第一篇:初中圆的知识点总结
中考数学关于圆的知识点总结
考点
一、圆的相关概念
1、圆的定义
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示
以点O为圆心的圆记作“⊙O”,读作“圆O”考点
二、弦、弧等与圆有关的定义
(1)弦
连接圆上任意两点的线段叫做弦。(如图中的AB)(2)直径
经过圆心的弦叫做直径。(如途中的CD)直径等于半径的2倍。(3)半圆
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。(4)弧、优弧、劣弧
圆上任意两点间的部分叫做圆弧,简称弧。弧用符号“⌒”表示,以A,B为端点的弧记作“
”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)
考点
三、垂径定理及其推论(重要)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。*推论2:圆的两条平行弦所夹的弧相等。考点
四、圆的对称性
1、圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性
圆是以圆心为对称中心的中心对称图形。考点
五、弧、弦、弦心距、圆心角之间的关系定理
1、圆心角
顶点在圆心的角叫做圆心角。
2、弦心距
从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。考点
六、圆周角定理及其推论
1、圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理(重要)
一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。推论2(△):半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。考点
七、点和圆的位置关系
设⊙O的半径是r,点P到圆心O的距离为d 则有:d d=r点P在⊙O上; d>r点P在⊙O外。考点 八、直线与圆的位置关系 直线和圆有三种位置关系,具体如下: (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。如果⊙O的半径为r,圆心O到直线l的距离为d,那么: 直线l与⊙O相交d 九、圆内接四边形 圆的内接四边形定理:圆的内接四边形的对角互补(重要),外角等于它的内对角。即:在⊙O中,∵四边ABCD是内接四边形 ∴CBAD180BD180 DAEC 考点 十、切线的性质与判定定理 1、切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可即:∵MNOA且MN过半径OA外端∴MN是⊙O的切线 2、性质定理:切线垂直于过切点的半径(如上图)(记住理解即可,不会考证明题)考点 十一、切线长定理 切线长定理:从圆外一点引圆的两条切线,它们的切线长 相等,这点和圆心的连线平分两条切线的夹角。 即:∵PA、PB是的两条切线∴PAPB;PO平分BPA(用三角形全等证明)考点 十二、弧长和扇形面积 1、弧长公式 半径为R的圆中,n°的圆心角所对的弧长l的计算公式: 2、扇形面积公式 其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。 3、圆锥的侧面积 其中l是圆锥的母线长,r是圆锥的地面半径。考点 十三、圆幂定理(一般不会考) 1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。 即:在⊙O中,∵弦AB、CD相交于点P,∴PAPBPCPD 2、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。 即:在⊙O中,∵PA是切线,PB是割线 ∴ PA2PCPB 3、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。 即:在⊙O中,∵PB、PE是割线∴PCPBPDPE 初中圆知识点总结 1、圆是到定点的距离等于定长的点组成的图形。 2、圆的内部可以看作是圆心的距离小于半径的点组成的图形。 3、圆的外部可以看作是圆心的距离大于半径的点组成的图形。 4、同圆或等圆的半径相等。 5、到定点的距离等于定长的点组成的图形,是以定点为圆心,定长为半径的圆。 6、定理:不在同一直线上的三点确定一个圆。 7、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。 8、推论1: ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。 9、推论2:圆的两条平行弦所夹的弧相等 10、圆是以圆心为对称中心的中心对称图形.圆是以直径所在直线为对称轴的轴对称图形。 11、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的圆周角相等,所对的弦的弦心距相等。 12、推论:在同圆或等圆中,如果两个圆心角、圆周角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。 13、定理:一条弧所对的圆周角等于它所对的圆心角的一半 14、推论: 1、同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 15、推论: 2、半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径 16、推论: 3、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形(注:这是用来证明三角形是直角三角形的一种方法) 17、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角(这个定理现在的书上没有)。 21、直线和圆的位置关系: ①直线L和⊙O相交d﹤r ②直线L和⊙O相切d=r ③直线L和⊙O相离d﹥r (其中:d表示直线到圆心的距离,r表示圆的半径) 18、切线的判定定理:经过半径的外端(或者直径的一端)并且垂直于这条半径(或这条直径)的直线是圆的切线。 19、切线的性质定理:圆的切线垂直于经过切点的半径(或直径)。 20、推论1 经过圆心且垂直于切线的直线必经过切点 21、推论2 经过切点且垂直于切线的直线必经过圆心 注:小结为过圆心、过切点,垂直于切线,22、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等圆 心和这一点的连线平分两条切线的夹角。(这个定理书上没有) 23、定理:圆的外切四边形的两组对边的和相等。(这个定理书上没有) 24、弦切角定理:弦切角等于它所夹的弧对的圆周角。(这个定理书上没有) 25、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。(这个定理书上没有) 26、如果两个圆相切,那么切点一定在连心线上(其中:d表示圆心距,R表示大圆的半径,r表示小圆的半径) 27、①两圆外离d﹥R+r ②两圆外切d=R+r ③两圆相交R-r﹤d﹤R+r(R﹥r) ④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r) 28、定理:相交两圆的连心线垂直平分两圆的公共弦 29、扇形弧长计算公式:L=n兀R/180(其中:L表示弧长,n表示圆心角的度数,R表示扇形的半径) 30、扇形面积公式:S扇形=n兀R^2/360=LR/2(其中:L表示弧长,n表示圆心角的度数,R表示扇形的半径) 31、圆锥的侧面积公式:S侧=S扇形 =(1/2)×扇形半径 × 扇形弧长=π rL(其中:r表示底面圆的半径,L表示扇形的半径:即圆锥的母线长) 32、圆锥的全面积:S全= S侧+ S底面圆=π rL+π r2 注:(圆的知识中的几条经常作的重要的辅助线:①连接圆心和圆上的点(构成半径),②过圆心作弦的弦心距,(以便利用垂径定理),③作直径所对的圆周角,(以便得到直径所对的圆周角是直角)④连接圆心和切点(以便利用切线的性质定理)⑤两圆相切时作两圆的连心线和公切线,(以便利用相切两圆的性质),⑥两圆相交时作两圆的连心线和公共弦。(以便利用相交两圆的性质)。 初中关于圆的知识是重要内容,以下是小编收集的相关知识点,仅供大家阅读参考! 1.不在同一直线上的三点确定一个圆。 2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 圆的两条平行弦所夹的弧相等 3.圆是以圆心为对称中心的中心对称图形 4.圆是定点的距离等于定长的点的集合5.圆的内部可以看作是圆心的距离小于半径的点的集合6.圆的外部可以看作是圆心的距离大于半径的点的集合7.同圆或等圆的半径相等 8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等 10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。 11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角 12.①直线L和⊙O相交 d ②直线L和⊙O相切 d=r ③直线L和⊙O相离 dr 13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 14.切线的性质定理 圆的切线垂直于经过切点的半径 15.推论1 经过圆心且垂直于切线的直线必经过切点 16.推论2 经过切点且垂直于切线的直线必经过圆心 17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 18.圆的外切四边形的两组对边的和相等 外角等于内对角 19.如果两个圆相切,那么切点一定在连心线上 20.①两圆外离 dR+r ②两圆外切 d=R+r ③.两圆相交 R-rr) ④.两圆内切 d=R-r(Rr)⑤两圆内含dr) [初中圆知识点精华总结]相关文章: 今天小编为大家精心整理了一篇有关初中数学圆的知识点内容,以供大家阅读,谢谢! 知识点: 一、圆 1、圆的有关性质 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。 由圆的意义可知: 圆上各点到定点(圆心O)的距离等于定长的点都在圆上。 就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。 圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。 圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。 圆心相同,半径不相等的两个圆叫同心圆。 能够重合的两个圆叫等圆。 同圆或等圆的半径相等。 在同圆或等圆中,能够互相重合的弧叫等弧。 二、过三点的圆 l、过三点的圆 过三点的圆的作法:利用中垂线找圆心 定理不在同一直线上的三个点确定一个圆。 经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。 2、反证法 反证法的三个步骤: ①假设命题的结论不成立; ②从这个假设出发,经过推理论证,得出矛盾; ③由矛盾得出假设不正确,从而肯定命题的结论正确。 例如:求证三角形中最多只有一个角是钝角。 证明:设有两个以上是钝角 则两个钝角之和>180° 与三角形内角和等于180°矛盾。 ∴不可能有二个以上是钝角。 即最多只能有一个是钝角。 三、垂直于弦的直径 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。 弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。 推理2:圆两条平行弦所夹的弧相等。 四、圆心角、弧、弦、弦心距之间的关系 圆是以圆心为对称中心的中心对称图形。 实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。 顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。 推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。 五、圆周角 顶点在圆上,并且两边都和圆相交的角叫圆周角。 推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。 六、圆的判定性质 1.不在同一直线上的三点确定一个圆。 2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 圆的两条平行弦所夹的弧相等 3.圆是以圆心为对称中心的中心对称图形 4.圆是定点的距离等于定长的点的集合5.圆的内部可以看作是圆心的距离小于半径的点的集合6.圆的外部可以看作是圆心的距离大于半径的点的集合7.同圆或等圆的半径相等 8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等 10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。 11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角 12.①直线L和⊙O相交 d ②直线L和⊙O相切 d=r ③直线L和⊙O相离 dr 13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 14.切线的性质定理 圆的切线垂直于经过切点的半径 15.推论1 经过圆心且垂直于切线的直线必经过切点 16.推论2 经过切点且垂直于切线的直线必经过圆心 17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 18.圆的外切四边形的两组对边的和相等 外角等于内对角 19.如果两个圆相切,那么切点一定在连心线上 20.①两圆外离 dR+r ②两圆外切 d=R+r ③.两圆相交 R-rr) ④.两圆内切 d=R-r(Rr)⑤两圆内含dr) [初中数学知识点圆总结]相关文章: 初中数学圆的知识点总结归纳 圆 定义: (1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。 (2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。 圆心: (1)如定义(1)中,该定点为圆心 (2)如定义(2)中,绕的那一端的端点为圆心。 (3)圆任意两条对称轴的交点为圆心。 (4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。 注:圆心一般用字母O表示 直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。 半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。 圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。 圆的半径或直径决定圆的大小,圆心决定圆的位置。 圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。 圆的周长与直径的比值叫做圆周率。圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。 直径所对的圆周角是直角。90°的圆周角所对的弦是直径。 圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2,用字母S表示。 一条弧所对的圆周角是圆心角的二分之一。 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。 在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。 在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。 周长计算公式 1.、已知直径:C=πd2、已知半径:C=2πr3、已知周长:D=cπ 4、圆周长的一半:1周长(曲线) 5、半圆的长:1周长+直径 面积计算公式: 1、已知半径:S=πr平方 2、已知直径:S=π(d)平方 3、已知周长:S=π(cπ)平方 点、直线、圆和圆的位置关系 1.点和圆的位置关系 ①点在圆内<=>点到圆心的距离小于半径 ②点在圆上<=>点到圆心的距离等于半径 ③点在圆外<=>点到圆心的距离大于半径 2.过三点的圆不在同一直线上的三个点确定一个圆。 3.外接圆和外心经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。 4.直线和圆的位置关系 相交:直线和圆有两个公共点叫这条直线和圆相交,这条直线叫做圆的割线。 相切:直线和圆有一个公共点叫这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。 相离:直线和圆没有公共点叫这条直线和圆相离。 5.直线和圆位置关系的性质和判定 如果⊙O的半径为r,圆心O到直线l的距离为d,那么 ①直线l和⊙O相交<=>d ②直线l和⊙O相切<=>d=r; ③直线l和⊙O相离<=>d>r。 圆和圆 定义: 两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。 两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。 两个圆有两个交点,叫做两个圆的相交。 两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。 两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。 原理:圆心距和半径的数量关系: 两圆外离<=>d>R+r两圆外切<=>d=R+r两圆相交<=>R-r 两圆内切<=>d=R-r(R>r)两圆内含<=>d 正多边形和圆 1、正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。 2、正多边形与圆的关系: (1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。 (2)这个圆是这个正多边形的外接圆。 3、正多边形的有关概念: (1)正多边形的中心——正多边形的外接圆的圆心。 (2)正多边形的半径——正多边形的外接圆的半径。 (3)正多边形的边心距——正多边形中心到正多边形各边的距离。 (4)正多边形的中心角——正多边形每一边所对的外接圆的圆心角。 4、正多边形性质: (1)任何正多边形都有一个外接圆。 (2)正多边形都是轴对称图形,当边数是偶数时,它又是中心对称图形,正n边形的对称轴有n条。(3)边数相同的正多边形相似。 练习题 1、已知:弦AB把圆周分成1:5的两部分,这弦AB所对应的圆心角的度数为________。 2、已知:⊙O中的半径为4cm,弦AB所对的劣弧为圆的1/3,则弦AB的长为_______cm,AB的弦心距为_____cm。 3、如图,在⊙O中,AB∥CD,⌒AC的度数为450,则∠COD的度数为_______。 4、如图,在三角形ABC中,∠A=70°,⊙O截△ABC的三边所得的弦长相等,则 ∠BOC=()。 A.140° B.135° C.130° D.125° 5、下列语句中,正确的有() (1)相等的圆心角所对的弧相等; (2)平分弦的直径垂直于弦; (3)长度相等的两条弧是等弧; (4) 圆是轴对称图形,任何一条直径都是对称轴 A.0个 B.1个 C.2个 D.3个 6、已知:在直径是10的⊙O中,⌒AB的度数是60°,求弦AB的弦心距。 7、已知:如图,⊙O中,AB是直径,CO⊥AB,D是CO的中点,DE∥AB,求证:⌒AB=2⌒AE8、已知:AB交圆O于C、D,且AC=BD.你认为OA=OB吗?为什么? 9、如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。 11.如图所示,AB是圆O的直径,以OA为直径的圆C与圆O的弦AD相交于点E。你认为图中有哪些相等的线段?为什么? 答案: 1.60度 2.4√3 3.90度 4.D 5.A 6.2.5 7.提示:连接OE,求出角COE的度数为60度即可 8.略 9.100毫米 10.AC=OC,OA=OB,AE=ED第二篇:初中圆知识点总结
第三篇:初中圆知识点精华总结
第四篇:初中数学知识点圆总结
第五篇:初中数学圆的知识点总结归纳