《高等数学》教学大纲

2022-05-06 11:20:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《《高等数学》教学大纲》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《高等数学》教学大纲》。

《高等数学》教学大纲

课程名称:高等数学Ⅰ

课程代号:

学时数:

学分数:

适用专业:专升本

一、本课程的地位、任务和作用

高等数学是人们在从事高新技术及知识创新中必不可少的工具,它的内容、思想、方法和语言已广泛渗入自然科学和社会科学,成为现代文化的重要组成部分。21世纪是信息时代,它不仅给人类生活带来日新月异的变化,也给“高等数学”课程的教学增添了新的内涵。

“高等数学”是高等院校的一门重要的基础课,通过学习使学生受到必要的高等数学教育,使其具有一定的数学素养,为后续课程学习及今后的应用打下良好的数学基础。

二、本课程的基本内容及要求

第一章

函数

(一)基本内容

函数的概念及表示法,函数的有界性、单调性、周期性、奇偶性,复合函数,反函数,隐函数,基本初等函数的性质及其图形。掌握常用的不等式和等式以及极坐标。

(二)基本要求

1.理解函数的概念,掌握表示法。

2.了解函数的有界性,单调性,周期性,奇偶性。

3.理解复合函数及分段函数的概念,了解反函数,隐函数概念。

4.掌握简单初等函数的性质及其图形。

5.掌握常用的不等式和等式以及极坐标。

第二章

极限与连续

(一)基本内容

熟练掌握数列极限与函数极限的定义及性质,函数的左、右极限,无穷小与无穷大的概念,无穷小的性质及其比较,极限的四则运算,极限存在的两个准则,两个重要极限

函数连续的概念,间断点的类型,初等函数的连续性,闭区间上连续函数的性质。

(二)基本要求

1.理解数列极限与函数极限的概念。

理解函数的左、右极限概念及极限存在与左、右极限存在的关系。

2.掌握极限的性质、极限的四则运算法则。

3.掌握极限存在的两个准则,并会利用它们求极限,基本掌握利用“两个重要极限”求极限的方法。

4.理解无穷小与无穷大的概念,掌握无穷小比较方法,会用等价无穷小求极限。

5.理解函数连续的概念,会判别函数间断点的类型。

6.了解连续函数的性质,初等函数的连续性,理解闭区间上连续函数的性质并会利用这些性质。

第三章

一元函数微分学

(一)基本内容

导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线,基本初等函数的导数,导数和微分的四则运算,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法,高阶导数的概念,某些简单函数n阶导数,一阶微分形式的不变性,微分在近似计算中的应用。

(二)基本要求

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述简单物理量,理解函数的可导性与连续性之间的关系。

2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数求导公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分,初步了解微分在近似计算中的应用。

3.了解高阶导数的概念,会求简单函数的n阶导数。

4.会求分段函数的导数。

5.会求隐函数和由参数方程所确定的函数的一阶、二阶导数,会求反函数的导数。

第四章

一元函数微分学的应用

(一)基本内容

罗尔(Rolle)定理,拉格朗日(Lagrange)中值定理,柯西定理(Cauchy)中值定理,泰勒(Taylor)中值定理,洛比达(L'Hospital)法则,函数的极值及其求法,函数单调性,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数最大值和最小值的及其简单应用,弧微分,曲率半径。

(二)基本要求

1.理解并会用罗尔定理、拉格朗日中值定理,初步了解泰勒定理。了解柯西中值定理。

2.掌握用“洛比达“法则求未定式极限的方法。

3.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。

4.会利用导数判断函数图形的凹凸性和拐点,会求函数图形的水平、铅直和斜渐近线,会描绘函数的图形。

5.了解弧微分的概念及其计算公式,了解曲率和曲率半径的概念,会计算曲率和曲率半径。

第五章

一元函数积分学

(一)基本内容

原函数和不定积分的概念,不定积分的基本性质,不定积分和定积分的换元积分与分部积分方法,有理函数、三角函数的有理式和简单无理函数的积分。

(二)基本要求

1.理解原函数、不定积分的概念。

2.掌握不定积分的基本公式,理解不定积分的性质,掌握不定积分的换元法和分部积分法。

3.会求有理函数、三角函数有理式及简单无理函数的积分。

第六章

一元函数积分学的应用

(一)基本内容

定积分的元素法,用定积分计算面积、体积、弧长,用定积分计算功、水压力、引力。

(二)基本要求

1.掌握用定积分表达和计算一些几何量(平面图形的面积、旋转体的体积、平面截面面积为已知的立体体积、平面曲线的弧长)。

2.掌握用定积分表达和计算一些物理量(变力沿直线所做的功、水压力和引力)。

笫七章

常微分方程

(一)基本内容

微分方程的概念,微分方程的解、阶、通解、初始条件和特解,变量可分离的方程,齐次方程,一阶线性方程,伯努利(Benoulli)方程,全微分方程,可用简单的变量代换求解的某些微分方程,可降阶的高阶微分方程,线性微分方程解的性质及解的结构定理,二阶常系数齐次线性微分方程,高于二阶的某些常系数齐次线性微分方程,简单的二阶常系数非齐次线性微分方程,欧拉(Euler)方程,微分方程的幂级数解法,微分方程的简单应用问题。

(二)基本要求

1.了解微分方程及其解、通解、初始条件和特解等概念

2.掌握可分离变量方程及一阶线性方程的解法

3.会求解齐次方程、伯努利方程和全微分方程,会用简单的变量代换求解某些微分方程。

4.会用降阶法求解方程:。

5.理解线性微分方程解的性质及解的结构定理。

6.掌握二阶常数齐次线性微分方程的解法,并会求解某些高于二阶的常系数齐次线性微分方程。

7.会求自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。

8.了解微分方程的幂级数解法,会求解欧拉方程。

9.会用微分方程解决一些简单的应用问题。

笫八章

向量代数与空间解析几何

(一)基本内容

向量的概念,向量的线性运算,向量的数量积和向量积的概念及运算,两向量垂直、平行的条件,两向量的夹角,向量的坐标表达式及其运算,单位向量,方向数与方向余弦,曲面方程和空间曲线方程的概念,平面方程、直线方程,平面与平面、平面与直线、直线与直线的平行、垂直的条件和夹角,点到平面和点到直线的距离,球面,母线平行于坐标轴的柱面,旋转轴为坐标轴的旋转曲面的方程,常用的二次曲面方程及其图形,空间曲线的参数方程和一般方程,空间曲线在坐标面上的投影曲线方程。

(二)基本要求

1.理解空间直角坐标系,理解向量的概念及其表示。

2.掌握向量的运算(线性运算、数量积、向量积),掌握两个向量垂直、平行的条件。

3.掌握单位向量、方向数与方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法。

4.掌握平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。

5.理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。

6.了解空间曲线的参数方程和一般方程。

7.了解空间曲线在坐标平面上的投影,并会求其方程。

第九章

多元函数微分学

(一)基本内容

多元函数的概念,二元函数的几何意义,二元函数极限和连续的概念,有界闭区域多元连续函数的性质,多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分在近似计算中的应用,多元复合函数、隐函数的求导法,二阶偏导数,方向导数和梯度的概念及其计算,空间曲线的切线和法平面,曲面的切平面和法线,二元函数的最大值、最小值及其简单应用。

(二)基本要求

1.理解多元函数的概念,理解二元函数的几何意义。

2.了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。

3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性,了解全微分在近似计算中的应用。

4.理解方向导数与梯度的概念并掌握其计算方法。

5.掌握多元复合函数偏导数的求法。

6.会求隐函数(包括由方程组确定的隐函数)的偏导数。

7.了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们方程。

8.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。

第十章

重积分

(一)基本内容

二重积分、三重积分的概念及性质,二重积分与三重积分的计算和应用。

(二)基本要求

1.理解二重积分、三重积分的概念,了解重积分的性质。

2.掌握二重积分(直角坐标系、极坐标系)的计算方法,会计算三重积分(直角坐标系、柱面坐标、球面坐标)。

3.会用重积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力等)。

第十一、十二章

曲线积分与曲面积分

(一)基本内容

两类曲线积分的概念、性质及计算,两类曲线积分的关系,格林(Green)公式,平面曲线积分与路径无关的条件,已知全微分求原函数,两类曲面积分的概念、性质及计算,两类曲面积分的关系,高斯(Gauss)公式,斯托克斯(Stokes)公式,散度、旋度的概念及计算,曲线积分和曲面积分的应用。

(二)基本要求

1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。

2.掌握计算两类曲线积分的方法。

3.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数。

4.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,了解高斯公式、斯托克斯公式,会用高斯公式计算曲面积分。

7.了解散度与旋度的概念,并会计算。

8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。

第十三章

无穷级数

(一)基本内容

常数项级数的收敛与发散的概念,收敛级数的和的概念,级数的基本性质与收敛的必要条件,几何级数与级数以及它们的收敛性,正项级数的比较审敛法、比值审敛法、根值审敛法,交错级数与莱布尼茨定理,任意项级数的绝对收敛与条件收敛,函数项级数的收敛域与和函数的概念,幂级数及其收敛半径、收敛区间(指开区间)和收敛域,幂级数的和函数,幂级数在其收敛区间内的基本性质,简单幂级数的和函数的求法,函数可展开为泰勒级数的充分必要条件,常见函数如,,等的麦克劳林展开式,幂级数在近似计算中的应用,函数的傅里叶级数,Dirichlet收敛定理,函数在和上的傅里叶级数,函数在和上的正弦级数和余弦级数。

(二)基本要求

1.理解常数项级数的收敛、发散以及收敛级数的概念,掌握级数的基本性质及收敛的必要条件。

2.掌握几何级数与级数的收敛与发散的条件。

3.掌握正项级数的比较审敛法和比值审敛法,会用根值审敛法。

4.掌握交错级数的莱布尼茨定理。

5.理解任意项级数的绝对收敛与条件收敛的概念,了解绝对收敛与条件收敛的关系。

6.了解函数项级数收敛域与和函数的概念。

7.掌握幂级数的收敛半径、收敛区间及收敛区域的求法。

8.了解幂级数在其收敛区间内的一些基本性质,会求一些幂级数在其收敛区间内的和函数,并会由此求某些数项级数的和。

9.了解函数展开为泰勒级数的充分必要条件。

10.掌握常见函数如,,等的麦克劳林展开式,并会用它们将一些简单函数间接展开成幂级数。

11.了解幂级数在近似计算上的简单应用。

12.了解傅里叶级数的概念和函数展开为傅里叶级数的狄利克雷定理,会将定义在和上的函数展开为傅里叶级数,会将定义在和上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。

三、习题数量与要求

(一)数量:以网上作业为主,教师作业为辅。

(二)要求:覆盖基本理论、基本方法、基本计算。

四、教学方式与考核方式

教学方式:面授辅导、平时作业

考核方式:考勤、作业和考试

五、几点说明:

(一)推荐教材

朱士信

唐烁等。高等数学(上、下)。高等教育出版社

(二)参考书目

1.同济大学应用数学系.高等数学(五版)(上、下).北京:高等教育出版社,2002

2.殷锡鸣等.高等数学.上海:

华东理工大学出版社,2003

3.马知恩.工科数学分析基础(第二版).北京:高等教育出版社,2006

4.萧树铁.大学数学.北京:高等教育出版社,2005

5.安徽大学数学系.高等数学.合肥:安徽大学出版社,2002

下载《高等数学》教学大纲word格式文档
下载《高等数学》教学大纲.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高等数学(A)教学大纲

    高等数学(A)教学大纲(课程编号 07011201。 学分--学时--上机:10 –192--12)东南大学数学系一、课程的性质与目的本课程是工科类各专业的一门重要的基础理论课程。本课程的教学目......

    高等数学教学大纲

    一、课程的性质、目的和任务 数学是研究客观世界数量关系和空间形式的科学。《高等数学》是医学院校各专业的一门重要的基础课程,为其它学科提供有效的工具及思维方法。其固......

    高等数学教学大纲

    高等数学教学大纲 高等数学A—物理计算机类专业 一、说明 (一)课程性质 高等数学A是非数学理工科本科各专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建......

    《高等数学(本)》教学大纲

    《高等数学(本)》教学大纲课程名称:高等数学(本)适应专业:2017级专升本各专业教材名称:《高等数学》(本)李刚主编中国传媒出版社一、本课程的地位、任务和作用高等数学是人们在从事高......

    《高等数学(一)》教学大纲

    《高等数学(一)》教学大纲 Advanced Mathematics 课程编码:09A00010 学分:5.0 课程类别:专业基础课 计划学时:80 其中讲课:80 实验或实践:0 上机:0 适用专业:材料与工程学院,化学......

    高等数学教学大纲(共5则)

    《高等数学Ⅰ》教学大纲 一、课程说明 数学是研究客观世界数量关系和空间形式的科学。现代数学的内容更丰富、方法更综合、应用更广泛。数学不仅是一种工具,而且是一种思维模......

    高等数学A课程教学大纲-北京师范大学数学科学学院

    大学数学(B) Undergraduate Mathematics (B) 【课程编号】(必备项) 【学分数】(12) 【学时数】(216) 【课程类别】(学科基础课) 【适用专业】(化生电体等) 【编写日期】(2007-5-24) 一、......

    《高等数学》课程教学大纲[优秀范文5篇]

    《高等数学》课程教学大纲 一、课程名称 高等数学 Advanced mathematics 二、课程编码 090101 三、学时数、学分 学时数:200(160) 学分:10(8) 四、适用专业 工科和管理各专业本科......