第一篇:五年级数学上册教学知识点
五年级上册 数学知识点
第一单元小数乘法
1计算方法:先按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0补足位数,再点小数点。
2、规律:一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
3、求近似数的方法一般有三种: ⑴四舍五入法; ⑵进一法; ⑶去尾法
4、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。第二单元 位 置
5、数对:由两个数组成,中间用逗号隔开,用括号括起来。(列,行),即“先数列,后数行”。第三单元小数除法
6、小数除以整数的计算方法
小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。
整数部分不够除,商0,点上小数点。如果有余数,要添0再继续除。
7、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
8、除法中的变化规律:
①商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商反而扩大。
9,规律:一个数(0除外)除以大于1的数,商比被除数小;
一个数(0除外)除以小于1的数,商比被除数大。
10、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:循环小数的小数部分,依次不断重复出现的数字。如6.3232„„的循环节是32.11、小数部分的位数是有限的小数,叫做有限小数。
小数部分的位数是无限的小数,叫做无限小数。第四单元简易方程
12、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。省略乘号时,数字写在字母前面,加号、减号、除号以及数与数之间的乘号不能省略。
13、a×a可以写作a²,a²读作a的平方。
2a表示a+a
14、方程:含有未知数的等式称为方程。
15、解方程原理:天平的平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。16、10个数量关系式
加法:和=加数+加数
一个加数=和-两一个加数 减法:差=被减数-减数
被减数=差+减数
减数=被减数-差 乘法:积=因数×因数
一个因数=积÷另一个因数 除法:商=被除数÷除数
被除数=商×除数
除数=被除数÷商
17、所有的方程都是等式,但等式不一定都是方程。第五单元多边形的面积
18、公式
长方形 周长=(长+宽)×2 字母公式:C=(a+b)×2
面积=长×宽
字母公式:S=ab 正方形 周长=边长×4
字母公式:C=4a
面积=边长×边长
字母公式:S=a²
平行四边形
平行四边形的面积=底×高
字母公式: S=ah 三角形三角形的面积=底×高÷2 字母公式: S=ah÷2 【底=面积×2÷高; 高=面积×2÷底】梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
【上底=面积×2÷高-下底,下底=面积×2÷高-上底; 高=面积×2÷(上底+下底)】
21、等底等高的平行四边形面积都相等;
等底等高的三角形面积也都相等;
等底等高的平行四边形面积是三角形面积的2倍。
23、长方形框架拉成平行四边形,周长不变,面积变小。第七单元数学广角——植树问题
1,两端都栽:全长÷间隔距离=间隔数 间隔数+1=树的棵数 2,只栽一端:全长÷间隔距离=间隔数 间隔数=树的棵数 3,两端都不栽:全长÷间隔距离=间隔数 间隔数-1=树的棵数 4,封闭线路植树问题:全长÷间隔距离=间隔数 间隔数=树的棵数
第二篇:五年级上册数学知识点汇总(人教版)
五年级上册数学知识点汇总(人教版)
第一单元
小数乘法
1、小数乘整数:
@意义——求几个相同加数的和的简便运算。
如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:
@意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。
3、规律:
一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:
⑴四舍五入法;
⑵进一法;
⑶去尾法
5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:
@
加法:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
@
减法:
a-b-c=a-(b+c)
a-(b+c)=a-b-c
@
乘法:
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
@
除法:
a÷b÷c=a÷(b×c)
a÷(b×c)
=a÷b÷c
第二单元
位
置
1、数对:
由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
2、作用:
一组数对确定唯一
一个点的位置。经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)
3、图形左右平移行数不变;图形上下平移列数不变。
第三单元
小数除法
1、小数除法的意义:
已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
2、小数除以整数的计算方法:
小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
3、除数是小数的除法的计算方法:
先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
5、除法中的变化规律:
①商不变:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
6、循环小数:
一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
@
循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
第四单元
可能性
1、有些事件的发生是确定的,有些是不确定的。
可能
(不能确定)
(确定)
可能性
不可能
一定
2、事件发生的机会(或概率)有大小。
可能性
大
数量多
小
数量少
第五单元
简易方程
1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
注:加号、减号除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a或a2
读作a的平方。
注:
2a表示a+a
;a2表示a×a3、方程:含有未知数的等式称为方程。
4、使方程左右两边相等的未知数的值,叫做方程的解。
5、求方程的解的过程叫做解方程。
6、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
7、10个数量关系式:
@
加法;
和=加数+加数 ;
一个加数=和-两一个加数
@
减法:
差=被减数-减数 ;
被减数=差+减数 ;
减数=被减数-差
@乘法:
积=因数×因数 ;
一个因数=积÷另一个因数
@
除法:
商=被除数÷除数 ;
被除数=商×除数 ;
除数=被除数÷商
第六单元
多边形的面积
1、长方形:
@
周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】
字母表示:C=(a+b)×2
@面积=长×宽
字母表示:S=ab2、正方形:
@周长=边长×4
字母表示:C=4a
@面积=边长×边长
字母表示:S=a23、平行四边形的面积=底×高
字母表示:
S=ah4、三角形的面积=底×高÷2
——【底=面积×2÷高;高=面积×2÷底】
字母表示:
S=ah÷25、梯形的面积=(上底+下底)×高÷2
字母表示:
S=(a+b)h÷2
上底=面积×2÷高-下底,下底=面积×2÷高-上底;
高=面积×2÷(上底+下底)
6、平行四边形面积公式推导:
剪拼、平移、割补法
7、三角形面积公式推导:
旋转、拼凑法
平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底;
平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;
平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积,平行四边形的面积等于三角形面积的2倍,因为长方形面积=长×宽,所以平行四边形面积=底×高。
因为平行四边形面积=底×高,所以三角形面积=底×高÷28、梯形面积公式推导:旋转、拼凑法
9、两个完全一样的梯形可以拼成一个平行四边形;
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷210、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
11、长方形框架拉成平行四边形,周长不变,面积变小。
12、组合图形面积(或阴影部分面积):转化成已学的简单图形,通过加、减进行计算(整体-部分=另一部分)。
第七单元
数学广角——植树问题
1、只载一端(封闭线路植树问题)
如图:
或
间隔数=棵树
间隔长×间隔数=全长
全长÷间隔长=间隔数
全长÷间隔数=间隔长
2、两端都载:
如图:
间隔数+1=棵树
间隔长×间隔数=全长
全长÷间隔长=间隔数
全长÷间隔数=间隔长
全长÷间隔长+1=棵数
全长÷(棵树-1)=间隔长
3、两端都不载
如图:
间隔数-1=棵树
间隔长×间隔数=全长
全长÷间隔长=间隔数
全长÷间隔数=间隔长
全长÷间隔长-1=棵数
全长÷(棵树+1)=间隔长
一年级上册数学知识点汇总(人教版)
第一单元
准备课
1、数一数
数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。
2、比多少
同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。
比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。
比较两种物体的多或少时,可以用一一对应的方法。
第二单
位
置
1、认识上、下
体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。
2、认识前、后
体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。
同一物体,相对于不同的参照物,前后位置关系也会发生变化。
从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。
3、认识左、右
以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。
要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。
第三单元
1--5的认识和加减法
一、1--5的认识1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示。
2、1—5各数的数序
从前往后数:1、2、3、4、5.从后往前数:5、4、3、2、1.3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。
二、比大小
1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“>”表示,即3>2,读作3大于2。前面的数小于后面的数,用“<”表示,即3<4,读作3小于4。
2、填“>”或“<”时,开口对大数,尖角对小数。
三、第几
1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。
2、区分“几个”和“第几”
“几个”表示物体的多少,而“第几”只表示其中的一个物体。
四、分与合数的组成:一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1.把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。
五、加法
1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。
2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。
六、减法
1、减法的含义:从总数里去掉(减掉)一部分,求还剩多少用减法计算。
2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。
七、01、0的意义:0表示一个物体也没有,也表示起点。
2、0的读法:0读作:零3、0的写法:写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。
4、0的加、减法:任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0.如:0+8=8
9-0=9
4-4=0
第四单元
认识图形
1、长方体的特征:长长方方的,有6个平平的面,面有大有小。如图:
2、长方体的特征:四四方方的,有6个平平的面,面的大小一样。如图:
3、圆柱的特征:直直的,上下一样粗,上下两个圆面大小一样。放在桌子上能滚动。立在桌子上不能滚动。如图:
4、球的特征:圆圆的,很光滑,它的表面是曲面。放在桌子上能向任意方向滚动。
5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。用小圆柱可以拼成更大的圆柱。
第五单元
6—10的认识和加减法
一、6—10的认识:
1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。
2、10以内数的顺序:
(1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。
(2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。
3、比较大小:按照数的顺序,后面的数总是比前面的数大。
4、序数含义:用来表示物体的次序,即第几个。
5、数的组成:一个数(0、1除外)可以由两个比它小的数组成。如:10由9和1组成。
记忆数的组成时,可由一组数想到调换位置的另一组。
二、6—10的加减法1、10以内加减法的计算方法:根据数的组成来计算。
2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。
3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号
”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。
三、连加连减
1、连加的计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。
2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。
四、加减混合加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。
第六单元
11—20各数的认识
1、数数:根据物体的个数,可以用11—20各数来表示。
2、数的顺序:11—20各数的顺序是:11、12、13、14、15、16、17、18、19、20、3、比较大小:可以根据数的顺序比较,后面的数总比前面的数大,或者利用数的组成进行比较。
4、11—20各数的组成:都是由1个十和几个一组成的,20由2个十组成的。如:1个十和5个一组成15。
5、数位:从右边起第一位是个位,第二位是十位。
6、11—20各数的读法:从高位读起,十位上是几就读几十,个位上是几就读几。20的读法,20读作:二十。
7、写数:写数时,对照数位写,有1个十就在十位上写1,有2个十就在十位上写2.有几个一,就在个位上写几,个位上一个单位也没有,就写0占位。
8、十加几、十几加几与相应的减法:
(1)10加几和相应的减法的计算方法:10加几得十几,十几减几得十,十几减十得几。
如:10+5=15
17-7=10
18-10=8
(2)十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算,也可以把个位上的数相加或相减,再加整十数。
(3)加减法的各部分名称:
在加法算式中,加号前面和后面的数叫加数,等号后面的数叫和。
在减法算式中,减号前面的数叫被减数,减号后面的数叫减数,等号后面的数叫差。
9、解决问题:
求两个数之间有几个数,可以用数数法,也可以用画图法。还可以用计算法(用大数减小数再减1的方法来计算)。
第七单元
认识钟表
1、认识钟面:
钟面:钟面上有12个数,有时针和分针。
分针:钟面上又细又长的指针叫分针。
时针:钟面上又粗又短的指针叫时针。
2、钟表的种类:日常生活中的钟表一般分两种,一种:挂钟,钟面上有12个数,分针和时针。另一种:电子表,表面上有两个点“:”,“:”的左边和右边都有数。
3、认识整时:
分针指向12,时针指向几就是几时;电子表上,“:”的右边是“00”时表示整时,“:”的左边是几就是几时。
3、整时的写法:
整时的写法有两种:写成几时或电子表数字的形式。如:8时或8:00
第八单元
20以内的进位加法
一、9加几计算方法:计算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算,其中“凑十法”比较简便。
利用“凑十法”计算9加几时,把9凑成10需要1,就把较小数拆成1和几,10加几就得十几。
二、8、7、6加几的计算方法:(1)点数;
(2)接着数;(3)凑十法。可以“拆大数、凑小数”,也可以“拆小数、凑大数”。三、5、4、3、2加几的计算方法:
(1)“拆大数、凑小数”。(2)“拆小数、凑大数”。
四、解决问题:
(1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法。
(2)求总数的实际问题,用加法计算。
第三篇:五年级上册数学知识点汇总(人教版)
五年级上册数学知识点汇总(人教版)
第一单元
小数乘法
1、小数乘整数:
@意义——求几个相同加数的和的简便运算。
如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:
@意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。
3、规律:
一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:
⑴四舍五入法;
⑵进一法;
⑶去尾法
5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:
@
加法:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
@
减法:
a-b-c=a-(b+c)
a-(b+c)=a-b-c
@
乘法:
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
@
除法:
a÷b÷c=a÷(b×c)
a÷(b×c)
=a÷b÷c
第二单元
位
置
1、数对:
由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
2、作用:
一组数对确定唯一
一个点的位置。经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)
3、图形左右平移行数不变;图形上下平移列数不变。
第三单元
小数除法
1、小数除法的意义:
已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
2、小数除以整数的计算方法:
小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
3、除数是小数的除法的计算方法:
先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
5、除法中的变化规律:
①商不变:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
6、循环小数:
一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
@
循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
第四单元
可能性
1、有些事件的发生是确定的,有些是不确定的。
可能
(不能确定)
(确定)
可能性
不可能
一定
2、事件发生的机会(或概率)有大小。
可能性
大
数量多
小
数量少
第五单元
简易方程
1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
注:加号、减号除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a或a2
读作a的平方。
注:
2a表示a+a
;a2表示a×a3、方程:含有未知数的等式称为方程。
4、使方程左右两边相等的未知数的值,叫做方程的解。
5、求方程的解的过程叫做解方程。
6、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
7、10个数量关系式:
@
加法;
和=加数+加数 ;
一个加数=和-两一个加数
@
减法:
差=被减数-减数 ;
被减数=差+减数 ;
减数=被减数-差
@乘法:
积=因数×因数 ;
一个因数=积÷另一个因数
@
除法:
商=被除数÷除数 ;
被除数=商×除数 ;
除数=被除数÷商
第六单元
多边形的面积
1、长方形:
@
周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】
字母表示:C=(a+b)×2
@面积=长×宽
字母表示:S=ab2、正方形:
@周长=边长×4
字母表示:C=4a
@面积=边长×边长
字母表示:S=a23、平行四边形的面积=底×高
字母表示:
S=ah4、三角形的面积=底×高÷2
——【底=面积×2÷高;高=面积×2÷底】
字母表示:
S=ah÷25、梯形的面积=(上底+下底)×高÷2
字母表示:
S=(a+b)h÷2
上底=面积×2÷高-下底,下底=面积×2÷高-上底;
高=面积×2÷(上底+下底)
6、平行四边形面积公式推导:
剪拼、平移、割补法
7、三角形面积公式推导:
旋转、拼凑法
平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底;
平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;
平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积,平行四边形的面积等于三角形面积的2倍,因为长方形面积=长×宽,所以平行四边形面积=底×高。
因为平行四边形面积=底×高,所以三角形面积=底×高÷28、梯形面积公式推导:旋转、拼凑法
9、两个完全一样的梯形可以拼成一个平行四边形;
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷210、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
11、长方形框架拉成平行四边形,周长不变,面积变小。
12、组合图形面积(或阴影部分面积):转化成已学的简单图形,通过加、减进行计算(整体-部分=另一部分)。
第七单元
数学广角——植树问题
1、只载一端(封闭线路植树问题)
如图:
或
间隔数=棵树
间隔长×间隔数=全长
全长÷间隔长=间隔数
全长÷间隔数=间隔长
2、两端都载:
如图:
间隔数+1=棵树
间隔长×间隔数=全长
全长÷间隔长=间隔数
全长÷间隔数=间隔长
全长÷间隔长+1=棵数
全长÷(棵树-1)=间隔长
3、两端都不载
如图:
间隔数-1=棵树
间隔长×间隔数=全长
全长÷间隔长=间隔数
全长÷间隔数=间隔长
全长÷间隔长-1=棵数
全长÷(棵树+1)=间隔长
第四篇:小学五年级数学上册复习教学知识点归纳总结
小学五年级数学上册复习教学知识点归纳总结
第一单元小数乘法
1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。如:1.5×0.8就是求1.5的十分之八是多少。1.5×1.8就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:(P10)⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、(P11)小数四则运算顺序跟整数是一样的。
7、运算定律和性质:
加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c 乘法:乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】 除法:除法性质:a÷b÷c=a÷(b×c)
第二单元小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。注意:如果被除数的位数不够,在被除数的末尾用0补足。
11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232„„的循环节是32.14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
第四单元简易方程
16、(P45)在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。
17、a×a可以写作a·a或a,a 读作a的平方。2a表示a+a
18、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。
19、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。20、10个数量关系式: 加法:和=加数+加数 一个加数=和-两一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差 乘法:积=因数×因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
21、所有的方程都是等式,但等式不一定都是等式。
22、方程的检验过程:方程左边=„„
=方程右边
所以,X=„是方程的解。
23、方程的解是一个数;解方程式一个计算过程。
第五单元多边形的面积
23、公式:
长方形:周长=(长+宽)×2 【长=周长÷2-宽; 宽=周长÷2-长】
字母公式:C=(a+b)×2 面积=长×宽 字母公式:S=ab 正方形:周长=边长×4 字母公式:C=4a 面积=边长×边长 字母公式:S=a平行四边形的面积=底×高 字母公式: S=ah 三角形的面积=底×高÷2 字母公式: S=ah÷2 【底=面积×2÷高;高=面积×2÷底】
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2 【上底=面积×2÷高-下底,下底=面积×2÷高-上底; 高=面积×2÷(上底+下底)】
24、平行四边形面积公式推导:剪拼、平移
25、三角形面积公式推导:旋转
26、梯形面积公式推导:旋转
27、三角形、梯形的第二种推导方法老师已讲,自己看书
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
29、长方形框架拉成平行四边形,周长不变,底不变;高变小,面积变小。30、组合图形:转化成已学的简单图形,通过加、减进行计算。第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码。
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)4位表示县(市)最后2位表示投递局
35、身份证码: 18位 1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9 河北省 邢台市 邢台县 出生日期 顺序码 倒数第二位的数字用来表示性别,单数表示男,双数表示女。
前3位表示邮区 前校验码
第五篇:小学五年级数学上册复习教学知识点归纳总结
小学五年级数学上册复习教学知识点归纳总结
第一单元小数乘法
1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
(1)小数乘法计算法则:
①先按整数乘法算出积,再给积点上小数点。
②看因数中一共有几位小数,就从积的右边起(或个位)数出几位,点上小数点。③当乘得的积的小数位数不够时,要在前面用0补足,再点小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
一个数(0除外)乘等于1的数,积与原来的相等。
一个因数扩大多少倍,另一个因数缩小相同的倍数,积不变。
一个因数不变,另一个因数扩大(缩小)多少倍,积也扩大(缩小)多少倍。
4、求近似数的方法:(P10)积的近似值:先求出积,根据要求用“四舍五入”法保留一定的小数位数。
5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、小数乘法的验算方法:①把因数的位置交换,再乘一遍。(通用)②积÷一个因数=另一个因数。
7、小数四则运算顺序跟整数是一样的。(加、减法是第一级,乘、除法是第二级)①一个算式里,如果含有同一级运算,要从左往右依次计算。
②一个算式里,如果含有两级运算,要先算第二级运算,后算第一级运算。(即是先×÷后+﹣)
③一个算式里,如果有括号,先算括号里面的,后算括号外面的。
7、运算定律和性质:
加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
9、小数除以整数的计算方法(P16):
①按整数除尘的方法去除。
②商的小数点要和被除数的小数点对齐;如果整数部分不够除,商0,点上小数点。
③如果有余数,要添0再除。
小数除法的验算方法:
①商×除数=被除数(通用)②被除数÷商=除数
10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
11、(P23)求出商的近似数。
⑴四舍五入法:求一个数的近似数,主要是看它省略的最高位上的数,是小于5,大于5还是等于5。如果省略的尾数最高位上的数是4或比4小,把尾数都舍去。如果省略的尾数最高位上的数是5或比5大,把尾数省略后向前一位进一。
⑵进一法:在实际问题中,有时把一个数的尾数省略后,不管位数最高位商的数是几,都要向它的前一位进1。如:把400千克粮食装进麻袋,如果每条麻袋只能装75千克,至少需要几条麻袋?因为400÷75=5.33……就是说,400千克粮食装5条麻袋还余25千克,这25千克还需要用一条麻袋来装,所以一共需要6条麻袋。即:400÷75=5.33……≈6(条)这种求近似数的方法,叫做进一法。
⑶去尾法:在实际问题中,有时把一个数的尾数省略后,不管位数最高位商的数是几,都不需要向它的前一位进1。如:把200张纸订成每本12张的本子,可以订成多少本?因为200÷16=16.66……,就是说,22张纸订成16本还余8章,根据题里的要求,12张纸才能订成一本,余下的8张纸不能订成有12张纸有本子,所以一共只能订成16本。即:200÷16=16.66……≈16(本)这种求近似数的方法,叫做去尾法。
12、(P24、25)除法中的变化规律:
被除数和除数同时扩大(缩小)相同的倍数,商不变。
被除数扩大(缩小)多少倍,除数不变,商扩大(缩小)多少倍。
被除数不变,除数扩大(缩小)多少倍,商缩小(扩大)多少倍。
13、(P28)循环小数问题:
A、小数部分的位数是有限的小数,叫做有限小数。如,0.37、1.4135等。
B、小数部分的位数是无限的小数,叫做无限小数。如5.3…7.145145…等。
C、一个数的小数部分,从某位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。(如5.3…3.12323…5.7171…)
D、一个循环小数的小数部分,依次不断重复的数字,叫做小数的循环节。(如5.333…的循环节是3,4.6767…的循环节是67,6.9258258…的循环节是258)
E、用简便方法写循环小数的方法:
①只写一个循环节,并在这个循环节的首位和末位上面记一个小圆点。
②例如:只有一个数字循环节的,就在这个数字上面记一个小圆点,5.333…写作5.3。有两位小数循环的,各在这两位数字记上小圆点,7.4343…写作7.43。有三位或以上小数循环的,各在首位和末位记上小数点,10.732732…写作10.732。
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
第四单元简易方程
16、(P45)在含有字母的式子里,字母中间的乘号可以记作“〃”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。
17、a×a可以写作a〃a或a2,a2读作a的平方。2a表示a+a,2a≠a218、方程:含有未知数的等式称为方程。例如:10+x=35、2x=103÷x=9等
区别:方程一定是等式,但等式不一定是方程。用等号连接的式子叫等式。
使方程左右两边相等的未知数的值,叫做方程的解。例如:x=30,是方程2+x=32的解。求方程的解的过程叫做解方程。
例如: x+3=919、解方程原理:天平平衡。
方程的基本性质:
①方程两边同时加上或减去同一个数,左右两边仍然相等。
②方程两边同时乘同一个数,左右两边仍然相等。
③方程两边同时除以同一个不等于0的数,方程左右两边仍然相等。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
20、10个数量关系式:加法:和=加数+加数一个加数=和-两一个加数
减法:差=被减数-减数被减数=差+减数减数=被减数-差
乘法:积=因数×因数一个因数=积÷另一个因数
除法:商=被除数÷除数被除数=商×除数除数=被除数÷商
21、所有的方程都是等式,但等式不一定都是等式。
22、方程的检验过程:方程左边=……=方程右边所以,X=…是方程解。
23、方程的解是一个数;解方程式一个计算过程。
们学过的一些典型的数量关系:
(用s—路程、v—速度、t—时间)
行程问题:路程=速度×时间s=vt
速度=路程÷时间v=s÷t
时间=路程÷速度t=s÷v
(用c—总价、a—单价、x—数量)
价格问题:总价=单价×数量c=ax
单价=总价÷数量a=c÷x
数量=总价÷单价x=c÷a
(用c—工作总量、a—工作效率、t—工作时间)
工程问题:工作总量=工作效率×工作时间c=at
工作效律=工作总量÷工作时间a=c÷t
工作时间=工作总量÷工作效率t=c÷a7、列方程解应用题步骤:
①用X设好未知量。②找出题等量关系。③根据等量关系列出方程求解。④写答数。
第五单元多边形的面积
23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】字母公式:C=(a+b)×2
面积=长×宽字母公式:S=ab
正方形:周长=边长×4字母公式:C=4a
面积=边长×边长字母公式:S=a
平行四边形的面积=底×高字母公式: S=ah
三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】
字母公式: S=ah÷2
梯形的面积=(上底+下底)×高÷2字母公式: S=(a+b)h÷2
【上底=面积×2÷高-下底,下底=面积×2÷高-上底;
高=面积×2÷(上底+下底)】
24、平行四边形面积公式推导:剪拼、平移
平行四边形可以转化成一个长方形;
长方形的长相当于平行四边形的底;
长方形的宽相当于平行四边形的高;
长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。
25、三角形面积公式推导:旋转
两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底;
平行四边形的高相当于三角形的高;
平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷226、梯形面积公式推导:旋转
梯形的面积等于与它等底等高的平行四边形的一半,反之,平行四边形的面积等于与它等底等高的梯形面积的2倍。④要求梯形的面积,一定要知道上、下底、高,单位要统一,记住(÷2)
27、三角形、梯形的第二种推导方法老师已讲,自己看书知道就行。
两个完全一样的梯形可以拼成一个平行四边形,平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
两个完全一样的三角形(包括直角三角形、锐角三角形、钝角三角形)可以拼成一个平行四边形。
3、面积相等的两个三角形,不一定等底等高,但两个等底等高三角形面积一定相等。
4、三角形的面积等于与它等底等高的平行四边形面积的一半,反之,平行四边形的面积是与它等底等高的三角形面积的2倍。
5、要求三角形的面积一定要知道底和高,单位要统一,记住(÷2)
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
9、长方形框架拉成平行四边形,周长不变,面积变小。
30、组合图形:转化成已学的简单图形,通过加、减进行计算。
第六单元统计与可能性
一、事情发生的可能性(概率)可用分数几分之几来表示。
二、求平均数的方法:总数÷份数=每份数(平均数)。
三、中位数:是反映数据一般水平的数,它不受数据偏大和偏小的影响,它代表着全体数据的一般水平。
注意:中位数不一定大于平均数,平均数不一定大于中位数。
四、铺一铺:(决论)
等边三角形、长方形、正方形、正六边形、直角三角形可以密铺。
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码。
数的作用:数不仅可以用来表示数量和顺序,还可以用来编码。
一、邮政编码知识:我国邮政编码由(六位)数字组成,前两位数字表示省【直辖市、自治区】;前三位数字表示邮区,前四位数字表示县(市);最后两位数字表示投递局或(所)。邮政编码的作用:邮政编码是我国邮政代号。它可大大提高信件传递速度。
我们学校的邮政编码是136300。(记一记)
我国直辖市邮政编码的特点:北京市100000 上海市200000 天津市300000 重庆市400000
二、居民身份证号码的知识:
1、我国公民一出生就有一个属于自己的身份证号码,我们现在使用的是(第二)代居民身份证,它由(18)位数字组成。
前六位是行政区划分码,第7位至14位为出生日期,第15位至17位为顺序码,第18位为检验码。
2、倒数第二位的数字是用来表示性别的,单数表示男,双数表示女。例如:44 25 27 19800203 11 5 1
省 市 区 出生日期男
三、图书编码知识:
图书编码一般是用检索号来编,包括分类号、书次号。(也可再分小些)。
例如I 28.963/2又如X053—148/2(按类别编)又如:2003—04—6(编码日期)
四、打电话知识:(电话号码)
1、拨打长途电话先拨区号,后拨用户号;拨打短途电话一般直拨用户号码可以了。
2、我们来认识一些电话号码的构成,电话号码一般由区号+用户号组成。
如:010 587588660769 83198724
区号用户号区号用户号
3、我们来记住些区号:
北京市010、上海市021、广州市020、东莞市0769、佛山市0757、深圳市0755、珠海市0756、天津市022、重庆市023。
4、请记住一些特殊号码:(常用)
110(匪警电话)119(火警电话)120(急救电话)114(查询电话)121(天气电话)
五、车牌号码知识:
如车牌:豫D—L0578,第一个中文字:豫(是河南省简称)表示省份、直辖市区;第二个字母:D县市、地市。
如车牌:粤S﹒V0977(广东省.东莞市)又如粤A1083(广东省.广州市)
六、图书标识码:(每一本图书都有一个唯一的标识代码)
如:标识码ISBN7—107—10549—61、ISBN(图书标识代码的英文写法),它由10个数字组成,前9个数字分成三组,分别表示组号、出版社号和书序号,最后一个数是校验码。
如:我们使用的数学课本标识码是:ISBN7—107—18617—5
组号 出版社号 书序号 校验码
注ISBN是国际标准标志(世界规定),如我们的数学课本中的“7”是组号表示(中国),“107”表示出版社社号(人民教育出版社)。
另:一些我们学过的单位名称与进率 货币单位与进率有: 1元=10角,1角=10分,1元=100分 长度单位与进率有:1千米=1000米,1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米。重量(质量)单位与进率有:1吨=1000千克,1千克=1000克 面积单位与进率有:1平方千米(平方公里)=100公顷,1公顷=10000平方米,1平方米=100平方分米,1平方分米=100平方厘米,1平方厘米=100平方毫米,1平方米=10000平方厘米,1平方千米=1000000平方米 时间单位与进率:1年有365天(平年)、366天(闰年);1年有12个月、1年有4个季度;1个季度有3个月、1个月有4个周、1个星期有7天;1天=24小时、1小时=60分、1分=60秒、1小时=3600秒、1世纪=100年; 另:一些简单的平方数:
1×1=12×2=43×3=94×4=165×5=257×7=49
8×8=646×6=369×9=8110×10=1000.5×0.5=0.251.2×1.2=1.4430×30=90090×90=81000.31×0.31=0.0961