第一篇:张齐华《圆的认识》课堂实录
张齐华《圆的认识》课堂实录
]
师:今天上课我们学什么?大声地说“学什么” 生齐:圆的认识
师:从哪里看到的?只给我看,生指屏幕
师:屏幕上有,还有呢? 师:说,哪有?
师:没错,圆片,还有吗? 生:圆规
师:没错,还有圆规。孩子们都很善于观察、善于联想。老师的信封里还有一个圆,想看看吗? 生齐:想
师出示一个信封,摸出一个圆片,师:是圆吗? 生:是
师:听说咱们班的同学特别的聪明,所以,一会儿老师要把这个圆片放进信封了,让同学们把他摸出来,有没有信心? 生齐:有 师:我不会轻易的给你们这样一个简单的问题的,这里面不仅仅有着一个圆,还有其他的图形,想看看吗? 师:好,现在看谁的反应最快? 师从信封里摸出一个长方形 生:长方形
师:男孩的反应快,状态也不错。师从信封里摸出一个正方形 生:正方形
师:还有一个图形
师从信封里摸出一个三角形 生:三角形
师:猜猜还有吗?
师从信封里摸出一个平行四边形 生:平行四边形
师从信封里摸出一个梯形 生:梯形
师:行了行了,孩子们,都别你们猜到了。教师课件演示各种图形,师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗? 生齐:没有 师:为什么?
生:因为圆是由曲线围成。师:而其他图形呢?
生:都是由直线,哎!线段围成。师:同意吗?
师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么? 生:角
师:圆有角吗? 生:没有。
师:所以圆特别的? 生:光滑 师:说的真好
师:数学上,我们把左面的这些由线段围成的图形给它个名称:直线图形。(课件演示)孩子们,圆是由什么围成的? 生齐:曲线
师:给它一个名称。生:曲线图形
师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难? 生齐:不难。
师:谁让你们聪明呢?还有难的。师出师一个不规则图形
师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来? 生齐:不会 师:为什么?
师:有的同学说,因为它有的地方凹,有的地方凸。而圆怎么样?显得特别的饱„„,说出来,特别的„„ 生齐:饱满
师:嘿!瞧,还有一个 师出示一个椭圆,师:看,没有凹进去的地方了吧?看上去有光滑,有饱满,你们待会儿会不会也把它也当作圆给摸出来? 生:不会,师:为什么?
师利用学具演示,师:因为它这样看上去扁扁的,这样看上去„„ 生:瘦瘦的
师:瘦瘦的。圆呢?
教师出示圆形教具,转动。师:怎么样? 生:一样
师:怎么看到的一样?
师:好了孩子们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?
行,就你吧,近水楼台
师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗? 生:看不见了
师:看不见,就让他一个人在里面摸多没意思呀。所以我请你闭上眼睛,我把图形一个一个往你手上放。你要是感觉是就大声地喊一声“是”,要是觉得不是„„ 生:不是 师:可以吗? 生齐:可以
师:你闭上眼睛,你能做到吗?其他同学你们能出声吗? 生:不能
师:对,不能提醒。但是可以做一件事情,当你认为他的判断正确的时候,可以大声的喊一声“对”,给它鼓励一下,ok? 生齐:ok!
师:好,伸出你最拿手的一只手,右边,准备好了吗? 生:准备好了 生1:不是.师:对不对? 生:对.生1:不是.师:对不对? 生:对.生1:更不是.师:瞧,这更字用的多好.生1:更不是.师:小家伙厉害.生1:不是.生:对.生1:是.生:对.师:掌声鼓励一下.圆是曲线图形
可是和下面这些凹凸的或者椭圆这样的曲线图形相比,圆看起来又是那样的饱满,那样的光滑,那样匀称.2000多年前,伟大的数学家毕达哥拉斯赞美”在一切平面图形中圆最美”, 画圆
张老师发现绝大多数的同学画的都非常的好,不过也不排除有个别同学到现在也没画完,有个别同学画完了,可似乎还有缺口,明明是这样画的,可是怎么就绕不回去了呢?聪明的孩子猜一猜,他们之所以没有成功的画一个圆,你们觉得可能是哪里的问题,生2:我认为是圆的半径变了.师:半径是个新词,我们用圆规来说,院的半径变了,也就是画圆的时候,量角的距离变了.在画圆的过程中能不能改变? 生:不能.师:除了这个地方改变以外,还有那些地方不能动? 生3:圆心改变了.师:在画圆的过程中,针不能改变.画圆看起来简单,大家琢磨一下,里面还是有学问的.下面我们把刚才大家提出的建议综合起来,手握柄,中间扎的地方固定,两角的距离不能变,三个要素综合起来,轻轻的绕一圈,圆就画出来了.孩子们,掌握了这三要素,有没有信心,比刚才画的又快又好? 生:能.师:先别动笔,边画边思考.圆和什么有关系? 生:圆心和半径.师:我知道你们说的半径是什么意思?
谁能到前面来,说说哪个距离是不变的?其他的孩子要注意观察 生4(到黑板前画出远的半径)师:对不对? 生:对.师:同学们,可千万不要小看这条线段,在圆中,这条线段有着特殊并且很重要的地位,我发安闲,刚才这位同学画完圆以后,还擦了擦,对这两条线段似乎有特殊的要求,大家来看一下,一端在哪里? 生:圆心.师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示? 生:O.师:请在你刚才画的圆上,标出圆心,写出字母O.继续看这条线段,圆心的另一端在哪里? 生;圆上.师:象这样,连接圆和圆上两个点的线段,叫做半径.半径可以用小写字母r来表示,现在画出一条半径,写出字母r.刚才我发现哟个同学,上次画的非常快.刻画司这次画的非常慢,你们知道是什么原因吗?不知道是他没有听清楚,还是自己在想办法,在琢磨.因为我们画的是一条圆的半径,他画的是四条,我们想一想:一个圆里只有一条半径吗? 生:不是.师:那有多少个? 生:无数个.师:数学重要的不是结论,最怕的是哪三个字,你们知道吗? 生;不知道.师:不知道不怕,怕的是别人说这三个字:为什么?
我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续思考.生5:因为圆是一种曲线图形,它的表面非常平滑,所以半径有无数条.师:因为平滑,所以有无数条.生6:因为圆心到圆上的距离全部相等
生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点? 生:随便
师:请问,在圆上有多少个这样随便的点? 生:无数.师:有无数个点,就对应无数个半径.所以孩子们,在学习数学时,不能只图于表面,要问自己三个字? 生:为什么? 师:现在边看我的板书,边思考问题,既然圆有无数条半径,那么它的长度怎么半呢? 生:相等.师:同意的请举手,我的三个字又来了.生:为什么.师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具? 生:圆规.师:还有尺寸,尺寸让你们用来干什么的? 生:量.师:现在就动手量一量.虽然是有无数条,但是我们不必全都量,找几条代表一下就可以了.同学们,刚才我们画一画,量一量,在你们的圆中,半径都相等的请举手.有没有同学说,老师我不用画,不用量也知道,有吗? 生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.孩子们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.生:半径有无数条,长度都相等,都一样.师:其实早在2000多年前,中国古时候的哲人也对这个问题进行了研究,你们猜他们的出结论了吗? 生:得出来了.师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,如果画错的话,也不要客气,大声喊错.看看谁的胆子最大.生:错.师:我还没有画呢,聪明的孩子不看结果,看过程就知道了,画直径要通过圆心,概括一下,通过圆心,并且两端都在圆上,这样的饿线段才叫直径.可以用小写字母d来表示,现在请画出圆的直径,并用小写字母d来表示.孩子们,数学学习,除了问刚才的三个字为什么以外,还要善于联想,不要一切都从头在来,.刚才我们已经证实了半径,知道它的特点:半径有无数条,而且都相等.那直径呢? 生:也有无数条,直径都相等.师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?
除了六个举手的同学以外,其他同学可不恩能够丧失一次思考的机会呀.带工具了吗,一起来画一画.通过画一画,量一量,我们发现圆里的直径的长度都是一样的.有没有同学说我不量也知道这个结果? 生9:因为我们知道所有的半径都相等.师:聪明的眼睛看出的不一样,我们看这条线段,看出的是一条直径,他除了看出一条直径以外,还看到了两条半径,一条直径包含两条半径,而所有半径的长度相等,所以直径也相等.我们又一次借助推理,完成了直径的发现.刚才这个男同学,不仅告诉我们为什么直径相等,还给我们带出了一个新的结论,在同一个圆里,直径和半径有关心吗? 生:有.直径是半径的二倍.师:这样描述太复杂了,用简洁的数学语言来描述好吗?也就是d=2r,就这样.两个字母加一个数字,我们刚才的结果就出来了.我们刚才学习了圆心,半径,直径,而且半径和直径有无数条,长度相等.我们试想一下,在同一个圆里,如果它们的半径不是都相等的,而是有的长,有的短,那你觉得最后连起来的还是一个圆吗?还可能光华饱满匀称光华饱满匀称吗?想一想是什么原因,使圆看起来那样光华饱满匀称? 生:半径和直径都相等.师:很准确.是半径的长度都相等.在一个圆里有无数条半径,长度都相等,所以才使圆看起来光华饱满匀称,圆的美通过研究终于在这里找到了.有人会说在同一个图形中,具有等长线段的又不是只有圆一个,你们相信吗?我们来看一下,这是一个正三角形,从中心出发,连接三个顶点,这三条线段一样长,这样的线段有三条.正方形有几条? 生:四条.师:正五边形,有几条? 生:五条.师:正六边形? 生:六条.师:正八边形? 生:八条.师:圆形? 生:无数条.师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟思考的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜想,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,如果正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最
的地方和曲线图形圆交融在一起.现在把张老师给你们准备的圆拿出来,哪个女孩子一直在观察,看这个圆是否有圆心,肯定有,只是我没有标,请看大屏幕,这是一个半径()厘米的圆,聪明的你们能量出它的半径吗?看看谁能想到好办法?同伴合作,开始.这边的同学量得的半径是5厘米.这边也是5厘米,这边是4厘米,这边是3厘米,大家请思考,张老师画的圆很奇怪,居然有的是半径3厘米,有的是4厘米,有的是5厘米,那半径不同,你就想象一下,圆的大小一样吗? 生:不一样.师:半径几厘米的圆比较大? 生:5厘米.半径几厘米的圆比较小? 生:3厘米.师:现在把所有的圆举起来,看看,思考一个问题,圆的大小和谁有关? 生:半径.师:虽然量出来了,可是我要看看是怎样能够量出来的?谁愿意给大家交流一下,你是怎样量出半径的? 生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.师:在三年级的时候,我们也学过对折,这就说明圆是一个轴对称图形,折线就是它的对称轴.圆有无数条对称轴,这名同学是对折两次,那么对折一次是否可以量出? 生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.师:有的同学是通过量得出的结果,虽然比我们刚才说的方法都在混却,但是在数学学习过程中,要先尝试,在调整,其实也是一种可行的方法.嘎嘎年菜有个女孩子悄悄的问我,张老师,你这个圆怎么就没有针眼呢?那没有针眼,想一想,我这个圆是用圆规画出来的吗? 生:不是.师:那就奇怪了,张老师不用圆规,是哟功能什么办法画的圆呢? 生12:用一个碗扣在白纸上,描一下.师:有可能,但不是.生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.师:人造圆规.生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.师:这个方法至少给我们开拓了思路,他用的是三年集学的轴对称图形的知识,也可以,很善于思考.可是你们都猜错了,正确的答案是用电脑画的.但是我们发现用电脑画圆的的大小太随意了,怎么能更好的画出半径是3厘米,4厘米或者5厘米呢?看,双击一下,对于圆来说,高度就是直径.如果我要画一个半径3厘米,那高度就是6厘米,不对呀,怎么变成椭圆了? 生15:少了宽度.师:多精明的孩子呀!所以光有高度还不行.还要有宽度,宽度也要是6厘米,我再按一下回车,就出来一个半径是3厘米,直径是6厘米的圆.我们来看一下是不是这样的.概括一下,画圆的方法,只有圆规一种吗? 生:不是.师:可以是多种多样的,在所有画圆的方法中,有一种是最最基本的,是圆规.假如张老师非要用圆规画一个半径是5厘米的圆,你觉得我的两角应该张开有多大? 生:5厘米.师:4厘米呢? 生:4厘米.师:如果半径是3厘米,那么直径呢? 生:6厘米.师:是不是我把圆扯开6厘米,就可以画圆了/ 生;不是.要扯开3厘米.师:所以圆规两角张开的距离是半径,回顾一下,今天我们一起认识了圆,又近一步感受了圆的特别,其实圆、还有一个更特别的地方,我们一起来看大屏幕:这是一个正三角形,现在我们把它的中心点稍微选中一下,结果发现和原来的三角形没有完全吻合.现在来看看圆,饶着中心旋转,随便怎样转,都能吻合.数学上我们把圆的这个特点叫做旋转不变性.那三角形有旋转不变性吗? 生:没有.师:如果我们照这样的角度继续望下转,你会发现什么奇怪的现象? 生:近似一个圆, 师:想一想,刚才我们旋转的是什么呀? 生:中心.师:如果不用中心旋转,就不行.这里有一个正方形,饶这个顶点来旋转,不知道行还是不行?一边观察,一边思考,能转成一个近似的圆吗?所以可以知道正方形,三角形,绕着一边,随便旋转,都可以得出一个近似的圆.一条线段绕中点旋转,请同学们仔细盯着线段的两个端点,看它的运动结束以后,成了一个什么? 生:圆.师:其实就是特定的点运动的轨迹.今天我们还接触了什么平行四边形,梯形,甚至是任意的区别行等等,那么它们绕某一点旋转,能出现圆吗?回家去试试,也许一幅一幅美伦美幻的图形就在你们的手下诞生了,到时别忘了带给咱班的数学老师和其他同学一起去交流和欣赏.
第二篇:认识负数 张齐华 课堂实录(模版)
认识负数教学设计
T::现在我想叫出每个人的名字,请把你的名字写在纸条上,放在课桌右上角,最近老师总是忘记字,请大家写上拼音。
T:今天我们学习一种新的数类,叫做负数。有谁见过负数?在哪里?(预设)S:电梯;温度计、、、T:电梯按钮去1层以下的,温度计上0度以下都用负数来表示;…… T:好,谁能在图里面写上负数(叫5个学生)记住,尽量写跟别人不一样的;(学生写负数)
T:好的。谁能来说说负数有什么特点?(预设)S:数字前面有减号(负号)
T:有人认为这是减号;有人认为这是负号。其实,这个符号在运算过程中是减号,在单独的数字上则是负号。T:除了这个特点,还有吗?(预设)S:负数都要比0小。
T:好的这位同学不紧看到了负数的表面,还看透了负数的本质。透过现象看本质,火眼金睛。谁能来总结一下负数的特点。(预设)S:负数有负号而且比0小。T:说的不错。谁能再来说一下;(预设)S:负数有负号而且比0小。
T:恩,说的真不错。好,同桌之间说一说。说完以后再纸上写上负数。(学生说)
T:既然有负数,那么相对的,肯定有(S:正数)
T:谁能上来写一下正数,一人写一个,有没有跟他们不一样的(直到学生写+)
T:我也写个数,0,认为是正数的请举手;认为是负数的请举手;没有举手的请举手,好,你来说一下为什么不举手?
(预设)S:0既不是正数,也不是负数。T:为什么呢?也就是说正数要怎么样?(预设)S:正数都要比0大。
T:好的,那我这个0应该写在哪里?边上?还是中间?(预设)S:中间
T:写大点,还是写小点?(预设)S:大点
T:好我们来看这些同学写的数,有什么不一样?
(预设)S:有正号(T:+号在运算中是加号,在单独的数字上则是正号)T:那不写正号还是正数吗?(预设)S:是。
T:既然可以不写;为什么有时候要写上呢?(预设)S:为了看起来方便。
T:看来有没有正号不是正数的关键;那你认为,正数的的共同特点是什么?(预设)S:比0大。
T:好的。刚才说到0,0除了表示数,还能表示什么?(预设)S:表示起点。
T:好的,这是数轴(PPT出示数轴),负数应该写在0的哪边?(预设)S:左边。
T:(PPT数轴显示负数)没有负数的时候,数轴是一条什么线?(射线)有了负数呢?(直
线)而这个0就是他们的(分界点);
T:(出示PPT5个-2)这里有5个-2,四人小组讨论下,然后把这里-2的意思按你的跟同学说一说。
T:某盆地的海报高度是-2.我们先来看第一个-2,谁已经理解盆地海拔-2米的请举手,先给大家介绍一下海拔?听懂的请举手,掌声送给他。(PPT出现海拨)盆地在哪里?这个盆地是要比什么还要低?为了准确的表示某一个地方的高度,我们都把海平面所在的高度看成什么?(0米)好,现在谁能换句话说说某盆地的海报高度是-2米,是什么意思? 好,下面郑老师随便点一个地方,你觉得它的海拔高度是正数还是负数?有谁知道我们地球上最高的海拔高度在哪里吗?最低的呢?这2个数一正一负,分别表示什么含义,你能不能,结合海平面来具体的说一说,同桌一人说一个
T:北京最低气温-2,第二个-2,这是温度计,画的好不好?对不对?确定吗?很坚决,那好,我也带了了4个温度计,大家找找哪个才是真正的-2°。同意第一个举手……
千万不要看他是0下面一格就是-2摄氏度。来说说这些是几度? T:张老师把车停在-2楼。第三个-2,楼房中什么是0?(预设)S:地面
T:(第四个-2,我的银行卡还剩-2,PPT显示)这个专业术语叫透支。想知道张老师为什么卡里还剩2快钱吗?(PPT显示)我的银行卡还剩98元,买电影票用去100,还剩(),买爆米花又刷去10元,还剩()。回到银行,赶紧给卡里冲了100元,现在卡里还剩()。
T:张老师的儿子高-2cm,到底是什么意思?
T:(PPT出售我国10岁男孩的平均身高约是140cm)现在知道-2cm是什么意思了吗?谁来说一下?
(预设)S:比平均身高矮2cm T:在这里我们把哪一个身高看做了0,如果用140cm做标准,我每指一个人,看你能不能理解他真正的身高是多少?这里有一个人的身高很标准,谁?因为他是0,正好是平均身高(+3,143;-2,138;-4,136)看来身高能成为负数,那体重能不能成为负数? T:我们在做这些题目的时候都在找一个数,是什么?(预设)S:0 T:我们现在回顾一下,这里的5个负数都是用谁当做0的?看谁反应快,我就知道谁今天掌握的做好。T:这些0都一样吗?(预设)S:不一样。
T:是的,有的时候0是约定俗成的,有的时候是要去规定的。
第三篇:张齐华圆的认识学习体会
大学区名师讲座学习体会
听完名师讲座,感触颇深,教会了我们很多东西。张齐华老师的《圆的认识》,上课前,老师先让学生在纸上用圆规画几个大小不同的圆。老师规定时间,看谁画的多又好。教师展示学生的图纸,问学生是如何画出这么多大小不同的圆的?通过学生的汇报,引出了半径的含义,是继续深入提问:通过刚才的学习,什么决定了圆的大小?教师整节课,都是围绕学生开始画的不同的圆展开的。
对于张齐华老师的课,自己记忆最深刻的是后面的练习,猜谜语。老师课件出示线索:半径15cm,它是什么?学生回答:乾县锅盔,锅盖。老师开玩笑说,自己遇到了一群吃货孩子。学生继续猜:篮球(它是球,圆是平面图形,要切开),平底锅(师说:盖和锅你两可以凑一锅),教师的语言风趣幽默,敢于和学生开玩笑,个课堂气氛活跃,调动了每个学生的积极性。教师提醒说,是教室很常见的(钟表)。张齐华老师在学生答出钟表后,提问:4人小组讨论,除了大圆,你还可以找到哪些圆?教师通过学生的回答,一步步引导,让学生找到了钟表上动态的圆,把时针、分针或秒针转一周就能得到一个圆。同样是练习,张齐华老师通过先让学生猜,再找一找的活动,活跃了学生的思维。
第四篇:张齐华圆的认识
圆的认识教学设计
教学内容:人教版小学数学六年级上册第五单元 教学目标:
知识与技能:通过观察、操作等活动认识圆,理解圆心、半径、直径的意义,掌握圆的特征,理解同一个圆里(或等圆)半径与直径的关系。
过程与方法:让学生了解、掌握画圆的多种方法,初步学会用圆规画圆;转变学生学习的方式,培养学生观察、分析、概括等思维能力和初步的空间观念。
情感态度与价值观:通过观察、操作、想象等活动,培养学生自主探究的意识,进一步发展学生的空间观念。让学生体验到圆在日常生活中的应用并感受到圆的美。教学重难点
教学重点:在探索中发现圆的特征。
教学难点:掌握在同一圆中,圆的直径,半径之间的关系,特点,及如何用圆规画圆的正确操作。
教法学法:通过观察思考,合作交流,质疑引导,教学准备:圆规,直尺,瓶盖,画有圆心的纸,大小不同的圆 教学过程: [一]情境导入 师:(出示生活中的圆)见过平静的水面吗,(见过。)如果我们从上面往下丢进一颗小石子(播放动态的水纹,并配以石子入水的声音),你发现了什么?
生:(激动地)水纹、水纹、圆„„(声音此起彼伏)
师:其实这样的现象在大自然中随处可见,让我们一起来看看。(阳光下绽放的向日葵、花丛中五颜六色的鲜花、光折射后形成的美妙光环、用特殊仪器拍摄到的电磁波、雷达波、月球上的环形山等画面一一展现在学生的眼前,见图①)从这些现象中,你同样找到圆了吗? 生:(惊异地,慨叹地)找到了。
师:有人说,因为有了圆,我们的世界才变得如此美妙而神奇。今天这节课,就让我们一起走进圆的世界,去探寻其中的奥秘,好吗? 生:(激动地)好![二] 探究新知 活动一,找宝藏
师:那么老师有一个问题同学们喜欢玩游戏吗?今天老师邀请了一位小朋友和大家来玩游戏
生:喜欢。
师:这个游戏的名称呢就是找宝藏,(PPT出示游戏内容)。
宝物在距小明左脚3米处,请大家一起找找宝物的位置,并在纸上画出来。
展示学生找出宝物的位置,并让学生总结出宝物有可能出现的全部位置
师;(PPT出示宝物位置,并最终得到一个圆,是宝物有可能出现的位置)引出课题,本节课我们就一起来认识圆。
PPT展示寻宝游戏中的智慧1、2、上)
3、这样讲呢?(宝物在以左脚为圆心的圆上)描述宝物所在的位置。(引出半径、圆心等要素)这样讲能找到宝物吗?(宝物在以3米为半径的圆总结:先确定圆心再固定半径长度是确定圆的必要条件,圆心确定圆的位置,半径确定圆的长度。
自学课本关于圆的相关概念。(半径,直径等)
4、师:俗话说,“没有规矩,不成方圆”。意思是说,如果没有圆规,是画不出圆的,老师也看到大部分同学都准备了圆规,你能试着用它在白纸上画出一个圆吗? 生:能。
出示图示画圆的动态图,并标明圆的圆心,半径,直径。(学生尝试用圆规画圆,交流,明确圆规画圆的基本方法。)师:可要是真没有了圆规,比如在圆规发明之前,我们就真画不出一个圆了吗? 生:不可能。师:今天,每个小组还准备了很多其他的材料。你能利用这些材料,试着画出一个圆吗? 生:能。
(学生以小组为单位,利用手中的工具和材料画圆。)
师:老师发现,每个小组都有了各自精彩的创造。让我们一起来分享。(教师尽可能多的介绍学生的方法,并向学生介绍自己知道的方法)[三]研究,交流,展示
师:学到现在,关于圆,该有的知识我们也探讨得差不多了。那你们觉得还有没有什么值得我们深入地去研究? 生:有(自信地)。
师:说得好,其实不说别的,就圆心、直径、半径,还蕴藏着许多丰富的规律呢,同学们想不想自己动手来研究研究?(想!)同学们手中都有圆片、直尺、圆规等等,这就是咱们的研究工具。待会儿就请同学们动手折一折、量一量、比一比、画一画,相信大家一定会有新的发现。两点小小的建议:第一,研究过程中,别忘了把你们组的结论,哪怕是任何细小的发现都记录在学习纸上,到时候一起来交流。第二,实在没啥研究了,别急,老师还为每一小组准备一份研究提示,到时候打开看看,或许对大家的研究会有所帮助。
(随后,学生们以小组为单位,展开研究,并将研究的成果记录在教师提供的“研究发现单”上,并在小组内先进行交流)
师:光顾着研究也不行,我们还得善于将自己的发现和大家一起交流、一起分享,你们说是吗?(是)下面,就让我们一起来分享大家的发现吧!
生:我们小组发现圆有无数条半径。师:能说说你们是怎么发现的吗?
生:我们组是通过折发现的。把一个圆先对折,再对折、对折,这样一直对折下去,展开后就会发现圆上有许许多多的半径。
生:我们组是通过画得出这一发现的。只要你不停地画,你会在圆里画出无数条半径。
生:我们组没有折,也没有画,而是直接想出来的。师:噢?能具体说说吗?
生:因为连接圆心和圆上任意一点的线段叫做圆的半径,而圆上有无数个点(边讲边用手在圆片上指),所以这样的线段也有无数条,这不正好说明半径有无数条吗?
师:看来,各个小组用不同的方法,都得出了同样的发现。至少直径有无数条,还需不需要再说说理由了? 生:不需要了,因为道理是一样的。师:关于半径或直径,还有哪些新发现?
生:我们小组还发现,所有的半径或直径长度都相等。师:能说说你们的想法吗?
生:我们组是通过量发现的。先在圆里任意画出几条半径,再量一量,结果发现它们的长度都相等,直径也是这样。
生:我们组是折的。将一个圆连续对折,就会发现所有的半径都重合在一起,这就说明所有的半径都相等。直径长度相等,道理应该是一样的。
生:我认为,既然圆心在圆的正中间,那么圆心到圆上任意一点的距离应该都相等,而这同样也说明了半径处处都相等。
生:关于这一发现,我有一点补充。因为不同的圆,半径其实是不一样长的。所以应该加上“在同一圆内”,这一发现才准确。师:大家觉得他的这一补充怎么样? 生:有道理。
师:看来,只有大家互相交流、相互补充,我们才能使自己的发现更加准确、更加完善。还有什么新的发现吗?
生:我们小组通过研究还发现,在同一个圆里,直径的长度是半径的两倍。
师:你们是怎么发现的? 生:我们是动手量出来的。生:我们是动手折出来的。
生:我们还可以根据半径和直径的意义来想,既然叫“半径”,自然应该是直径长度的一半喽„„ 师:看来,大家的想象力还真丰富。
生:我们组还发现圆的大小和它的半径有关,半径越长,圆就越大,半径越短,圆就越小。
师:圆的大小和它的半径有关,那它的位置和什么有关呢? 生:应该和圆心有关,圆心定哪儿,圆的位置就在哪儿了。生:我们组还发现,圆是世界上最美的图形。师:能说说你们是怎样想的吗?
生:生活中,我们到处都能找到圆。如果没有了圆,我们生活的世界一定会缺乏生机
生:我们生活的世界需要圆,如果没有了圆,车子就没法自由的行驶„„
[四]拓展提升
师:其实,早在二千多年前,我国古代就有了关于圆的精确记载。墨子在他的著作中这样描述道:“圆,一中同长也。”所谓一中,就是指一个―― 生:圆心。
师:那同长又指什么呢?大胆猜猜看。生:半径一样长。生:直径一样长。
师:这一发现,和刚才大家的发现怎么样? 生:完全一致。
师:更何况,我古代这一发现要比西方整整早一千多年。听到这里,同学们感觉如何? 生:特别的自豪。生:特别的骄傲。
生:我觉得我国古代的人民非常有智慧。
如下的画面一一展现在学生眼前:生活中的圆形拱桥、世界著名的圆形建筑、中国著名的圆形景德镇瓷器、中国民间的圆形中国节、中国传统的圆形剪纸、世界著名的圆形标志设计等等,师:感觉怎么样? 生:我觉得圆真是太美了!
生:我无法想象生活中如果没有了圆,将会是什么样子。生:生活中因为有了圆而变得格外多姿多彩。„„
师:而这,不正是圆的魅力所在吗?
车轮为什么是圆的?............
第五篇:圆的认识教学设计--张齐华
“圆的认识”教学设计
南京市北京东路小学 张齐华
一、教学目标
1.引导学生在观察、画圆、测量等活动中感受并发现圆的有关特点,知道什么是圆心、半径和直径,能用圆规画指定大小的圆。
2.在活动中,感受圆与其它图形的区别,沟通它们的联系,获得对数学美的丰富体验,提升学生对数学文化的认同。
二、教学线索
(一)在活动中整体感知
1.思考:如何从各种平面图形中摸出圆?
2.操作并体会:圆与其它图形有怎样的区别?在交流中整体感知圆的特征。
(二)在操作中丰富感受 1.交流:圆规的构造。
2.操作:学生尝试画圆,交流中归纳用圆规画圆的一般方法。3.体会(学生第二次画圆):如果方法正确,为什么用圆规画不出其它的曲线图形?
4.引导(教师示范画圆):使学生将思维聚焦于圆规两脚之间的距离,体会到圆规两脚距离的恒等,恰是“圆之所以为圆”的内在原因。
(三)在交流中建构认识
1.引导:引导学生将上述距离画下来,由此揭示圆心及半径,进而介绍各自的字母表示。
2.思考:半径有多少条、长度怎样,你是怎么发现的?
3.概括:介绍古代数学家的相关发现,并与学生的发现作比较。4.类比:学生尝试猜直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。
5.沟通:圆的内部特征与外部形象之间具有怎样的有机联系?
(四)在比较中深化认识
1.比较:正三角形、正方形、正五边形„„中类似等长的“径”各有多少条?圆的半径又有多少条?
2.沟通:这些正多边形与圆这一曲线图形之间又有着怎样的内在联系?
(五)在练习中形成结构
1.寻找:给定的圆中没有标出圆心,半径是多少厘米? 2.想像:半径不同,圆的大小会怎样?圆的大小与什么有关? 3.猜测:不用圆规,还可能怎样画出一个圆?在交流中进一步丰富学生对半径、直径之间关系的认识。
4.沟通:用圆规如何画出指定大小的圆?
(六)在拓展中深化体验
1.渗透:在与直线图形的对比中,揭示圆的旋转不变性。2.介绍:呈现直线图形旋转后的情形,再一次引导学生感受圆与直线图形的联系,体会圆与旋转的内在关联,丰富对圆这一曲线图形内在美感的认识。