专题3:受力分析
参考答案
一、弹力
题型1:弹力的方向分析及大小的计算
1.画出图中物体受弹力的方向(各接触面均光滑)
2.台球以速度v0与球桌边框成θ角撞击O点,反弹后速度为v1,方向与球桌边框夹角仍为θ,如图2-1-10所示.OB垂直于桌边,则下列关于桌边对小球的弹力方向的判断中正确的是()
A.可能沿OA方向
B.一定沿OB方向
C.可能沿OC方向
D.可能沿OD方向
解析:台球与球桌边框碰撞时,受到边框的弹力作用,弹力的方向应与边框垂直,即沿OB方向,故选B.答案:B
3.如图所示,一小车的表面由一光滑水平面和光滑斜面连接而成,其上放一球,球与水平面的接触点为a,与斜面的接触点为b.当小车和球一起在水平桌面上做直线运动时,下列结论正确的是()
A.球在a、b两点处一定都受到支持力
B.球在a点一定受到支持力,在b点处一定不受支持力
C.球在a点一定受到支持力,在b点处不一定受到支持力
D.球在a点处不一定受到支持力,在b点处也不一定受到支持力
答案:D
4.(2010·重庆联合诊断)如图所示,质量为m的球置于斜面上,被一个竖直挡板挡住.现用一个力F拉斜面,使斜面在水平面上做加速度为a的匀加速直线运动,忽略一切摩擦,以下说法中正确的是()
A.若加速度足够小,竖直挡板对球的弹力可能为零
B.若加速度足够大,斜面对球的弹力可能为零
C.斜面和挡板对球的弹力的合力等于ma
D.斜面对球的弹力不仅有,而且是一个定值
解析:球在重力、斜面的支持力和挡板的弹力作用下做加速运动,则球受到的合力水平向右,为ma,如图所示,设斜面倾角为θ,挡板对球的弹力为F1,由正交分解法得:F1-Nsin
θ=ma,Ncos
θ=G,解之得:F1=ma+Gtan
θ,可见,弹力为一定值,D正确.
答案:D
5.如图所示,小球B放在真空容器A内,球B的直径恰好等于正方体A的边长,将它们以初速度v0竖直向上抛出,下列说法中正确的是()
A.若不计空气阻力,上升过程中,A对B有向上的支持力
B.若考虑空气阻力,上升过程中,A对B的压力向下
C.若考虑空气阻力,下落过程中,B对A的压力向上
D.若不计空气阻力,下落过程中,B对A的压力向下
解析:若不计空气阻力,则整个系统处于完全失重状态,所以A、B间无作用力,选项A
D错;若考虑空气阻力,则上升过程中,a上>g,所以A对B压力向下,在下降过程,a下 答案:B 以题说法 1.弹力方向的判断方法 (1)根据物体产生形变的方向判断. (2)根据物体的运动情况,利用平衡条件或牛顿第二定律判断,此法关键是先判明物体的运动状态(即加速度的方向),再根据牛顿第二定律确定合力的方向,然后根据受力分析确定弹力的方向. 2.弹力大小的计算方法 (1)一般物体之间的弹力,要利用平衡条件或牛顿第二定律来计算. (2)弹簧的弹力,由胡克定律(F=kx)计算. 6.(2010·无锡市期中考试)如图所示,带有长方体盒子的斜劈A放在固定的斜面体C的斜面上,在盒子内放有光滑球B,B恰与盒子前、后壁P、Q点相接触.若使斜劈A在斜面体C上静止不动,则P、Q对球B无压力.以下说法正确的是() A.若C的斜面光滑,斜劈A由静止释放,则P点对球B有压力 B.若C的斜面光滑,斜劈A以一定的初速度沿斜面向上滑行,则P、Q对球B均无压力 C.若C的斜面粗糙,斜劈A沿斜面匀速下滑,则P、Q对球B均无压力 D.若C的斜面粗糙,斜劈A沿斜面加速下滑,则P点对球B有压力 解析:若C的斜面光滑,无论A由静止释放还是沿斜面向上滑行,通过对A、B整体受力分析可知,整体具有沿斜面向下的加速度,B球所受合力应沿斜面向下,故Q点对球B有压力,A、B项错;若C的斜面粗糙,斜劈A匀速下滑时,整体所受合力为零,故P、Q不可能对球B有压力,C项正确;若C的斜面粗糙,斜劈A加速下滑时,A、B整体具有沿斜面向下的加速度,故球B所受合力也应沿斜面向下,故Q点一定对球B有压力,D项正确. 答案:C 7.(2009·山东卷,16)如图所示,光滑半球形容器固定在水平面上,O为球心.一质量为m的小滑块,在水平力F的作用下静止于P点.设滑块所受支持力为FN,OP与水平方向的夹角为θ.下列关系正确的是() 解析:物体受力情况如右图所示,由物体的平衡条件可得 Nsin θ=mg,Ncos θ=F,联立解得N=mg/sin θ,F=mg/tan θ,故只有A正确. 答案:A 题型2:胡克定律的运用 8.如图所示,在水平传送带上有三个质量分别为m1、m2、m3的木 块1、2、3,1和2及2和3间分别用原长为L,劲度系数为k的轻弹簧连接起来,木块与传送带间的动摩擦因数为μ,现用水平细绳将木块1固定在左边的墙上,传送带按图示方向匀速运动,当三个木块达到平衡后,1、3两木块之间的距离是() A.2L+μ(m2+m3)g/k B.2L+μ(m2+2m3)g/k C.2L+μ(m1+m2+m3)g/k D.2L+μm3g/k 解析:当三木块达到平衡状态后,对木块3进行受力分析,可知2和3间弹簧的弹力等于木块3所受的滑动摩擦力,即μm3g=kx3,解得2和3间弹簧伸长量为同理以2木块为研究对象得:kx2=kx3+μm2g,即1和2间弹簧的伸长量为1、3两木块之间的距离等于弹簧的原长加上伸长量,即2L+μ(m2+2m3)g/k,选项B正确. 9.(2010·成都市高三摸底测试)缓冲装置可抽象成如图所示的简单模型,图中A、B为原长相等,劲度系数分别为k1、k2(k1≠k2)的两个不同的轻质弹簧.下列表述正确的是() A.装置的缓冲效果与两弹簧的劲度系数无关 B.垫片向右移动稳定后,两弹簧产生的弹力之比F1∶F2=k1∶k2 C.垫片向右移动稳定后,两弹簧的长度之比l1∶l2=k2∶k1 D.垫片向右移动稳定后,两弹簧的压缩量之比x1∶x2=k2∶k1 解析:装置的缓冲效果与两弹簧的劲度系数有关,劲度系数越小,缓冲效果 越好,所以A错.根据力的作用是相互的可知:轻质弹簧A、B中的弹力是相等的,即k1x1=k2x2,所以F1∶F2=1∶1,两弹簧的压缩量之比x1∶x2=k2∶k1,故B、C错,D正确. 答案:D 解析:装置的缓冲效果与两弹簧的劲度系数有关,劲度系数越小,缓冲效果越好,所以A错.根据力的作用是相互的可知:轻质弹簧A、B中的弹力是相等的,即k1x1=k2x2,所以F1∶F2=1∶1,两弹簧的压缩量之比x1∶x2=k2∶k1,故B、C错,D正确. 答案:D 10.如图所示,质量为2m的物体A经一轻质弹簧与地面上的质量为3m的物体B相连,弹簧的劲度系数为k,一条不可伸长的轻绳绕过定滑轮,一端连物体A,另一端连一质量为m的物体C,物体A、B、C都处于静止状态.已知重力加速度为g,忽略一切摩擦. (1)求物体B对地面的压力; (2)把物体C的质量改为5m,这时C缓慢下降,经过一段时间系统达到新的平衡状态,这时B仍没离开地面,且C只受重力和绳的拉力作用,求此过程中物体A上升的高度. 解析:(1)对AB整体:mg+N=5mg,所以N=4mg.(2)对C:FT=5mg,对A:FT=Fk+2mg,所以Fk=3mg,即kx1=3mg,x1= 开始时,弹簧的压缩量为x2,则kx2=mg,所以A上升的高度为:hA=x1+x2=.答案:(1)4mg(2) 二、摩擦力 题型1:静摩擦力的有无及方向的判定 11.如图4所示,一斜面体静止在粗糙的水平地面上,一物体恰能在斜面体上沿斜面匀速下滑,可以证明此时斜面不受地面的摩擦力作用.若沿平行于斜面的方向用力F向下推此物体,使物体加速下滑,斜面体依然和地面保持相对静止,则斜面体受地面的摩擦力() A.大小为零 B.方向水平向右 C.方向水平向左 D.大小和方向无法判断 解析:物体由斜面上匀速下滑时,斜面体对物体的作用力与物体的重力等大反向,因此斜面体对物块的作用力竖直向上,根据物体间相对作用,物体对斜面体的作用力竖直向下;若沿平行于斜面的方向用力F向下推此物体,使物体加速下滑,物体对斜面体的作用力大小方向不变,因此地面对斜面体的摩擦力仍然为零,A正确. 答案:A 静摩擦力方向的判断方法 1.假设法 2.状态法:根据二力平衡条件、牛顿第二定律或牛顿第三定律,可以判断静摩擦力的方向.假如用一水平力推桌子,若桌子在水平地面上静止不动,这时地面会对桌子施一静摩擦力.根据二力平衡条件可知,该静摩擦力的方向与推力的方向相反,加速状态时物体所受的静摩擦力可由牛顿第二定律确定. 3.利用牛顿第三定律(即作用力与反作用力的关系)来判断.此法关键是抓住“力是成对出现的”,先确定受力较少的物体受到的静摩擦力方向,再根据“反向”确定另一物体受到的静摩擦力. 12.如图所示,一个木块放在固定的粗糙斜面上,今对木块施一个既与斜面底边平行又与斜面平行的推力F,木块处于静止状态,如将力F撤消,则木块() A.仍保持静止 B.将沿斜面下滑 C.受到的摩擦力大小不变 D.受到的摩擦力方向不变 解析:有力F作用时,木块在斜面内的受力如图,且f= 当撤去力F后,木块只受mgsinθ和f ′,且f ′ 答案:A 13.如图所示,甲物体在水平外力F的作用下静止在乙物体上,乙物体静止在水平面上.现增大外力F,两物体仍然静止,则下列说法正确的是() A.乙对甲的摩擦力一定增大 B.乙对甲的摩擦力方向一定沿斜面向上 C.乙对地面的摩擦力一定增大 D.乙对地面的压力一定增大 解析:若未增大F时甲受到的静摩擦力向上,则增大F后甲受到的静摩擦力向上可以但减小,A项错误;F增大到一定的值时使甲有向上运动的趋势,此时乙对甲的摩擦力则沿斜面向下,B项错误;由整体法可知,地面对乙的摩擦力与F等大反向,因此F增大,地面对乙的摩擦力增大,即乙对地面的摩擦力也增大,C项正确;整体分析可知,地面对乙的支持力始终等于系统的总重力,因此乙对地面的压力也保持不变,D项错误. 答案:C 14.如图所示,圆柱体的A点放有一质量为M的小物体P,使圆柱体缓慢匀速转动,带动P从A点转到A′点,在这个过程中P始终与圆柱体保持相对静止.那么P所受静摩擦力f的大小随时间t的变化规律是() 解析:P与圆柱体之间的摩擦力是静摩擦力.P随圆柱体从A转至最高点的过程中Ff=mgsin θ=mgcos(α+ωt)(α为OA与水平线的夹角),摩擦力的大小变化情况以最高点为对称.所以A正确. 答案:A 题型2:摩擦力的分析与计算 摩擦力大小的计算方法:在计算摩擦力的大小之前,必须首先分析物体的运动情况,判明是滑动摩擦,还是静摩擦. (1)滑动摩擦力的计算方法: 可用f=μN计算.最关键的是对相互挤压力FN的分析,并不总是等于物体的重力,它跟研究物体受到的垂直于接触面方向的力密切相关. (2)静摩擦力的计算方法 一般应根据物体的运动情况(静止、匀速运动或加速运动),利用平衡条件或牛顿运动定律列方程求解. 15.如图所示,质量分别为m和M两物体P和Q叠放在倾角为θ的斜面上,P、Q之间的动摩擦因数为μ1,Q与斜面间的动摩擦因数为μ2.当它们从静止开始沿斜面滑下时,两物体始终保持相对静止,则物体P受到的摩擦力大小为() A.0 B.μ1mgcosθ C.μ2mgcosθ D.(μ1+μ2)mgcosθ 解析:当物体P和Q一起沿斜面加速下滑时,其加速度a=gsinθ-μ2gcosθ 因为P和Q相对静止,所以P和Q之间的摩擦力为静摩擦力. 对物体P应用牛顿第二定律得mgsin θ-f=ma 所以f=μ2mgcosθ,故选C.答案:C 16.如图所示,一根自然长度为l0的轻弹簧和一根长度为a的轻绳连接,弹簧的上端固定在天花板的O点上,P是位于O点正下方的光滑轻小定滑轮,已知OP=l0+a.现将绳的另一端与静止在动摩擦因数恒定的水平地面上的滑块A相连,滑块对地面有压力作用.再用一水平力F作用于A使之向右做直线运动(弹簧的下端始终在P之上),对于滑块A受地面滑动摩擦力下列说法中正确的是() A.逐渐变小 B.逐渐变大 C.先变小后变大 D.大小不变 解析:本题考查力的平衡条件、胡克定律.物块在开始位置,受到重力G和支持力N,弹簧的拉力F=kx0,F+N=G,N=G-kx0;当物块滑到右边某一位置时,弹簧的伸长量为x,绳与地面的夹角为α,由竖直方向平衡,N′+kx·sin α=G,即N′=G-kx0=N,支持力不变化,滑动摩擦力f=μN不变化,D正确. 答案:D 三、力的合成与分解 力有哪些分解方法? 1.按力的效果分解法 (1)根据力的实际作用效果确定两个实际分力的方向; (2)再根据两个实际分力方向画出平行四边形; (3)最后由平行四边形知识求出两分力的大小. 2.正交分解法 (1)定义:把一个力分解为相互垂直的分力的方法. (2)优点:把物体所受的不同方向的各个力都分解到相互垂直的两个方向上去,然后再求每个方向上的分力的代数和,这样就把复杂的矢量运算转化成了简单的代数运算,最后再求两个互成90°角的力的合力就简便多了. (3)运用正交分解法解题的步骤 ①正确选择直角坐标系,通常选择共点力的作用点为坐标原点,直角坐标x、y的选择可按下列原则去确定:尽可能使更多的力落在坐标轴上.沿物体运动方向或加速度方向设置一个坐标轴. 17.如图是某同学对颈椎病人设计的一个牵引装置的示意图,一根 绳绕过两个定滑轮和动滑轮后各挂着一个相同的重物,与动滑轮相连的帆布带拉着病人的颈椎(图中是用手指代替颈椎做实验),整个装置在同一竖直平面内.如果要增大手指所受的拉力,可采取的办法是() ①.只增加绳的长度 ②.只增加重物的重量 ③.只将手指向下移动 ④.只将手指向上移动 A .①④正确 B .②③正确 C .①③正确 D .②④正确 答案:B 18.作用于O点的三力平衡,设其中一个力大小为F1,沿y轴正方向,力F2大小未知,与x轴负方向夹角为θ,如图所示,下列关于第三个力F3的判断中正确的是() A.力F3只能在第四象限 B.力F3与F2夹角越小,则F2和F3的合力越小 C.力F3的最小值为F2cosθ D.力F3可能在第一象限的任意区域 答案:C 19.在去年5·12汶川大地震的救援行动中,千斤顶发挥了很大作用,如图所示是剪式千斤顶,当摇动手把时,螺纹轴就能迫使千斤顶的两臂靠拢,从而将汽车顶起.当车轮刚被手把顶起时汽车对千斤顶的压力为1.0×105 N,此时千斤顶两臂间的夹角为120°,则下列判断正确的是() A.此时两臂受到的压力大小均为5.0×104 N B.此时千斤顶对汽车的支持力为2.0×105 N C.若继续摇动手把,将汽车顶起,两臂受到的压力将增大 D.若继续摇动手把,将汽车顶起,两臂受到的压力将减小 解析:把压力分解,得到此时两臂受到的压力大小均为1.0×105 N,由牛顿第三定律,千斤顶对汽车的支持力为1.0×105 N,若继续摇动手把,两臂间的夹角减小,而在合力不变时,两分力减小. 答案:D 20.2008年北京奥运会,我国运动员陈一冰勇夺吊环冠军,其中有一个高难度的动作就是先双手撑住吊环,然后身体下移,双臂缓慢张开到如图2-3-15所示位置,则在两手之间的距离增大过程中,吊环的两根绳的拉力FT(两个拉力大小相等)及它们的合力F的大小变化情况为() A.FT增大,F不变 B.FT增大,F增大 C.FT增大,F减小 D.FT减小,F不变 四、物体的受力分析 21.在机场货物托运处,常用传送带运送行李和货物,如图所示,靠在一起的两个质地相同,质量和大小均不同的包装箱随传送带一起上行,下列说法正确的是() A.匀速上行时b受3个力作用 B.匀加速上行时b受4个力作用 C.若上行过程传送带因故突然停止时,b受4个力作用 D.若上行过程传送带因故突然停止后,b受的摩擦力一定比原来大 解析:由于两包装箱的质地相同,则动摩擦因数相同.无论两包装箱匀速、匀加速运动,ab之间均无相对运动趋势,故无相互作用力,包装箱b只受三个力的作用,选项A正确;当传送带因故突然停止时,两包装箱加速度仍然相同,故两者之间仍无相互作用力,选项C错误;传送带因故突然停止时,包装箱受到的摩擦力与停止前无法比较,所以选项D错误. 答案:A 22.如图所示,物体A靠在竖直墙面上,在力F作用下,A、B保持静止.物体B的受力个数为() A.2 B.3 C.4 D.5 解析:以A为研究对象,受力情况如下图甲所示,此时,墙对物体A没有支持力(此结论可利用整体法得出) 再以B为研究对象,结合牛顿第三定律,其受力情况如上图乙所示,即要保持物体B平衡,B应受到重力、压力、摩擦力、力F四个力的作用,正确选项为C.答案:C 思考讨论 (1)若物体A被固定在墙上,其他条件不变,则物体B可能受几个力的作用. (2)若将力F改为水平向左的力作用在物体B上,其他条件不变,则物体A、B分别受几个力的作用. 解析:(1)若A被固定在墙上,则B可能只受重力和力F两个力的作用,也可能受到重力、力F、A对B的压力、A对B的摩擦力四个力的作用. (2)把A、B作为一个整体受力情况如图甲所示,即整体受到重力、力F、墙对整体的压力和摩擦力四个力的作用. 以B为研究对象,受力情况如图乙所示,即B受到重力、力F、A对B的压力和摩擦力四个力的作用. 以A为研究对象,受力情况如上图丙所示,即A受到重力、墙对A的弹力和摩擦力、B对A的支持力和摩擦力共五个力的作用. 答案:(1)2个或4个(2)5个 4个 23.如图所示,斜面小车M静止在光滑水平面上,一边紧贴墙壁.若再在斜面上加一物体m,且M、m相对静止,小车后来受力个数为() A.3 B.4 C.5 D.6 解析:对M和m整体,它们必受到重力和地面支持力,因小车静止,由平衡条件知墙面对小车必无作用力,以小车为研究对象.如右图所示,它受四个力;重力Mg,地面的支持力N1,m对它的压力N2和静摩擦力f,由于m静止,可知f和N2的合力必竖直向下,故B项正确. 答案:B 24.如图所示,倾斜天花板平面与竖直方向夹角为θ,推力F垂直天花板平面作用在木块上,使其处于静止状态,则() A.木块一定受三个力作用 B.天花板对木块的弹力 N>F C.木块受的静摩擦力等于mgcosθ D.木块受的静摩擦力等于mg/cosθ 解析:把木块所受的力沿平行天花板平面和垂直天花板平面分解:mgcosθ=f,mgsinθ+N=F.所以木块一定受四个力作用,天花板对木块的弹力N<F,因此A、B、D错误,C正确. 答案:C 25.如图所示,A、B两物体叠放在水平地面上,已知A、B的质量分别均为mA=10 kg,mB=20 kg,A、B之间,B与地面之间的动摩擦因数均为μ=0.5.一轻绳一端系住物体A,另一端系于墙上,绳与竖直方向的夹角为37°,今欲用外力将物体B匀速向右拉出,求所加水平力F的大小,并画出A、B的受力分析图.(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8) 解析:A、B的受力分析如右图所示 对A应用平衡条件 Tsin 37°=f1=μN1① Tcos 37°+N1=mAg② 联立①、②两式可得:N1==60 N f1=μN1=30 N 对B用平衡条件 F=f1′+f2=f1′+μN2=f1+μ(N1+mBg)=2f1+μmBg=160 N 答案:160 N 图见解析