五年级数学上册教学知识点

时间:2019-05-13 01:23:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《五年级数学上册教学知识点》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《五年级数学上册教学知识点》。

第一篇:五年级数学上册教学知识点

五年级上册 数学知识点

第一单元小数乘法

1计算方法:先按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0补足位数,再点小数点。

2、规律:一个数(0除外)乘大于1的数,积比原来的数大;

一个数(0除外)乘小于1的数,积比原来的数小。

3、求近似数的方法一般有三种: ⑴四舍五入法; ⑵进一法; ⑶去尾法

4、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。第二单元 位 置

5、数对:由两个数组成,中间用逗号隔开,用括号括起来。(列,行),即“先数列,后数行”。第三单元小数除法

6、小数除以整数的计算方法

小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。

整数部分不够除,商0,点上小数点。如果有余数,要添0再继续除。

7、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

8、除法中的变化规律:

①商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商反而扩大。

9,规律:一个数(0除外)除以大于1的数,商比被除数小;

一个数(0除外)除以小于1的数,商比被除数大。

10、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

循环节:循环小数的小数部分,依次不断重复出现的数字。如6.3232„„的循环节是32.11、小数部分的位数是有限的小数,叫做有限小数。

小数部分的位数是无限的小数,叫做无限小数。第四单元简易方程

12、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。省略乘号时,数字写在字母前面,加号、减号、除号以及数与数之间的乘号不能省略。

13、a×a可以写作a²,a²读作a的平方。

2a表示a+a

14、方程:含有未知数的等式称为方程。

15、解方程原理:天平的平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。16、10个数量关系式

加法:和=加数+加数

一个加数=和-两一个加数 减法:差=被减数-减数

被减数=差+减数

减数=被减数-差 乘法:积=因数×因数

一个因数=积÷另一个因数 除法:商=被除数÷除数

被除数=商×除数

除数=被除数÷商

17、所有的方程都是等式,但等式不一定都是方程。第五单元多边形的面积

18、公式

长方形 周长=(长+宽)×2 字母公式:C=(a+b)×2

面积=长×宽

字母公式:S=ab 正方形 周长=边长×4

字母公式:C=4a

面积=边长×边长

字母公式:S=a²

平行四边形

平行四边形的面积=底×高

字母公式: S=ah 三角形三角形的面积=底×高÷2 字母公式: S=ah÷2 【底=面积×2÷高; 高=面积×2÷底】梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2

【上底=面积×2÷高-下底,下底=面积×2÷高-上底; 高=面积×2÷(上底+下底)】

21、等底等高的平行四边形面积都相等;

等底等高的三角形面积也都相等;

等底等高的平行四边形面积是三角形面积的2倍。

23、长方形框架拉成平行四边形,周长不变,面积变小。第七单元数学广角——植树问题

1,两端都栽:全长÷间隔距离=间隔数 间隔数+1=树的棵数 2,只栽一端:全长÷间隔距离=间隔数 间隔数=树的棵数 3,两端都不栽:全长÷间隔距离=间隔数 间隔数-1=树的棵数 4,封闭线路植树问题:全长÷间隔距离=间隔数 间隔数=树的棵数

第二篇:五年级上册数学知识点汇总(人教版)

五年级上册数学知识点汇总(人教版)

第一单元

小数乘法

1、小数乘整数:

@意义——求几个相同加数的和的简便运算。

如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:

@意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。

3、规律:

一个数(0除外)乘大于1的数,积比原来的数大;

一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:

⑴四舍五入法;

⑵进一法;

⑶去尾法

5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

6、小数四则运算顺序和运算定律跟整数是一样的。

7、运算定律和性质:

@

加法:

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

@

减法:

a-b-c=a-(b+c)

a-(b+c)=a-b-c

@

乘法:

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】

@

除法:

a÷b÷c=a÷(b×c)

a÷(b×c)

=a÷b÷c

第二单元

1、数对:

由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

2、作用:

一组数对确定唯一

一个点的位置。经度和纬度就是这个原理。

例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)

3、图形左右平移行数不变;图形上下平移列数不变。

第三单元

小数除法

1、小数除法的意义:

已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

2、小数除以整数的计算方法:

小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

3、除数是小数的除法的计算方法:

先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

5、除法中的变化规律:

①商不变:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

②除数不变,被除数扩大,商随着扩大。

③被除数不变,除数缩小,商扩大。

6、循环小数:

一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

@

循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

第四单元

可能性

1、有些事件的发生是确定的,有些是不确定的。

可能

(不能确定)

(确定)

可能性

不可能

一定

2、事件发生的机会(或概率)有大小。

可能性

数量多

数量少

第五单元

简易方程

1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。

注:加号、减号除号以及数与数之间的乘号不能省略。

2、a×a可以写作a·a或a2

读作a的平方。

注:

2a表示a+a

;a2表示a×a3、方程:含有未知数的等式称为方程。

4、使方程左右两边相等的未知数的值,叫做方程的解。

5、求方程的解的过程叫做解方程。

6、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

7、10个数量关系式:

@

加法;

和=加数+加数 ;

一个加数=和-两一个加数

@

减法:

差=被减数-减数 ;

被减数=差+减数 ;

减数=被减数-差

@乘法:

积=因数×因数 ;

一个因数=积÷另一个因数

@

除法:

商=被除数÷除数 ;

被除数=商×除数 ;

除数=被除数÷商

第六单元

多边形的面积

1、长方形:

@

周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】

字母表示:C=(a+b)×2

@面积=长×宽

字母表示:S=ab2、正方形:

@周长=边长×4

字母表示:C=4a

@面积=边长×边长

字母表示:S=a23、平行四边形的面积=底×高

字母表示:

S=ah4、三角形的面积=底×高÷2

——【底=面积×2÷高;高=面积×2÷底】

字母表示:

S=ah÷25、梯形的面积=(上底+下底)×高÷2

字母表示:

S=(a+b)h÷2

上底=面积×2÷高-下底,下底=面积×2÷高-上底;

高=面积×2÷(上底+下底)

6、平行四边形面积公式推导:

剪拼、平移、割补法

7、三角形面积公式推导:

旋转、拼凑法

平行四边形可以转化成一个长方形;

两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底;

平行四边形的底相当于三角形的底;

长方形的宽相当于平行四边形的高;

平行四边形的高相当于三角形的高;

长方形的面积等于平行四边形的面积,平行四边形的面积等于三角形面积的2倍,因为长方形面积=长×宽,所以平行四边形面积=底×高。

因为平行四边形面积=底×高,所以三角形面积=底×高÷28、梯形面积公式推导:旋转、拼凑法

9、两个完全一样的梯形可以拼成一个平行四边形;

平行四边形的底相当于梯形的上下底之和;

平行四边形的高相当于梯形的高;

平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷210、等底等高的平行四边形面积相等;等底等高的三角形面积相等;

等底等高的平行四边形面积是三角形面积的2倍。

11、长方形框架拉成平行四边形,周长不变,面积变小。

12、组合图形面积(或阴影部分面积):转化成已学的简单图形,通过加、减进行计算(整体-部分=另一部分)。

第七单元

数学广角——植树问题

1、只载一端(封闭线路植树问题)

如图:

间隔数=棵树

间隔长×间隔数=全长

全长÷间隔长=间隔数

全长÷间隔数=间隔长

2、两端都载:

如图:

间隔数+1=棵树

间隔长×间隔数=全长

全长÷间隔长=间隔数

全长÷间隔数=间隔长

全长÷间隔长+1=棵数

全长÷(棵树-1)=间隔长

3、两端都不载

如图:

间隔数-1=棵树

间隔长×间隔数=全长

全长÷间隔长=间隔数

全长÷间隔数=间隔长

全长÷间隔长-1=棵数

全长÷(棵树+1)=间隔长

一年级上册数学知识点汇总(人教版)

第一单元

准备课

1、数一数

数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。

2、比多少

同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。

比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。

比较两种物体的多或少时,可以用一一对应的方法。

第二单

1、认识上、下

体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。

2、认识前、后

体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。

同一物体,相对于不同的参照物,前后位置关系也会发生变化。

从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。

3、认识左、右

以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。

要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。

第三单元

1--5的认识和加减法

一、1--5的认识1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示。

2、1—5各数的数序

从前往后数:1、2、3、4、5.从后往前数:5、4、3、2、1.3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。

二、比大小

1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“>”表示,即3>2,读作3大于2。前面的数小于后面的数,用“<”表示,即3<4,读作3小于4。

2、填“>”或“<”时,开口对大数,尖角对小数。

三、第几

1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。

2、区分“几个”和“第几”

“几个”表示物体的多少,而“第几”只表示其中的一个物体。

四、分与合数的组成:一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1.把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。

五、加法

1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。

2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。

六、减法

1、减法的含义:从总数里去掉(减掉)一部分,求还剩多少用减法计算。

2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。

七、01、0的意义:0表示一个物体也没有,也表示起点。

2、0的读法:0读作:零3、0的写法:写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。

4、0的加、减法:任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0.如:0+8=8

9-0=9

4-4=0

第四单元

认识图形

1、长方体的特征:长长方方的,有6个平平的面,面有大有小。如图:

2、长方体的特征:四四方方的,有6个平平的面,面的大小一样。如图:

3、圆柱的特征:直直的,上下一样粗,上下两个圆面大小一样。放在桌子上能滚动。立在桌子上不能滚动。如图:

4、球的特征:圆圆的,很光滑,它的表面是曲面。放在桌子上能向任意方向滚动。

5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。用小圆柱可以拼成更大的圆柱。

第五单元

6—10的认识和加减法

一、6—10的认识:

1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。

2、10以内数的顺序:

(1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。

(2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。

3、比较大小:按照数的顺序,后面的数总是比前面的数大。

4、序数含义:用来表示物体的次序,即第几个。

5、数的组成:一个数(0、1除外)可以由两个比它小的数组成。如:10由9和1组成。

记忆数的组成时,可由一组数想到调换位置的另一组。

二、6—10的加减法1、10以内加减法的计算方法:根据数的组成来计算。

2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。

3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号

”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。

三、连加连减

1、连加的计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。

2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。

四、加减混合加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。

第六单元

11—20各数的认识

1、数数:根据物体的个数,可以用11—20各数来表示。

2、数的顺序:11—20各数的顺序是:11、12、13、14、15、16、17、18、19、20、3、比较大小:可以根据数的顺序比较,后面的数总比前面的数大,或者利用数的组成进行比较。

4、11—20各数的组成:都是由1个十和几个一组成的,20由2个十组成的。如:1个十和5个一组成15。

5、数位:从右边起第一位是个位,第二位是十位。

6、11—20各数的读法:从高位读起,十位上是几就读几十,个位上是几就读几。20的读法,20读作:二十。

7、写数:写数时,对照数位写,有1个十就在十位上写1,有2个十就在十位上写2.有几个一,就在个位上写几,个位上一个单位也没有,就写0占位。

8、十加几、十几加几与相应的减法:

(1)10加几和相应的减法的计算方法:10加几得十几,十几减几得十,十几减十得几。

如:10+5=15

17-7=10

18-10=8

(2)十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算,也可以把个位上的数相加或相减,再加整十数。

(3)加减法的各部分名称:

在加法算式中,加号前面和后面的数叫加数,等号后面的数叫和。

在减法算式中,减号前面的数叫被减数,减号后面的数叫减数,等号后面的数叫差。

9、解决问题:

求两个数之间有几个数,可以用数数法,也可以用画图法。还可以用计算法(用大数减小数再减1的方法来计算)。

第七单元

认识钟表

1、认识钟面:

钟面:钟面上有12个数,有时针和分针。

分针:钟面上又细又长的指针叫分针。

时针:钟面上又粗又短的指针叫时针。

2、钟表的种类:日常生活中的钟表一般分两种,一种:挂钟,钟面上有12个数,分针和时针。另一种:电子表,表面上有两个点“:”,“:”的左边和右边都有数。

3、认识整时:

分针指向12,时针指向几就是几时;电子表上,“:”的右边是“00”时表示整时,“:”的左边是几就是几时。

3、整时的写法:

整时的写法有两种:写成几时或电子表数字的形式。如:8时或8:00

第八单元

20以内的进位加法

一、9加几计算方法:计算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算,其中“凑十法”比较简便。

利用“凑十法”计算9加几时,把9凑成10需要1,就把较小数拆成1和几,10加几就得十几。

二、8、7、6加几的计算方法:(1)点数;

(2)接着数;(3)凑十法。可以“拆大数、凑小数”,也可以“拆小数、凑大数”。

三、5、4、3、2加几的计算方法:

(1)“拆大数、凑小数”。(2)“拆小数、凑大数”。

四、解决问题:

(1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法。

(2)求总数的实际问题,用加法计算。

第三篇:五年级上册数学知识点汇总(人教版)

五年级上册数学知识点汇总(人教版)

第一单元

小数乘法

1、小数乘整数:

@意义——求几个相同加数的和的简便运算。

如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:

@意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。

3、规律:

一个数(0除外)乘大于1的数,积比原来的数大;

一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:

⑴四舍五入法;

⑵进一法;

⑶去尾法

5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

6、小数四则运算顺序和运算定律跟整数是一样的。

7、运算定律和性质:

@

加法:

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

@

减法:

a-b-c=a-(b+c)

a-(b+c)=a-b-c

@

乘法:

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】

@

除法:

a÷b÷c=a÷(b×c)

a÷(b×c)

=a÷b÷c

第二单元

1、数对:

由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

2、作用:

一组数对确定唯一

一个点的位置。经度和纬度就是这个原理。

例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)

3、图形左右平移行数不变;图形上下平移列数不变。

第三单元

小数除法

1、小数除法的意义:

已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

2、小数除以整数的计算方法:

小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

3、除数是小数的除法的计算方法:

先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

5、除法中的变化规律:

①商不变:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

②除数不变,被除数扩大,商随着扩大。

③被除数不变,除数缩小,商扩大。

6、循环小数:

一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

@

循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

第四单元

可能性

1、有些事件的发生是确定的,有些是不确定的。

可能

(不能确定)

(确定)

可能性

不可能

一定

2、事件发生的机会(或概率)有大小。

可能性

数量多

数量少

第五单元

简易方程

1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。

注:加号、减号除号以及数与数之间的乘号不能省略。

2、a×a可以写作a·a或a2

读作a的平方。

注:

2a表示a+a

;a2表示a×a3、方程:含有未知数的等式称为方程。

4、使方程左右两边相等的未知数的值,叫做方程的解。

5、求方程的解的过程叫做解方程。

6、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

7、10个数量关系式:

@

加法;

和=加数+加数 ;

一个加数=和-两一个加数

@

减法:

差=被减数-减数 ;

被减数=差+减数 ;

减数=被减数-差

@乘法:

积=因数×因数 ;

一个因数=积÷另一个因数

@

除法:

商=被除数÷除数 ;

被除数=商×除数 ;

除数=被除数÷商

第六单元

多边形的面积

1、长方形:

@

周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】

字母表示:C=(a+b)×2

@面积=长×宽

字母表示:S=ab2、正方形:

@周长=边长×4

字母表示:C=4a

@面积=边长×边长

字母表示:S=a23、平行四边形的面积=底×高

字母表示:

S=ah4、三角形的面积=底×高÷2

——【底=面积×2÷高;高=面积×2÷底】

字母表示:

S=ah÷25、梯形的面积=(上底+下底)×高÷2

字母表示:

S=(a+b)h÷2

上底=面积×2÷高-下底,下底=面积×2÷高-上底;

高=面积×2÷(上底+下底)

6、平行四边形面积公式推导:

剪拼、平移、割补法

7、三角形面积公式推导:

旋转、拼凑法

平行四边形可以转化成一个长方形;

两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底;

平行四边形的底相当于三角形的底;

长方形的宽相当于平行四边形的高;

平行四边形的高相当于三角形的高;

长方形的面积等于平行四边形的面积,平行四边形的面积等于三角形面积的2倍,因为长方形面积=长×宽,所以平行四边形面积=底×高。

因为平行四边形面积=底×高,所以三角形面积=底×高÷28、梯形面积公式推导:旋转、拼凑法

9、两个完全一样的梯形可以拼成一个平行四边形;

平行四边形的底相当于梯形的上下底之和;

平行四边形的高相当于梯形的高;

平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷210、等底等高的平行四边形面积相等;等底等高的三角形面积相等;

等底等高的平行四边形面积是三角形面积的2倍。

11、长方形框架拉成平行四边形,周长不变,面积变小。

12、组合图形面积(或阴影部分面积):转化成已学的简单图形,通过加、减进行计算(整体-部分=另一部分)。

第七单元

数学广角——植树问题

1、只载一端(封闭线路植树问题)

如图:

间隔数=棵树

间隔长×间隔数=全长

全长÷间隔长=间隔数

全长÷间隔数=间隔长

2、两端都载:

如图:

间隔数+1=棵树

间隔长×间隔数=全长

全长÷间隔长=间隔数

全长÷间隔数=间隔长

全长÷间隔长+1=棵数

全长÷(棵树-1)=间隔长

3、两端都不载

如图:

间隔数-1=棵树

间隔长×间隔数=全长

全长÷间隔长=间隔数

全长÷间隔数=间隔长

全长÷间隔长-1=棵数

全长÷(棵树+1)=间隔长

第四篇:小学五年级数学上册复习教学知识点归纳总结

小学五年级数学上册复习教学知识点归纳总结

第一单元小数乘法

1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。如:1.5×0.8就是求1.5的十分之八是多少。1.5×1.8就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;

一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:(P10)⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、(P11)小数四则运算顺序跟整数是一样的。

7、运算定律和性质:

加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c 乘法:乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】 除法:除法性质:a÷b÷c=a÷(b×c)

第二单元小数除法

8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。注意:如果被除数的位数不够,在被除数的末尾用0补足。

11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。

13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232„„的循环节是32.14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

第三单元观察物体

15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

第四单元简易方程

16、(P45)在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。

17、a×a可以写作a·a或a,a 读作a的平方。2a表示a+a

18、方程:含有未知数的等式称为方程。

使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。

19、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。20、10个数量关系式: 加法:和=加数+加数 一个加数=和-两一个加数

减法:差=被减数-减数 被减数=差+减数 减数=被减数-差 乘法:积=因数×因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商

21、所有的方程都是等式,但等式不一定都是等式。

22、方程的检验过程:方程左边=„„

=方程右边

所以,X=„是方程的解。

23、方程的解是一个数;解方程式一个计算过程。

第五单元多边形的面积

23、公式:

长方形:周长=(长+宽)×2 【长=周长÷2-宽; 宽=周长÷2-长】

字母公式:C=(a+b)×2 面积=长×宽 字母公式:S=ab 正方形:周长=边长×4 字母公式:C=4a 面积=边长×边长 字母公式:S=a平行四边形的面积=底×高 字母公式: S=ah 三角形的面积=底×高÷2 字母公式: S=ah÷2 【底=面积×2÷高;高=面积×2÷底】

梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2 【上底=面积×2÷高-下底,下底=面积×2÷高-上底; 高=面积×2÷(上底+下底)】

24、平行四边形面积公式推导:剪拼、平移

25、三角形面积公式推导:旋转

26、梯形面积公式推导:旋转

27、三角形、梯形的第二种推导方法老师已讲,自己看书

28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;

等底等高的平行四边形面积是三角形面积的2倍。

29、长方形框架拉成平行四边形,周长不变,底不变;高变小,面积变小。30、组合图形:转化成已学的简单图形,通过加、减进行计算。第六单元统计与可能性

31、平均数=总数量÷总份数

32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。

第七单元数学广角

33、数不仅可以用来表示数量和顺序,还可以用来编码。

34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)4位表示县(市)最后2位表示投递局

35、身份证码: 18位 1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9 河北省 邢台市 邢台县 出生日期 顺序码 倒数第二位的数字用来表示性别,单数表示男,双数表示女。

前3位表示邮区 前校验码

第五篇:小学五年级数学上册复习教学知识点归纳总结

小学五年级数学上册复习教学知识点归纳总结

第一单元小数乘法

1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。

2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少。

1.5×1.8就是求1.5的1.8倍是多少。

(1)小数乘法计算法则:

①先按整数乘法算出积,再给积点上小数点。

②看因数中一共有几位小数,就从积的右边起(或个位)数出几位,点上小数点。③当乘得的积的小数位数不够时,要在前面用0补足,再点小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;

一个数(0除外)乘小于1的数,积比原来的数小。

一个数(0除外)乘等于1的数,积与原来的相等。

一个因数扩大多少倍,另一个因数缩小相同的倍数,积不变。

一个因数不变,另一个因数扩大(缩小)多少倍,积也扩大(缩小)多少倍。

4、求近似数的方法:(P10)积的近似值:先求出积,根据要求用“四舍五入”法保留一定的小数位数。

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、小数乘法的验算方法:①把因数的位置交换,再乘一遍。(通用)②积÷一个因数=另一个因数。

7、小数四则运算顺序跟整数是一样的。(加、减法是第一级,乘、除法是第二级)①一个算式里,如果含有同一级运算,要从左往右依次计算。

②一个算式里,如果含有两级运算,要先算第二级运算,后算第一级运算。(即是先×÷后+﹣)

③一个算式里,如果有括号,先算括号里面的,后算括号外面的。

7、运算定律和性质:

加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)

减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c

乘法:乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】

除法:除法性质:a÷b÷c=a÷(b×c)

第二单元小数除法

8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

9、小数除以整数的计算方法(P16):

①按整数除尘的方法去除。

②商的小数点要和被除数的小数点对齐;如果整数部分不够除,商0,点上小数点。

③如果有余数,要添0再除。

小数除法的验算方法:

①商×除数=被除数(通用)②被除数÷商=除数

10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

11、(P23)求出商的近似数。

⑴四舍五入法:求一个数的近似数,主要是看它省略的最高位上的数,是小于5,大于5还是等于5。如果省略的尾数最高位上的数是4或比4小,把尾数都舍去。如果省略的尾数最高位上的数是5或比5大,把尾数省略后向前一位进一。

⑵进一法:在实际问题中,有时把一个数的尾数省略后,不管位数最高位商的数是几,都要向它的前一位进1。如:把400千克粮食装进麻袋,如果每条麻袋只能装75千克,至少需要几条麻袋?因为400÷75=5.33……就是说,400千克粮食装5条麻袋还余25千克,这25千克还需要用一条麻袋来装,所以一共需要6条麻袋。即:400÷75=5.33……≈6(条)这种求近似数的方法,叫做进一法。

⑶去尾法:在实际问题中,有时把一个数的尾数省略后,不管位数最高位商的数是几,都不需要向它的前一位进1。如:把200张纸订成每本12张的本子,可以订成多少本?因为200÷16=16.66……,就是说,22张纸订成16本还余8章,根据题里的要求,12张纸才能订成一本,余下的8张纸不能订成有12张纸有本子,所以一共只能订成16本。即:200÷16=16.66……≈16(本)这种求近似数的方法,叫做去尾法。

12、(P24、25)除法中的变化规律:

被除数和除数同时扩大(缩小)相同的倍数,商不变。

被除数扩大(缩小)多少倍,除数不变,商扩大(缩小)多少倍。

被除数不变,除数扩大(缩小)多少倍,商缩小(扩大)多少倍。

13、(P28)循环小数问题:

A、小数部分的位数是有限的小数,叫做有限小数。如,0.37、1.4135等。

B、小数部分的位数是无限的小数,叫做无限小数。如5.3…7.145145…等。

C、一个数的小数部分,从某位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。(如5.3…3.12323…5.7171…)

D、一个循环小数的小数部分,依次不断重复的数字,叫做小数的循环节。(如5.333…的循环节是3,4.6767…的循环节是67,6.9258258…的循环节是258)

E、用简便方法写循环小数的方法:

①只写一个循环节,并在这个循环节的首位和末位上面记一个小圆点。

②例如:只有一个数字循环节的,就在这个数字上面记一个小圆点,5.333…写作5.3。有两位小数循环的,各在这两位数字记上小圆点,7.4343…写作7.43。有三位或以上小数循环的,各在首位和末位记上小数点,10.732732…写作10.732。

第三单元观察物体

15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

第四单元简易方程

16、(P45)在含有字母的式子里,字母中间的乘号可以记作“〃”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。

17、a×a可以写作a〃a或a2,a2读作a的平方。2a表示a+a,2a≠a218、方程:含有未知数的等式称为方程。例如:10+x=35、2x=103÷x=9等

区别:方程一定是等式,但等式不一定是方程。用等号连接的式子叫等式。

使方程左右两边相等的未知数的值,叫做方程的解。例如:x=30,是方程2+x=32的解。求方程的解的过程叫做解方程。

例如: x+3=919、解方程原理:天平平衡。

方程的基本性质:

①方程两边同时加上或减去同一个数,左右两边仍然相等。

②方程两边同时乘同一个数,左右两边仍然相等。

③方程两边同时除以同一个不等于0的数,方程左右两边仍然相等。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

20、10个数量关系式:加法:和=加数+加数一个加数=和-两一个加数

减法:差=被减数-减数被减数=差+减数减数=被减数-差

乘法:积=因数×因数一个因数=积÷另一个因数

除法:商=被除数÷除数被除数=商×除数除数=被除数÷商

21、所有的方程都是等式,但等式不一定都是等式。

22、方程的检验过程:方程左边=……=方程右边所以,X=…是方程解。

23、方程的解是一个数;解方程式一个计算过程。

们学过的一些典型的数量关系:

(用s—路程、v—速度、t—时间)

行程问题:路程=速度×时间s=vt

速度=路程÷时间v=s÷t

时间=路程÷速度t=s÷v

(用c—总价、a—单价、x—数量)

价格问题:总价=单价×数量c=ax

单价=总价÷数量a=c÷x

数量=总价÷单价x=c÷a

(用c—工作总量、a—工作效率、t—工作时间)

工程问题:工作总量=工作效率×工作时间c=at

工作效律=工作总量÷工作时间a=c÷t

工作时间=工作总量÷工作效率t=c÷a7、列方程解应用题步骤:

①用X设好未知量。②找出题等量关系。③根据等量关系列出方程求解。④写答数。

第五单元多边形的面积

23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】字母公式:C=(a+b)×2

面积=长×宽字母公式:S=ab

正方形:周长=边长×4字母公式:C=4a

面积=边长×边长字母公式:S=a

平行四边形的面积=底×高字母公式: S=ah

三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】

字母公式: S=ah÷2

梯形的面积=(上底+下底)×高÷2字母公式: S=(a+b)h÷2

【上底=面积×2÷高-下底,下底=面积×2÷高-上底;

高=面积×2÷(上底+下底)】

24、平行四边形面积公式推导:剪拼、平移

平行四边形可以转化成一个长方形;

长方形的长相当于平行四边形的底;

长方形的宽相当于平行四边形的高;

长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。

25、三角形面积公式推导:旋转

两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底;

平行四边形的高相当于三角形的高;

平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷226、梯形面积公式推导:旋转

梯形的面积等于与它等底等高的平行四边形的一半,反之,平行四边形的面积等于与它等底等高的梯形面积的2倍。④要求梯形的面积,一定要知道上、下底、高,单位要统一,记住(÷2)

27、三角形、梯形的第二种推导方法老师已讲,自己看书知道就行。

两个完全一样的梯形可以拼成一个平行四边形,平行四边形的底相当于梯形的上下底之和;

平行四边形的高相当于梯形的高;

平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

两个完全一样的三角形(包括直角三角形、锐角三角形、钝角三角形)可以拼成一个平行四边形。

3、面积相等的两个三角形,不一定等底等高,但两个等底等高三角形面积一定相等。

4、三角形的面积等于与它等底等高的平行四边形面积的一半,反之,平行四边形的面积是与它等底等高的三角形面积的2倍。

5、要求三角形的面积一定要知道底和高,单位要统一,记住(÷2)

28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;

9、长方形框架拉成平行四边形,周长不变,面积变小。

30、组合图形:转化成已学的简单图形,通过加、减进行计算。

第六单元统计与可能性

一、事情发生的可能性(概率)可用分数几分之几来表示。

二、求平均数的方法:总数÷份数=每份数(平均数)。

三、中位数:是反映数据一般水平的数,它不受数据偏大和偏小的影响,它代表着全体数据的一般水平。

注意:中位数不一定大于平均数,平均数不一定大于中位数。

四、铺一铺:(决论)

等边三角形、长方形、正方形、正六边形、直角三角形可以密铺。

第七单元数学广角

33、数不仅可以用来表示数量和顺序,还可以用来编码。

数的作用:数不仅可以用来表示数量和顺序,还可以用来编码。

一、邮政编码知识:我国邮政编码由(六位)数字组成,前两位数字表示省【直辖市、自治区】;前三位数字表示邮区,前四位数字表示县(市);最后两位数字表示投递局或(所)。邮政编码的作用:邮政编码是我国邮政代号。它可大大提高信件传递速度。

我们学校的邮政编码是136300。(记一记)

我国直辖市邮政编码的特点:北京市100000 上海市200000 天津市300000 重庆市400000

二、居民身份证号码的知识:

1、我国公民一出生就有一个属于自己的身份证号码,我们现在使用的是(第二)代居民身份证,它由(18)位数字组成。

前六位是行政区划分码,第7位至14位为出生日期,第15位至17位为顺序码,第18位为检验码。

2、倒数第二位的数字是用来表示性别的,单数表示男,双数表示女。例如:44 25 27 19800203 11 5 1

省 市 区 出生日期男

三、图书编码知识:

图书编码一般是用检索号来编,包括分类号、书次号。(也可再分小些)。

例如I 28.963/2又如X053—148/2(按类别编)又如:2003—04—6(编码日期)

四、打电话知识:(电话号码)

1、拨打长途电话先拨区号,后拨用户号;拨打短途电话一般直拨用户号码可以了。

2、我们来认识一些电话号码的构成,电话号码一般由区号+用户号组成。

如:010 587588660769 83198724

区号用户号区号用户号

3、我们来记住些区号:

北京市010、上海市021、广州市020、东莞市0769、佛山市0757、深圳市0755、珠海市0756、天津市022、重庆市023。

4、请记住一些特殊号码:(常用)

110(匪警电话)119(火警电话)120(急救电话)114(查询电话)121(天气电话)

五、车牌号码知识:

如车牌:豫D—L0578,第一个中文字:豫(是河南省简称)表示省份、直辖市区;第二个字母:D县市、地市。

如车牌:粤S﹒V0977(广东省.东莞市)又如粤A1083(广东省.广州市)

六、图书标识码:(每一本图书都有一个唯一的标识代码)

如:标识码ISBN7—107—10549—61、ISBN(图书标识代码的英文写法),它由10个数字组成,前9个数字分成三组,分别表示组号、出版社号和书序号,最后一个数是校验码。

如:我们使用的数学课本标识码是:ISBN7—107—18617—5

组号 出版社号 书序号 校验码

注ISBN是国际标准标志(世界规定),如我们的数学课本中的“7”是组号表示(中国),“107”表示出版社社号(人民教育出版社)。

另:一些我们学过的单位名称与进率 货币单位与进率有: 1元=10角,1角=10分,1元=100分 长度单位与进率有:1千米=1000米,1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米。重量(质量)单位与进率有:1吨=1000千克,1千克=1000克 面积单位与进率有:1平方千米(平方公里)=100公顷,1公顷=10000平方米,1平方米=100平方分米,1平方分米=100平方厘米,1平方厘米=100平方毫米,1平方米=10000平方厘米,1平方千米=1000000平方米 时间单位与进率:1年有365天(平年)、366天(闰年);1年有12个月、1年有4个季度;1个季度有3个月、1个月有4个周、1个星期有7天;1天=24小时、1小时=60分、1分=60秒、1小时=3600秒、1世纪=100年; 另:一些简单的平方数:

1×1=12×2=43×3=94×4=165×5=257×7=49

8×8=646×6=369×9=8110×10=1000.5×0.5=0.251.2×1.2=1.4430×30=90090×90=81000.31×0.31=0.0961

下载五年级数学上册教学知识点word格式文档
下载五年级数学上册教学知识点.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学五年级数学上册复习教学知识点归纳总结

    小学五年级数学上册复习教学知识点归纳总结 小数乘法 1、小数乘整数:意义——求几个相同加数的和的简便运算。 如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。 计算方......

    人教版五年级上册数学知识点总结

    1.邮政编码由6位数字组成,前两位代表省(自治区、直辖市); 前三位代表邮区;前四位表示县(市) ;最后两位数代表投递局(所)。 2.我国公民的身份证号码由18位数字组成,前六位是行政区划代码......

    人教版五年级数学上册期中知识点汇总

    人教版五年级数学上册期中知识点汇总第一单元小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。@计算......

    人教版小学五年级数学上册知识点范文

    五年级数学上册知识点第一单元 《小数乘法》第二单元 《小数除法》- 1 -第三单元《观察物体》第四单元 《四简易方程》第五单元《多边形的面积》第六单元《统计与可能性》第......

    最新苏教版五年级(上册)数学知识点总结

    最新苏教版五年级(上册)数学知识点总结 第一单元:负数的初步认识 0即不是正数也不是负数,正数都大于0,负数都小于0。 第二单元:多边形的面积平行四边形的面积 = 底×高 S = a h......

    人教版五年级数学上册知识点归纳总结

    五年级上学期数学知识点总结 第一单元 小数乘法 1、小数乘整数:意义——求几个相同加数的和的简便运算。 如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。 计算方法:先把......

    五年级数学上册教学

    中心小学2018——2019学年度第一学期 五(1、3)班数学上册教学计划 一、学情分析 两个班的同学,多数学生具有明确的学习目的,在平时学习比较认真、努力、主动,他们接受新知识能力......

    青岛版五年级数学上册复习教学知识点归纳总结

    青岛版五年级上学期全部知识点 第一部分:计算 涉及的单元:第一单元小数乘法,第三单元小数除法,第四单元方程 一、直接写得数: 基本算法:小数加减法—对位、小数乘法—数位、小数除......