第一篇:关于半抗原制备的小结
关于半抗原制备的小结
小分子抗原现在做的最多的是农药和兽药,这方面的文献也很多。以前查过一些材料,作者觉得小分子抗原能否制备出高性能的单克隆抗体主要以下几点决定。
1、对于半抗原结构的选择,如果待测物本身含有NH2,COOH,OH等活性基团,可以利用待测物活性基团加入间隔臂,然后联入载体蛋白就可以成功合成人工抗原,制备特异性良好的抗体。但大部分待测物上并不含有活性基团或活性基团对药物的特异性和极性影响很大,所以大部分用于人工抗原合成的半抗原要经过改造或从头合成。例如在关于有机磷农药倍硫磷的免疫检测方法的研究中,半抗原物的获得采用的合成方法并不是从倍硫磷开始合成,而是采用另一途径,从起始物重新合成,这样反而能取得较好的效果,这一点对于制备具有多残留检测能力的抗体来说更为重要,只需合成出几种待测药物共有的结构就有可能制备出具有多残留检测能力的抗体。
2、待测物本身的结构有时对建立方法的性能有很重要的影响,在分子量在111-1202Da的化合物制备的单克隆抗体的亲和系数的试验中,半抗原的分子量在334–374Da之间时,制备的单克隆抗体具有很高的亲和系数。但当要检测的小分子化合物的分子量小于300Da时,产生具有良好灵敏度和特异性单克隆抗体的可能性下降。这说明药物的分子量是影响抗体性能的重要因素。同时待测物的结构对于制备人工抗原的难易程度有重要影响,有些半抗原经过理论分析能制备出高质量的抗体,但从化学合成的角度,这些化合物可能是合成不出来的或工艺过于复杂,所以半抗原结构能否合成出来,也是半抗原结构设计过程中要考虑的问题。
3、如果待测物结构过于简单,可能也是不能建立免疫检测方法的。待测物的结构最好含有特征性的环状结构或侧链结构,甚至含有杂原子,都能够增加制备出高质量抗体的可能性。在对脂肪酸类物质制备抗体的试验中,对于脂肪酸类物质来说,如果含有两个以上的羰基,及与蛋白偶联之后还有多余的羰基增强亲水性,同时酰基的不饱和双键和极性的头部结构都可以做为B细胞的抗原决定簇,可以将其他抗原性很弱的部分变成强抗原性。再者如果脂肪酸含有平面结构,也可以作为抗原决定表位,使产生特异性的抗体。这说明小分子的极性以及不饱和键,苯环结构都可以增强抗原性,简单的直链结构很难产生特异性很强的抗体,这也是一般选用直链作为间隔臂的原因。直链碳链本身的抗原决定性很差,不会产生针对间隔臂的抗体。
4、合成人工抗原的过程中,即使半抗原绝大部分的官能团与待测物都是一致的,它也可能在联入蛋白载体的过程中受到屏蔽作用。小分子药物在与载体蛋白连接的部位很容易受到屏蔽。从而产生的抗体就会丧失对那些屏蔽基团的特异性。确定半抗原不受蛋白的屏蔽作用在人工抗原合成中非常重要,解决这一问题的最佳方法就是联入间隔臂。
5、间隔臂的连接位点的选择对于抗体质量至关重要,最好不要影响小分子化合物中特征性的基团暴露于免疫B细胞的抗原表位,这也是待测物本身的羧基,氨基一般不能直接联入间隔臂,因为这些基团对小分子药物的电性和极性影响非常大。而且引入的间隔臂不能影响主要基团的电子分布,例如苯环和其他杂环类的电子分布,这就要求间隔臂的极性和能量要低,将对小分子药物的电子排布和空间结构的影响降到最低,从这个角度来说,低能量的直链间隔臂是最佳的选择。联入间隔臂的半抗原的电子分布与目标待测物的电子特性一致性对抗体针对待测物的特异性至关重要。
6、半抗原间隔臂的连接位点,最好选择极性较低且远离半抗原的特征性结构。如果待测物的极性较高,半抗原合成的过程中最好保持其与目标待测物极性的一致性。人工抗原具有较高的极性,对于引发免疫反应有重要作用。在结构3Bentazon的抗体制备过程中,有三个介入位点。异丙基远离杂环,是联入间隔臂的理想位点,可以最小程度的改变待测物的物理和化学特性。但异丙基是这物质的特异性基团,对于保证制备抗体的特异性很重要,所以不能选择这个位点。
7、Bentason II位的亚氨基具有很强的极性,如果间隔臂联入这个位点极性将会消失。这种化合物的衍生物大多为非极性,如果要制备多残留的抗体,增加交叉反应率,这个位点将是理想的间隔臂介入位点。但对特异性要求高的抗体制备,就必须要保证半抗原的极性,所以对于高特异性的抗体制备来说,这一位点也不适合连入间隔臂。在III位介入直链的间隔臂,可以保证与待测物极性的一致,而且中性的多甲基直链对杂环的电子排布影响也较小。试验结果显示II,III联入间隔臂制备的抗体对Bentason的灵敏度很差,但是对II位氨基衍生的样品的灵敏度高于目标待测物,说明衍生物的非极性是灵敏度高于原形Bentason的原因。这也与MQCA抗体对原型药物识别能力较差,但对丁胺衍生后的样品具有高灵敏度的实验结果相一致。说明半抗原与待测药物电荷状态的一致性,在这些极性很强的药物小分子免疫残留检测方法中要重点考虑。但III位接入间隔臂的人工抗原制备的抗体的灵敏度与预期不一致,这可能因为再III位联入间隔臂时,间隔臂上面自由的羧酸基团可能与II位自由的氨基发生偶联,所以III位联入间隔臂的人工抗原的极性与目标待测物不一致,这也是抗体对目标待测物识别能力较差的原因。在Eva M.Brun等(2004)的实验中,根据待测物杀螟松的结构设计了多种半抗原的组合,具有特异性的结构的是用椭圆标记出来的,在连接偶联臂时就要充分考虑暴露这一重要的抗原表位,研究中通过对比接入偶联臂的不同结构的半抗原,显示充分暴露该结构的F7半抗原制备人工抗原免疫动物得到的多克隆抗体,具有最好的灵敏度和效价。
8、间隔臂的介入位点,最好远离特征性的基团,而且要尽可能保存特异性较大的杂原子或带侧链的碳链结构,联入的间隔臂最好在苯环或其他杂环的碳原子上,这样可以最大程度的保证半抗原的极性与目标待测物的一致性,如果有远离大环的碳链结构,那么碳链的末端也是一个很好的介入位点,因为这样的结构对大环的电子排布影响较小。
9、除了间隔臂的接入位点以外,间隔臂本身的结构也是影响半抗原合成是否成功的重要因素。虽然半抗原接入间隔臂是必要的,但间隔臂太长会导致半抗原分子的折叠,使其更接近载体蛋白,屏蔽作用增强。一些学者认为理想的间隔臂长度是中度的3-6个直链碳原子构成,这时得到抗体的灵敏度要高于间隔臂很短的人工抗原制备的抗体(6,13,20,21),但在另外的试验中,使用零间隔臂的免疫原也得到了特异性很好的抗体。
实验中,在间隔臂介入位点为最佳的时候,当间隔臂的长度在2-6之间时,分别制备了人工抗原,在载体蛋白以及其他的免疫程序一致的条件下,不同免疫原产生的抗体在亲和能力和灵敏度方面都没有明显的差异。也说明在间隔臂长度适中的情况下,间隔臂的长度对免疫检测的灵敏度没有明显的影响。
10、间隔臂的选择,一般间隔臂要求本身不要产生针对间隔臂的抗体,而且对半抗原的结构影响要小,并且末端要含有能与载体蛋白氨基或羧基偶联的活性基团,一般为氨基,羧基,或羟基。间隔臂与小分子半抗原连接一端,最好以单纯的碳链连接,如果难以实现也要选择电性较低的连接基团,试验证明以酰胺键相连接,产生的抗体对间隔臂有很高的亲和系数.11、有试验表明当联入的间隔臂末端为羟基时,产生抗体的灵敏度要明显高于相同条件下间隔臂以羧酸基团为末端的人工抗原制备的抗体。这可能因为含间隔臂半抗原末端不同,所以与载体蛋白的偶联方式不同,所以含羟基的半抗原可以提高半抗原与载体的偶联比,并且能够更好的暴露半抗原的抗原决定簇。
12、虽然对于含多个特异性结构的大分子化合物来说,用含苯环的间隔臂或零间隔臂同样可能制备处特异性好,灵敏度高的抗体。但现在很多试验都证明,选择简单的中长度的碳链对于半抗原合成是最佳选择,也是小分子药物半抗原合成选择间隔臂的通用方法。
13、用作载体的有蛋白质类、多肽聚合物、大分子聚合物和某些颗粒,常用的有明胶、牛血清白蛋白(BSA)、人血清白蛋白(HSA)、兔血清白蛋白、卵清白蛋白(OVA)、匙孔血蓝蛋白(KLH)等。选择载体要综合考虑分子量、活性基团、溶解度及来源,价格等因素。明胶做为载体免疫原性差,需要多次免疫。匙孔血蓝蛋白(KLH)价格昂贵,虽然免疫原性强,但它激发的B淋巴细胞克隆中针对自身抗原决定簇的多,相对减少了针对半抗原的B淋巴细胞克隆,增加阳性克隆筛选的难度和工作量。一般认为,用与免疫动物亲缘关系较远的蛋白作为载体可能会更好,BSA与HSA都是良好的载体蛋白,均能刺激动物产生特异性抗体,并且BSA、HSA和OVA这几种载体分子量适中、来源容易、价格便宜、水溶性好,故常用作半抗原载体;此外BSA、HSA和OVA都具有大量的反应基团,如氨基、羧基等,且能在水相或某些有机溶剂的混合物中充分溶解,使偶联反应可在较高浓度的反应物存在条件下进行,据报道,每分子BSA有60个游离氨基,每分子OVA有20个游离氨基(NCBI蛋白质数据库)可以和合成半抗原的羧基反应形成肽键,合成免疫原。
14、由试验表明在单克隆抗体的制备过程中,脂蛋白-Th细胞抗原决定基载体蛋白(Pam3Cys-TH)制备抗体的灵敏度高于用BSA,KLH作为载体蛋白制备的抗体,可能因为这种载体蛋白的支链更长。用BSA或KLH作为载体制备抗体的亲和力很差,因为分子在体内很快被肾脏系统消除,而新载体Pam3Cys-TH就克服了这样的问题。并且Pam3Cys-TH本身就可以做为佐剂使用,所以产生的免疫反应非常强,有利于产生高亲和力的抗体。
因为抗原展示细胞(APC)表面是带负电荷的,通常认为如果载体蛋白经过离子化处理带有正电荷,就更容易结合到带负电荷的细胞表面,能引起更强的免疫反应。
第二篇:制备蒸馏水实验
制备蒸馏水实验
1.实验目的:
1.1 初步学会装配简单仪器装置的方法;
1.2 掌握蒸馏实验的操作技能;
1.3 学会制取蒸馏水的实验方法。
2.实验原理: 蒸馏法是目前实验室中广泛采用的制备实验室用水的方法。将原料水加工蒸馏就得到蒸馏水。由于绝大部分无机盐类不挥发,所以蒸馏水中除去了大部分无机盐类,适用于一般的实验室工作。
目前使用的蒸馏水器,小型的多用玻璃制造,较大型的用铜制成。由于蒸馏器的材质不同,带入蒸馏水中的杂质也不同。用玻璃蒸馏器制得的蒸馏水含有较多的Na+、SiO等离子。用铜蒸馏器制得的蒸馏水通常含有较多的Cu等。蒸馏水中通常海涵有一些其他杂质,如:二氧化碳及某些低沸点易挥发物,随着水蒸气进入蒸馏水中;少量液态水呈雾状飞出,直接进入蒸馏水中;微量的冷凝器材料成分也能带入蒸馏水中。因此,一次蒸馏水只能作为一般分析用。
利用水的沸点较低,用蒸馏的方式与其他杂质分离开来而得到的蒸馏水。
3.实验仪器:
三口瓶、冷凝管、万能夹、变向夹、支管、回流管、铁架台、温度计、胶皮管、弯曲管、量筒、升降台、塞子、玻璃塞口、加热炉。4.实验步骤:
制备好蒸馏冷凝装置后,在三口瓶里加三分之二的水,胶管一边接自来水一边排废水,加热,沸腾后蒸馏水就会冷凝在量筒里。5.实验数据记录:
温度℃ 22 27 32 37 98 101 101 101 101 101 101 101 101 101 101
时间10:40 10:42 10:44 10:46 10:46 10:48 10:50 10:52 10:54 10:56 10:58 11:00 11:02 11:04 11:06
蒸馏出水v
0 0 0 0 第一滴 10 20 30 40 50 60 70 80 90 100
6.结果讨论:
经以上实验我得出以下结论:
水加热后以每两分钟上升5℃的速度上升至37℃,水迅速沸腾升温至98℃并且冷凝出第一滴蒸馏水,接下来温度大约在101℃左右以二分钟每10ml的速度蒸馏至100ml,本实验耗水量较大,比较浪费水资源,速度也比较慢。
第三篇:高中化学气体制备
H2S实验室制法
药品:FeS & 稀硫酸或稀盐酸
方程:FeS+H2SO4=FeSO4+H2S↑
装置:启普发生器
除杂:饱和NaHS除HCl
干燥:P2O5或无水氯化钙除H2O
收集:向上排空气法
检验:湿润的醋酸铅试纸变黑
尾气:CuSO4溶液或NaOH溶液(H2S+CuSO4=CuS↓+H2SO4)
SO2实验室制法
药品:Na2CO3 & 较浓硫酸(浓硫酸无离子反应)
方程:Na2CO3+H2SO4= Na2SO4+SO2↑+ H2O
装置:圆底烧瓶 分液漏斗
干燥:浓硫酸除H2O蒸气
收集:向上排空气法
检验:品红溶液褪色
验满:湿润蓝色石蕊试纸放于集气瓶口变红
尾气:NaOH溶液
NH3实验室制法
药品:NH4Cl & Ca(OH)2
方程:NH4Cl & Ca(OH)2CaCl2+2NH3↑+2H2O
装置:同制氧气装置
干燥:碱石灰
收集:向下排空气法(收集管口塞棉花,防止氨气与空气对流)
检验:湿润红色石蕊试纸放于集气瓶口变蓝 或 沾有浓盐酸的玻璃棒冒白烟
HNO3实验室制法
药品:NaNO3 & 浓硫酸
方程:NaNO3 & H2SO4(浓)△NaHSO4+HNO3↑
装置:曲颈甑
钠的制备
2NaCl(熔融2Na+Cl2↑
海水提镁
CaCO3(贝壳)煅烧得 CaO与水反应得Ca(OH)2
与海水中Mg2+反应得Mg(OH)2与HCl反应得MgCl2电解得Mg
第四篇:材料制备过程物理化学
“材料制备过程物理化学”研究梯队简介
梯队负责人:邢献然 教授
梯队成员:邢献然,于然波,陈骏,刘桂荣
研究方向:相图与相结构,冶金热力学与冶金过程反应机理, 负热膨胀、新型功能材料
与稀土材料制备过程物理化学
梯队简介:
材料制备过程物理化学是运用现代物理化学手段对冶金和材料制备过程的物相变化和反应机理进行深入研究,以期探讨物相在有价元素提取和功能化合物制备过程中的演变规律和复杂反应历程。主要成果如下:
1)钛铁矿(FeTiO3)高温预氧化过程复杂,国际上一直争议较大。我们通过晶体结构和热力学分析发现,攀西钛铁矿(FeTiO3)高温预氧化过程,温度是制约因素,在1100oC以上空气中预氧化8个小时,可以完全转化成纯假板钛矿(Fe2TiO5),而没有任何杂相产生。钛铁矿(FeTiO3)在氧化过程中多余的Ti随机占在4c和8f位置,形成固溶化合物(Fe,Ti)2TiO5。而(Fe,Ti)2TiO5是一种自旋玻璃态铁磁材料,实际上我们提供了一种经济、环保、大规模制备的磁性材料的新工艺。
2)在国际上率先开展PbTiO3基负热膨胀(NTE)钙钛矿材料研究。ABO3钙钛矿材料是性能丰富的功能陶瓷家族,其热膨胀调控及其与性能的关联对功能陶瓷应用至关重要。我们系统研究了从-150到1000OC时PbTiO3的热膨胀性,通过A位、B位加杂,对PbTiO3基化合物的晶体结构、电子结构、晶格动力学、电学性质、热膨胀性进行深入研究,找出TEC的变化规律,实现了热膨胀系数和铁电性质的可控制备。如我们制备出定膨胀正阻温系数的PST功能陶瓷、NTE导电陶瓷、零膨胀陶瓷等,获国家授权专利4件,发表国际论文20余篇。
3)发展了熔盐合成方法,实现了钙钛矿材料的熔盐法可控制备。通过熔盐介质、表面活性剂、前驱体等的选取,在熔体中能够大量制备出球形、方块、棒状和纤维状的PbTiO3单晶微米粉体,反应物TiO2在NaCl熔盐介质中熔解度很小,充当模板剂作用,熔盐反应机理属“模板生成”过程。提出了一种熔盐法快速制备BiFeO3纳米晶的方法,在熔体中20分钟就可以大规模合成出常规方法难以制备的高纯BiFeO3多铁性粉体材料。
4)用共沉淀、水热等方法对系列稀土功能氧化物的尺寸和形貌进行可控合成。在简单的水热体系中,成功获得了CeO2纳米八面体颗粒和一维纳米棒,机理研究发现,Na3PO4水解引起的pH值变化影响了CeO2生长习性,使零维CeO2八面体颗粒经由团聚自组装-溶解-重结晶-定向生长的过程,实现了CeO2一维纳米结构的定向生长。
第五篇:烧碱制备工艺流程
烧碱的制备工艺简介
现代工业主要通过电解饱和NaCl溶液来制备烧碱。电解法又分为水银法、隔膜法和离子膜法,我国目前主要采用的是隔膜法和离子膜法,这二者的主要区别在于隔膜法制碱的蒸发工序比离子膜法要复杂,而离子膜法多了淡盐水脱氯及盐水二次精制工序。
目前我国主要采取隔膜电解法和离子膜电解法。在这次年产五万吨烧碱工艺流程序初步设计中我采取的是隔膜法制烧碱的氢气处理方法,并简要讨论工艺中的能耗情况。原料为粗盐(含大量杂质的氯化钠),根据生产工艺中的耗能情况,将烧碱制法分为整流、盐水精制、盐水电解、液碱蒸发、氯氢处理、固碱生产和废气吸收工序等七个流程。
图1 烧碱工艺总流程示意图
1-整流
2-盐水精制 3-电解
4-氯氢处理
5-液碱蒸发
6-固碱生产
1.1整流
整流是将电网输入的高压交流电转变成供给电解用的低压直流电的工序,其能耗主要是变压、整流时造成的电损,它以整流效率来衡量。整流效率主要取决于采用的整流装置,整流工序节能途径是提高整流效率。当然减少整流器输出到电解槽之间的电损也是不容忽略的。
1.2盐水精制 将工业盐用水溶解饱和并精制(除去Ca、M g、S 04等有害离子和固体杂质)获得供电解用精制饱和盐水,是盐水精制工序的功能。一 一次盐水精制:
一次澄清盐水的制备是氯碱生产工艺至关重要的工段,精制效果的好坏直接影响产品的质量和产量。传统性的一次盐水精制工艺,采用配水、化盐、加精制剂反应、澄清、砂滤,然后再经炭素烧结管过滤器过滤。近几年新建氯碱装置一次盐水工艺大都采用膜过滤技术制取精制盐水,该工艺路线省去了砂滤器、炭素烧结管过滤器。经生产实践证明,经膜过滤分离方法制得的一次盐水质量指标、设备投资等都比传统工艺理想。所以一次精制盐水工艺采用膜过滤器过滤工艺。采用膜过滤器(不预涂)
2+2+2-
图2 盐水一次精制流程图
二次盐水精制: 二次盐水精制采用螯合树脂塔进行吸附。离子膜法电解槽使用的高度选择性离子交换膜要求入槽盐水的钙、镁离子含量低于20wtppb,普通的化学精制法只能使盐水中的钙、镁离子含量降到10wtppb左右。若使钙、镁离子含量降到20wtppb的水平,必须用螯合树脂处理。二次盐水精制的主要工艺设备是螯合树脂塔,分二塔式和三塔式流程。塔的运行与再生处理及其周期性切换程序控制,可由程序控制器PLC实现,PLC与集散控制系统DCS可以实现数据通讯;也可以直接由DCS实现控制。建议采用三塔式流程。
图3 盐水二次精制流程图
1.3电解
精制的饱和食盐水进入阳极室;纯水(加入一定量的NaOH溶液)加入阴极室,通电后H2O在阴极表面放电生成H2,Na+则穿过离子膜由阳极室进入阴极室,此时阴极室导入的阴极液中含有NaOH;Cl-则在阳极表面放电生成Cl2。电解后的淡盐水则从阳极室导出,经添加食盐增加浓度后可循环利用。
阴极室注入纯水而非NaCl溶液的原因是阴极室发生反应为2H++2e-=H2↑;而Na+则可透过离子膜到达阴极室生成NaOH溶液,但在电解开始时,为增强溶液导电性,同时又不引入新杂质,阴极室水中往往加入一定量NaOH溶液。
具体流程:由二次盐水精制工序送来的精制盐水,通过盐水高位槽,进入电解槽的阳极液进料总管。其流量由每个电解槽的自调阀来控制,以保证阳极液的浓度达到规定值。进槽值由送入每台电解槽的直流电流进行串控制。浓度31%的高纯盐酸用来中和从阴极室通过离子膜渗透到阳极室的OH-离子,盐酸经过自动调节与阳极液一起送入阳极室。精制盐水在阳极室中进行电解,产生氯气,同时NaCL浓度降低。电解槽进、出口之间的NaCL
分
解
率
为
约
50%。
每个阳极室都有两个挠性软管,一个连接进料总管,另一个连接出料总管。电解后产生的氯气和淡盐水混合物通过软管汇集排入阳极液总管,并在总管中进行气体
和
液
体
分
离。
氯气在氯气总管中进行汇集后送入淡盐水储槽顶部。在此,氯气中的水分被分离并滴落,然后氯气被送往界外。氯气压力由自调阀控制。淡盐水送入淡盐水储槽底部,然后用淡盐水循环泵一部分经液位自调控制送往脱氯工序;另一部分送往电解槽,进槽淡盐水流量由自动控制。阴极液在阴极室电解产生氢气和烧碱,碱液进入阴极液循环槽,通过阴极液循环泵一部分经阴极液冷却器进入碱高位槽后,进入电槽,这部分电解液进槽前加纯水稀释,纯水量自调由直流电和碱串级控制;另一部分电解液经液位自调控制送入碱冷却器冷却至约45℃后送往碱储槽,然后送往罐区。氢气在阴极液出口总管中分离,并在氢气主管线中进行汇集后,送到碱液循环槽顶部。氢气中的水分被分离并滴落,然后氢气送往界外。氢气压力由自调阀控制,与氯气压力串级控制,使氢气和氯气之间压差保持在设定范围内(5KPa)。
图4 精制盐水电解示意图
图5 电解反应方程式
1.4 氯氢处理
氯气处理工序均包括氯气洗涤、冷却除雾、干燥、压缩;氢气处理均包括氢气洗涤、压缩、脱氧、干燥。
离子膜法制碱时,建议氯气处理工艺方案:湿氯气经氯水洗涤,钛管换热器,氯气除盐、降温后经一段填料塔、二段泡罩塔干燥,使氯气含水量≤50wtppm,氯气输送选用大型离心式氯气压缩机(透平压缩机)。通常根据氯气压缩机压力的不同,将氯气液化方式分为高压法、中压法和低压法三种。高压法消耗冷冻量少,不需要制冷机,能耗低。但对氯气处理工艺、氯气输送设备的要求高,增加投资费用。因此,国内一般采用中、低压液化方法生产液氯。如下图所示。
图6
电解后氯气处理示意图
1-氯气洗涤塔;2-鼓风机;3-Ⅰ段冷却器;4-Ⅱ段冷却器;5-水雾捕集器;
6-填料干燥塔;7-泡罩干燥塔;8-酸雾捕集器;9-氯压机
氢气处理工艺:电解出来的饱和湿氢气中含有大量的水和其他气体,一般采用间接法和直接法除去以达到工艺要求。由于在本次设计中不充分考虑热综合利用,所以采用直接法进行氢气的处理,可以简化工艺流程,节约投资费用。它是由电解槽中出来的氢气经氢气缓冲罐后进入一段洗涤塔洗去一部分的杂质及使氢气冷却至50℃后在经二段洗涤塔除杂质及冷却至30℃,之后再经过丝网除雾器除去盐和碱的雾沫后,用罗茨鼓风机抽送至分配台进行下一阶段的分配。氢气处理工艺流程图见下:
湿氢气缓冲罐一段洗涤塔二段洗涤塔除雾器去用户
4、淡
盐
水
脱
氯
工
序
电解槽出来的淡盐水和氯氢处理来的氯水混合后,用31%的高纯盐酸将PH值调节到约1.5,送入脱氯塔的顶部。脱氯塔的压力为-70~75Kpa,由真空泵进行控制。脱氯塔出口处游离氯降低到50mg/L,脱出的氯气汇入氯气总管,也可送入废气吸收塔。
脱氯后的淡盐水先用NaOH把PH调到9~11,再将亚硫酸钠储槽中配制的浓度为10wt%的亚硫酸钠溶液用亚硫酸钠泵加入到淡盐水管道中,以彻底除去残余的游离氯。游离氯含量为0的脱氯盐水送回一次盐水工序化盐。1.5 液碱蒸发
将电解槽生产的液碱通过蒸发系统用蒸汽加热将一部分水蒸出,并将绝大部分盐(N a C I)分离出去,从而获得成品液碱。
1.6 固碱生产
将蒸发获得的液碱采用大锅熬煮或升膜一降膜一闪蒸方法进一步浓缩生产固碱,其主要消耗是燃料(煤、重油、氢气)。因此,固碱生产节能主要是充分利用燃料燃烧热量和节约燃料的流程等。