第一篇:XX五年级数学下册第三单元知识点总结(新人教版)
XX五年级数学下册第三单元知识点总结
(新人教版)
课
件www.xiexiebang.com 第三单元长方体和正方体
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点:
(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:
(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
相
同
点
不同点
面
棱
长方体
都有6个面,12条棱,8个顶点。
6个面都是长方形。
(有可能有两个相对的面是正方形)。
相对的棱的长度都相等
正方体
6个面都是正方形。
12条棱都相等。
3、长方体、正方体有关棱长计算公式:
长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4
L=(a+b+h)×4
长=棱长总和÷4-宽-高
a=L÷4-b-h
宽=棱长总和÷4-长-高
b=L÷4-a-h
高=棱长总和÷4-长-宽
h=L÷4-a-b
正方体的棱长总和=棱长×12
L=a×12
正方体的棱长=棱长总和÷12
a=L÷12
4、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
无底(或无盖)
长方体表面积=长×宽+(长×高+宽×高)×2
S=2(ab+ah+bh)-ab
S=2(ah+bh)+ab
无底又无盖长方体表面积=(长×高+宽×高)×2
S=2(ah+bh)
贴墙纸
正方体的表面积=棱长×棱长×6S=a×a×6用字母表示:S=6a2
生活实际:
油箱、罐头盒等都是6个面
游泳池、鱼缸等都只有5个面
水管、烟囱等都只有4个面。
注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)
注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。
(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。
5、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高V=abh
长=体积÷宽÷高a=V÷b÷h
宽=体积÷长÷高b=V÷a÷h
高=体积÷长÷宽h=V÷a÷b
正方体的体积=棱长×棱长×棱长
V=a×a×a=a3
读作“a的立方”表示3个a相乘,(即a·a·a)
长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高
用字母表示:V=Sh(横截面积相当于底面积,长相当于高)。
注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
固体一般就用体积单位,计量液体的体积,如水、油等。
常用的容积单位有升和毫升也可以写成L和ml。
升=1立方分米
毫升=1立方厘米
升=1000毫升
长方体或正方体容器容积的计算方法,跟体积的计算方法相同。
但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)
注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
*形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
排水法的公式:
V物体=V现在-V原来
也可以V物体=S×
V物体=S×h升高
8、【体积单位换算】
大单位×进率=小单位
小单位÷进率=大单位
进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)
立方分米=1000立方厘米=1升=1000毫升
立方厘米=1毫升
平方米=100平方分米=10000平方厘米
平方千米=100公顷=1000000平方米
注意:长方体与正方体关系
把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
重量单位进率,时间单位进率,长度单位进率
大单位×进率=小单位
小单位÷进率=大单位
长度单位:
千米=1000米1分米=10厘米
厘米=10毫米1分米=100毫米
米=10分米=100厘米=1000毫米
(相邻单位进率10)
面积单位:
平方千米=100公顷
平方米=100平方分米
平方分米=100平方厘米
公顷=10000平方米(平方相邻单位进率100)
质量单位:
吨=1000千克
千克=1000克
人民币:
元=10角1角=10分1元=100分 课
件www.xiexiebang.com
第二篇:五年级数学下册第四单元知识点总结
五年级数学下册第四单元知识点总结(新人教版)
第四单元 分数的意义和性质
1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)
3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如4/5的分数单位是1/5。
4、分数与除法
A÷B=A/B(B≠0,除数不能为0,分母也不能够为0)例如:4÷5=4/5
5、真分数和假分数、带分数
1、真分数:分子比分母小的分数叫真分数。真分数<1。
2、假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数≧1
3、带分数:带分数由整数和真分数组成的分数。带分数>1.4、真分数<1≤假分数 真分数<1<带分数
6、假分数与整数、带分数的互化
(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子,如:
(2)整数化为假分数,用整数乘以分母得分子 如:
(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:
(4)1等于任何分子和分母相同的分数。如:
7、分数的基本性质:
分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。
9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。如:24/30=4/5
10、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。如:2/5和1/4 可以化成8/20和5/20
11、分数和小数的互化
(1)小数化为分数:数小数位数。一位小数,分母是10;两位小数,分母是100…… 如:
0.3=3/10 0.03=3/100 0.003=3/1000(2)分数化为小数:
方法一:把分数化为分母是10、100、1000…… 如:3/10=0.3 3/5=6/10=0.6 1/4=25/100=0.25 方法二:用分子÷分母 如:3/4=3÷4=0.75(3)带分数化为小数:
先把整数后的分数化为小数,再加上整数
12、比分数的大小:
分母相同,分子大,分数就大; 分子相同,分母小,分数才大。
分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。
13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。1/2=0.5 1/4=0.25 3/4=0.75 1/5=0.2 2/5=0.4 3/5=0.6 4/5=0.8 1/8=0.125 3/8=0.375 5/8=0.625 7/8=0.875 1/20=0.05 1/25=0.04
14、两个数互质的特殊判断方法: ① 1和任何大于1的自然数互质。② 2和任何奇数都是互质数。③ 相邻的两个自然数是互质数。④ 相邻的两个奇数互质。⑤ 不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
15、求最大公因数的方法:
① 倍数关系:最大公因数就是较小数。② 互质关系:最大公因数就是1 ③ 一般关系:从大到小看较小数的因数是否是较大数的因数。
第三篇:人教版小学五年级下册数学第三单元重要知识点
1、我们周围有许多物体的形状都是长方体或正方体(正方体也叫立方体)
2、长方体有(6)个面,相对的面(形状完全相同),(面积相等);有(12)条棱,相对的棱(长度相等),可以分为三组,每组(4)条;有(8个)顶点。
3、正方体有(6)个面,每个面都是(正方形,并且形状完全相同);有(12)条棱,每条
棱(长度都相等)。
4、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
5、一个长方体,如果它有两个面是正方形,那么另外四个面是(长方形,并且形状完全相
同)。
6、正方体是特殊的长方体,正方体可以看成是长、宽、高都相等的长方体。
7、长方体的棱长和=(长+宽+高)*4
长=长方体的棱长和/4-宽-高宽=()高=()
8、长方体或正方体(6)个面的(总面积),叫做它的(表面积)。
9、长方体的表面积=长*宽*2+长*高*2+宽*高*2
长方体的表面积=(长*宽+长*高+宽*高)*210、正方体的表面积=棱长*棱长*6棱长*棱长=正方体的表面积/6
(注意:做题的时候看清题目,看到底需要计算几个面的面积。
求长方体的表面积必须知道长方体的(长),(宽),(高),所以在做题时我们就
要想办法找出长方体的(长),(宽),(高),然后再看它们单位相不相同,不同
就需要转换单位。)
11、物体所占空间的大小叫做物体的体积。
常用的体积单位有(立方厘米),(立方分米),(立方米),可以分别写成(cm3),(dm3),(m3)。
棱长是1cm的正方体,体积是1 cm3(一个手指尖的体积大约是1 cm3)
棱长是1dm的正方体,体积是1dm3(粉笔盒的体积大约是1dm3)
棱长是1m的正方体,体积是1 m3
长方体的体积=长*宽*高
正方体的体积=棱长*棱长*棱长
正方体与长方体体积的统一公式=底面积*高 注:在解决长方体、正方体表面积、体积应用问题时要注意以下几点。
(1)认真审题,辨别所需解决的问题与什么有关。即是什么形体,与表面积有
关还是与体积有关;
(2)找准关系式,计算中记清相关公式;
(3)计算中,要对照公式所需条件一一确认。不能张冠李戴。
(4)取近似数要联系实际情况取舍。
(5)问题与条件之间的单位是否一致;
12、相邻长度单位之间的进率是10,相邻面积单位之间的进率是100,相邻体积单位之间的进率是1000.13、1mL=1 cm31L=1 dm31L=1000mL
第四篇:新人教八年级下册数学期末考试知识点归纳
新人教八年级下册数学期末考试知识点归
纳
二次根式
知识回顾
1.二次根式:式子(ge;0)叫做二次根式。2.最简二次根式:必须同时满足下列条件:
⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。3.同类二次根式:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。4.二次根式的性质:(1)()2=(ge;0);(2)5.二次根式的运算:
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=(age;0,bge;0);(bge;0,agt;0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。3.直角三角形的性质
(1)、直角三角形的两个锐角互余。可表示如下:ang;C=90deg;ang;A+ang;B=90deg;(2)、在直角三角形中,30deg;角所对的直角边等于斜边的一半。ang;A=30deg;可表示如下:BC=AB ang;C=90deg;(3)、直角三角形斜边上的中线等于斜边的一半 ang;ACB=90deg;可表示如下:CD=AB=BD=AD D为AB的中点
4、直角三角形的判定
1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。
5、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
四边形
1.四边形的内角和与外角和定理:(1)四边形的内角和等于360deg;;(2)四边形的外角和等于360deg;.2.多边形的内角和与外角和定理:(1)n边形的内角和等于(n-2)180deg;;(2)任意多边形的外角和等于360deg;12.等腰梯形的判定:
(四边形ABCD是等腰梯形
(3)∵ABCD是梯形且AD∥BC
∵AC=BD
there4;ABCD四边形是等腰梯形 14.三角形中位线定理:
三角形的中位线平行第三边,并且等于它的一半.15.梯形中位线定理:
梯形的中位线平行于两底,并且等于两底和的一半.一次函数
一、正比例函数与一次函数的概念:
一般地,形如y=kx(k为常数,且kne;0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且kne;0)的函数叫做一次函数.当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.二、正比例函数的图象与性质:
(1)图象:正比例函数y=kx(k是常数,kne;0))的图象是经过原点的一条直线,我们称它为直线y=kx。
(2)性质:当kgt;0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0,bgt;0图像经过一、二、三象限;(2)kgt;0,blt;0图像经过一、三、四象限;(3)kgt;0,b=0图像经过一、三象限;(4)klt;0,bgt;0图像经过一、二、四象限;(5)klt;0,blt;0图像经过二、三、四象限;(6)klt;0,b=0图像经过二、四象限。
一次函数表达式的确定
求一次函数y=kx+b(k、b是常数,kne;0)时,需要由两个点来确定;求正比例函数y=kx(kne;0)时,只需一个点即可.5.一次函数与二元一次方程组:
解方程组
从“数”的角度看,自变量(x)为何值时两个函数的值相等.并
求出这个函数值
解方程组从“形”的角度看,确定两直线交点的坐标.数据的分析
数据的代表:平均数、众数、中位数、极差、方差
一元二次方程知识点总结
一、知识框架
二、知识点、概念总结
1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
2.一元二次方程有四个特点:(1)含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为ax2+bx+c=0(ane;0)的形式,则这个方程就为一元二次方程。
(4)将方程化为一般形式:ax2+bx+c=0时,应满足(ane;0)3.一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,•都能化成如下形式ax2+bx+c=0(ane;0)。
一个一元二次方程经过整理化成ax2+bx+c=0(ane;0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。4.一元二次方程的解法(1)直接开平方法
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如的一元二次方程。根据平方根的定义可知,是b的平方根,当时,,当b”、“=”、“lt;”)。
16.如图,在四边形ABCD中ABCD,若加上ADBC,则四边形ABCD为平行四边形。现在请你添加一个适当的条件:,使得四边形AECF为平行四边形.(图中不再添加点和线)转眼之间一个学期也将过去了,同学们也迎来了期末考试,希望上文为大家提供的八年级下册数学期末考试知识点归纳,能帮助到大家。
精编八年级数学下册《全等三角形》知识点总结 2016学年初二下册《反证法》知识点归纳:例题解析
第五篇:五年级数学下册第三单元教学计划
五年级数学下册第三单元教学计划
课题:长方体和正方体
备课时间:年月日
教学内容:五年级数学下册第三单元:(长方体和正方体)
教学目标:
1、通过观察和操作,认识长方体和正方体的特征以及它们的展开图。2、通过实例,了解体积(包括容积)的意义及度量单位(立方米、立方分米、立方厘米、升、毫升),会进行单位之间的换算,感受1m3、1dm3、1cm3 以及1L、1ml 的实际意义。、结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,并能运用所学知识解决一些简单的实际问题。
4、探索某些实物体积的测量方法。
单元知识结构:
1.长方体和正方体的认识;
2.长方体和正方体的表面积:
3.长方体和正方体的体积
教学重难点:
建立体积概念,长正方体体积公式的推导,几何知识与一般应用题的综合题。课时划分:
1.《长方体和正方体的认识》……….2课时
2.《长方体和正方体的表面积》………2课时
3.《长方体和正方体的体积》………8课时
4.《长方体和正方体的整理和复习》……2课时
5.第三单元《长方体和正方体的认识》检测…2课时