AC的表达式为:y=2x+2,直线DQ∥CA,且直线DQ经过点D(0,3),同理可得直线DQ的表达式为:y=2x+3…②,联立①②并解得:x=﹣,即点Q(﹣,),∵点N是PQ的中点,由中点公式得:点N(,﹣).

9、若二次函数y=ax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,﹣2),且过点C(2,﹣2).

(1)求二次函数表达式;

(2)若点P为抛物线上第一象限内的点,且S△PBA=4,求点P的坐标;

(3)在抛物线上(AB下方)是否存在点M,使∠ABO=∠ABM?若存在,求出点M到y轴的距离;若不存在,请说明理由.

【解答】解:(1)∵二次函数的图象经过点A(3,0)、B(0,﹣2)、C(2,﹣2)

解得:

∴二次函数表达式为y=x2﹣x﹣2

(2)如图1,设直线BP交x轴于点C,过点P作PD⊥x轴于点D

设P(t,t2﹣t﹣2)(t>3)

∴OD=t,PD=t2﹣t﹣2

设直线BP解析式为y=kx﹣2

把点P代入得:kt﹣2=t2﹣t﹣2

∴k=t﹣

∴直线BP:y=(t﹣)x﹣2

当y=0时,(t﹣)x﹣2=0,解得:x=

∴C(,0)

∵t>3

∴t﹣2>1

∴,即点C一定在点A左侧

∴AC=3﹣

∵S△PBA=S△ABC+S△ACP=AC•OB+AC•PD=AC(OB+PD)=4

∴=4

解得:t1=4,t2=﹣1(舍去)

∴t2﹣t﹣2=

∴点P的坐标为(4,)

(3)在抛物线上(AB下方)存在点M,使∠ABO=∠ABM.

如图2,作点O关于直线AB的对称点E,连接OE交AB于点G,连接BE交抛物线于点M,过点E作EF⊥y轴于点F

∴AB垂直平分OE

∴BE=OB,OG=GE

∴∠ABO=∠ABM

∵A(3,0)、B(0,﹣2),∠AOB=90°

∴OA=3,OB=2,AB=

∴sin∠OAB=,cos∠OAB=

∵S△AOB=OA•OB=AB•OG

∴OG=

∴OE=2OG=

∵∠OAB+∠AOG=∠AOG+∠BOG=90°

∴∠OAB=∠BOG

∴Rt△OEF中,sin∠BOG=,cos∠BOG=

∴EF=OE=,OF=OE=

∴E(,﹣)

设直线BE解析式为y=ex﹣2

把点E代入得:e﹣2=﹣,解得:e=﹣

∴直线BE:y=﹣x﹣2

当﹣x﹣2=x2﹣x﹣2,解得:x1=0(舍去),x2=

∴点M横坐标为,即点M到y轴的距离为.

10、如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=(x>0)经过点D,连接MD,BD.

(1)求抛物线的表达式;

(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;

(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)

【解答】解;(1)C(0,3)

∵CD⊥y,∴D点纵坐标是3,∵D在y=上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;

(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;

∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y=﹣x+,∴N(,0),F(0,);

(3)设P(0,t),∵△PBO和△CDP都是直角三角形,tan∠CDP=,tan∠PBO=,令y=tan∠BPD=,∴yt2+t﹣3yt+6y﹣9=0,△=﹣15y2+30y+1=0时,y=(舍)或y=,∴t=﹣×,∴t=9﹣2,∴P(0,9﹣2);

11、如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.

(1)求这条抛物线对应的函数表达式;

(2)问在y轴上是否存在一点P,使得△PAM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

(3)若在第一象限的抛物线下方有一动点D,满足DA=OA,过D作DG⊥x轴于点G,设△ADG的内心为I,试求CI的最小值.

【解答】解:(1)∵抛物线y=ax2+bx+3过点A(3,0),B(﹣1,0)

解得:

∴这条抛物线对应的函数表达式为y=﹣x2+2x+3

(2)在y轴上存在点P,使得△PAM为直角三角形.

∵y=﹣x2+2x+3=﹣(x﹣1)2+4

∴顶点M(1,4)

∴AM2=(3﹣1)2+42=20

设点P坐标为(0,p)

∴AP2=32+p2=9+p2,MP2=12+(4﹣p)2=17﹣8p+p2

①若∠PAM=90°,则AM2+AP2=MP2

∴20+9+p2=17﹣8p+p2

解得:p=﹣

∴P(0,﹣)

②若∠APM=90°,则AP2+MP2=AM2

∴9+p2+17﹣8p+p2=20

解得:p1=1,p2=3

∴P(0,1)或(0,3)

③若∠AMP=90°,则AM2+MP2=AP2

∴20+17﹣8p+p2=9+p2

解得:p=

∴P(0,)

综上所述,点P坐标为(0,﹣)或(0,1)或(0,3)或(0,)时,△PAM为直角三角形.

(3)如图,过点I作IE⊥x轴于点E,IF⊥AD于点F,IH⊥DG于点H

∵DG⊥x轴于点G

∴∠HGE=∠IEG=∠IHG=90°

∴四边形IEGH是矩形

∵点I为△ADG的内心

∴IE=IF=IH,AE=AF,DF=DH,EG=HG

∴矩形IEGH是正方形

设点I坐标为(m,n)

∴OE=m,HG=GE=IE=n

∴AF=AE=OA﹣OE=3﹣m

∴AG=GE+AE=n+3﹣m

∵DA=OA=3

∴DH=DF=DA﹣AF=3﹣(3﹣m)=m

∴DG=DH+HG=m+n

∵DG2+AG2=DA2

∴(m+n)2+(n+3﹣m)2=32

∴化简得:m2﹣3m+n2+3n=0

配方得:(m﹣)2+(n+)2=

∴点I(m,n)与定点Q(,﹣)的距离为

∴点I在以点Q(,﹣)为圆心,半径为的圆在第一象限的弧上运动

∴当点I在线段CQ上时,CI最小

∵CQ=

∴CI=CQ﹣IQ=

∴CI最小值为.

12、如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.

(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;

(2)在(1)中,当MN取得最大值,HF+FP+PC取得最小值时,把点P向上平移个单位得到点Q,连结AQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G.在旋转过程中,是否存在一点G,使得∠Q'=∠Q'OG?若存在,请直接写出所有满足条件的点Q′的坐标;若不存在,请说明理由.

【解答】解:(1)如图1

∵抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C

∴令y=0解得:x1=﹣1,x2=3,令x=0,解得:y=﹣3,∴A(﹣1,0),B(3,0),C(0,﹣3)

∵点D为抛物线的顶点,且==1,==﹣4

∴点D的坐标为D(1,﹣4)

∴直线BD的解析式为:y=2x﹣6,由题意,可设点N(m,m2﹣2m﹣3),则点F(m,2m﹣6)

∴|NF|=(2m﹣6)﹣(m2﹣2m﹣3)=﹣m2+4m﹣3

∴当m==2时,NF

取到最大值,此时MN取到最大值,此时HF=2,此时,N(2,﹣3),F(2,﹣2),H(2,0)

在x轴上找一点K(,0),连接CK,过点F作CK的垂线交CK于点J点,交y轴于点P,∴sin∠OCK=,直线KC的解析式为:y=,且点F(2,﹣2),∴PJ=PC,直线FJ的解析式为:y=

∴点J(,)

∴FP+PC的最小值即为FJ的长,且|FJ|=

∴|HF+FP+PC|min=;

(2)由(1)知,点P(0,),∵把点P向上平移个单位得到点Q

∴点Q(0,﹣2)

∴在Rt△AOQ中,∠AOG=90°,AQ=,取AQ的中点G,连接OG,则OG=GQ=AQ=,此时,∠AQO=∠GOQ

把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G

①如图2

G点落在y轴的负半轴,则G(0,﹣),过点Q'作Q'I⊥x轴交x轴于点I,且∠GOQ'=∠Q'

则∠IOQ'=∠OA'Q'=∠OAQ,∵sin∠OAQ===

∴sin∠IOQ'===,解得:|IO|=

∴在Rt△OIQ'中根据勾股定理可得|OI|=

∴点Q'的坐标为Q'(,﹣);

②如图3,当G点落在x轴的正半轴上时,同理可得Q'(,)

③如图4

当G点落在y轴的正半轴上时,同理可得Q'(﹣,)

④如图5

当G点落在x轴的负半轴上时,同理可得Q'(﹣,﹣)

综上所述,所有满足条件的点Q′的坐标为:(,﹣),(,),(﹣,),(﹣,﹣)

下载2021年中考数学第三轮冲刺复习:二次函数解答题专题练习word格式文档
下载2021年中考数学第三轮冲刺复习:二次函数解答题专题练习.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐