2021中考
临考专题训练:三角形
一、选择题
1.下列命题是假命题的是
()
A.平行四边形既是轴对称图形,又是中心对称图形
B.同角(或等角)的余角相等
C.线段垂直平分线上的点到线段两端的距离相等
D.正方形的对角线相等,且互相垂直平分
2.下列长度的三根小木棒能构成三角形的是()
A.2
cm,3
cm,5
cm
B.7
cm,4
cm,2
cm
C.3
cm,4
cm,8
cm
D.3
cm,3
cm,4
cm
3.如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为
()
A.1
B.2
C.D.1+
4.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()
A.35°
B.95°
C.85°
D.75°
5.在△ABC中,∠A,∠C与∠B处的外角的度数如图所示,则x的值是()
A.80
B.70
C.65
D.60
6.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()
A.50°
B.51°
C.51.5°
D.52.5°
7.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为
()
A.118°
B.119°
C.120°
D.121°
8.若三角形的三个内角的度数之比为2∶3∶7,则这个三角形的最大内角是()
A.75°
B.90°
C.105°
D.120°
二、填空题
9.如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.
10.如图,已知AB,CD相交于点O,且∠A=38°,∠B=58°,∠C=44°,则∠D=________°.11.如图所示,六边形ABCDEF的内角都相等,AD∥BC,则∠DAB=________°.12.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E.若∠AFD=158°,则∠EDF= °.13.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是________.
14.定义:当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的一个内角为48°,那么“特征角”α的度数为____________.
15.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD.若△ACD
为直角三角形,则∠BCD的度数为________.
16.如图所示,在△ABC中,∠A=36°,E是BC延长线上一点,∠DBE=∠ABE,∠DCE=∠ACE,则∠D的度数为________.
三、解答题
17.如图,AD是△ABC的角平分线,∠B=35°,∠BAD=30°,求∠C的度数.
18.如图,四边形中,分别是的中点,连结并延长,分别交的延长线于点,求证:
19.某单位修建正多边形花台,已知正多边形花台的一个外角的度数比一个内角度数的多12°.(1)求出这个正多边形的一个内角的度数;
(2)求这个正多边形的边数.20.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;
(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.
21.如图,在△ABC中,BD是角平分线,CE是AB边上的高,且∠ACB=60°,∠ADB=97°,求∠A和∠ACE的度数.22.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=25°,∠E=30°,求∠BAC的度数.
23.如图11-Z-11,点B在点A的南偏西45°方向,点C在点A的南偏东30°方向,点C在点B的北偏东60°方向,求∠C的度数.
24.如图,梯形中,对角线相交于点,分别是的中点,求证:是等边三角形
2021中考
临考专题训练:三角形-答案
一、选择题
1.【答案】A
2.【答案】D 【解析】根据三角形两边之和大于第三边,两边之差小于第三边,进行判断,A中2+3=5不能构成三角形;B中2+4<7不能构成三角形;C中3+4<8不能构成三角形;只有D选项符合.
3.【答案】A
4.【答案】C 【解析】∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠A+∠B=∠ACD,∠B=35°,∴∠A=∠ACD-∠B=120°-35°=85°.5.【答案】B
6.【答案】D 【解析】∵AC=CD,∠A=50°,∴∠ADC=50°,∵DC=DB,∠ADC=∠B+∠BCD=50°,∴∠B=∠BCD=25°,∴∠BDC=130°,∵BD=BE,∴∠BED=∠BDE=77.5°,∴∠CDE=∠BDC-∠BDE=130°-77.5°=52.5°,故答案为D.7.【答案】C [解析]
∵∠A=60°,∠ABC=42°,∴∠ACB=180°-∠A-∠ABC=78°.∵∠ABC,∠ACB的平分线分别为BE,CD,∴∠FBC=∠ABC=21°,∠FCB=∠ACB=39°,∴∠BFC=180°-∠FBC-∠FCB=120°.故选C.8.【答案】C [解析]
∵一个三角形三个内角的度数之比为2∶3∶7,∴可设这个三角形的三个内角分别为2x,3x,7x.由题意,得2x+3x+7x=180°,解得x=15°.∴7x=105°.二、填空题
9.【答案】13 【解析】∵DE垂直平分AB,∴AE=BE,∵AE+EC=8,∴EC+BE=8,∴△BCE的周长为BE+EC+BC=13.10.【答案】64 [解析]
由三角形内角和定理可知∠A+∠D+∠AOD=180°,∠B+∠C+∠BOC=180°.∵∠AOD=∠BOC,∴∠A+∠D=∠B+∠C.∴∠D=64°.11.【答案】60 [解析]
∵六边形ABCDEF的内角和为(6-2)×180°=720°且每个内角都相等,∴∠B==120°.∵AD∥BC,∴∠DAB=180°-∠B=60°.12.【答案】68 [解析]
∵∠AFD=158°,∴∠CFD=180°-∠AFD=180°-158°=22°.∵FD⊥BC,∴∠FDC=90°.∴∠C=180°-∠FDC-∠CFD=180°-90°-22°=68°.∵∠B=∠C,DE⊥AB,∴∠EDB=180°-∠B-∠DEB=180°-68°-90°=22°.∴∠EDF=180°-90°-22°=68°.13.【答案】4∶3 【解析】如解图,过D作DE⊥AB,DF⊥AC,垂足分别为E、F,∵AD是∠BAC的平分线,∴DE=DF(角平分线上的点到角两边的距离相等),设DE=DF=h,则==.14.【答案】48°或96°或88° [解析]
当“特征角”为48°时,即α=48°;
当β=48°时,则“特征角”α=2×48°=96°;
当第三个角为48°时,α+α+48°=180°,解得α=88°.综上所述,“特征角”α的度数为48°或96°或88°.15.【答案】60°或10° [解析]
分两种情况:
(1)如图①,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°-30°=60°;
(2)如图②,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°-30°-50°=100°.∴∠BCD=100°-90°=10°.综上,∠BCD的度数为60°或10°.16.【答案】24° [解析]
∠D=∠DCE-∠DBE=∠ACE-∠ABE=(∠ACE-∠ABE)=∠A=×36°=24°.三、解答题
17.【答案】
解:∵AD是△ABC的角平分线,∴∠BAC=2∠BAD=2×30°=60°.∴∠C=180°-∠B-∠BAC=180°-35°-60°=85°.18.【答案】
连结,取中点,连结,由条件易得分别是的中位线,所以,且,因为,所以,所以,由可得:,同理可得,所以
19.【答案】
解:(1)设这个多边形的一个内角的度数是x°,则与其相邻的外角度数是x°+12°.由题意,得x+x+12=180,解得x=140.即这个正多边形的一个内角的度数是140°.(2)这个正多边形的每一个外角的度数为180°-140°=40°,所以这个正多边形的边数是=9.20.【答案】
解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°-∠A=50°.∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°.(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°-65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.21.【答案】
解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是△ABC的角平分线,∴∠ABC=74°.∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°.∴∠ACE=90°-∠A=44°.22.【答案】
解:∵∠B=25°,∠E=30°,∴∠ECD=∠B+∠E=55°.∵CE是∠ACD的平分线,∴∠ACE=∠ECD=55°.∴∠BAC=∠ACE+∠E=85°.23.【答案】
解:∵∠NBC=60°,∠NBA=∠BAS=45°,∴∠ABC=∠NBC-∠NBA=60°-45°=15°.又∵∠BAC=∠BAS+∠SAC=45°+30°=75°,∴在△ABC中,∠C=180°-(75°+15°)=90°.24.【答案】
连结,由等腰梯形对角线相等,且,可证是等边三角形,因为是中点,所以,在中,是中点,所以,同理可证,因为分别是的中点,所以,因为,所以,即是等边三角形