第一篇:动态几何学习心得
动态几何学习心得
几何画板不是一个一般的绘图软件,不仅制作出的图形是动态的,而且注重数学表达的准确性。因此,应该从数学的角度看待这个软件,在理解中学习它,这样就比较容易理解有关操作的规定,掌握操作方法,合理地进行操作,尽快掌握它的功能。反过来,当需要构造某个图形,进行某种操作时,就会自觉地满足软件对该项操作需要的前提条件。
首先用几何画板创设情景,静态变动态,其次几何画板“数形结合”,抽象变形象,微观变宏观,能够揭示知识之间的内在联系,培养思维能力、开发智力的工具。
通过这个课程的学习使我受益匪浅,对几何画板有了一个全面直观的认识。在以后的教育教学中,我要坚持不断学习,提高自己的课件制作水平。几何画板是一个在数学领域里进行创造、探索和分析等方面有着广泛应用的软件系统。利用几何画板,您可以构造交互式的数学模型,可用于从事形与数的基础研究,构造高级的、动态的复杂系统的插图。不仅学习了几何画板的应用知识,而且认识了很多同行,并从他们那里学到了不少知识。通过这学期的学习,感觉《几何画板》是个很不错的学习辅助软件,相比较FLASH等的软件,它的本身占用资源较少,操作简单,学习起来也较容易,而且在平时的教学中,用他去制作一些课件,不需要浪费太多的时间,但仅仅这花几天的学习要想将这个软件运用自如还是不可能的,老师只能领导你去认识它,真正的对它熟悉还要在平时的教学中多多运用,自己去钻研。同时,通过学习,还让我体会到了,在运用课件辅助教学时,不仅仅是去制作课件,在制作过程中,要对这节课完全理解,从原理上明白这节课的实质内容,再细化到如何去制作,才能让我简单明了的理解这节课,是在制作过程中的关键点。通过这次几何画板的学习,感觉受益匪浅!
第二篇:动态几何教案(完)
龙文教育浦东分校张杨路校区学生个性化教案 教育是一项良心工程
课题:动态几何
学生:
教师:吴大旺
时间:
学生评价
◇特别满意
◇满意
◇一般
◇不满意
【回顾与思考】
动点问题
类别动线问题动形问题
【例题经典】
会“静”中求动
例
1(2004年吉林省)如图,已知抛物线y=x2-ax+a+2与x轴交于A,B两点,与y轴交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C.运点P以每秒2•个单位长度的速度从点C出发,沿C→D运动.同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动.连结PQ,CB设点P的运动时间为t秒.
(1)求a的值;
(2)当t为何值时,PQ平行于y轴;
(3)当四边形PQBC的面积等于14时,求t的值.
【分析】由PQ∥y轴和DC∥x轴这一静态,得OQ=PD,求t的值.
会由“特殊”推出“一般”
例
2(2005年南京市)如图,形如量角器的半圆O的直径DE=12cm,•形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm.半圆O以2cm/s的速度从左向右运动,•在运动过程中,点D,E始终在直线BC上,设运动时间为t(s),当t=0s时,半圆O在△ABC•的左侧,OC=8cm.
(1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切?
(2)当△ABC的一边所在的直线与半圆O所在的圆相切时,如果半圆O与直径DE•围成的区域与△ABC三边围成的区域有重叠部分,求重叠部分的面积.
【会用“类比的思想”探究图形的变化】
例
3(2006年临沂市)如图,在矩形ABCD中,AB=3cm,BC=4cm,设P、Q分别为BD、•BC上的动点,在点P自点D沿DB方向作匀速移动的同时,点Q自点B沿BC方向向点C•作匀速移动,移动的速度都为1cm/s,设P、Q移动的时间为t(0 2(1)写出△PBQ的面积S(cm)与时间t(s)之间的函数表达式,当t为何值时,S•有最大值?最大值是多少? (2)当t为何值时,△PBQ为等腰三角形? (3)△PBQ能否成为等边三角形?若能,求t的值;若不能,说明理由. 地址:张杨路1818号(近巨野路) 电话:021—50280417 您的孩子就是我们的孩子 龙文教育浦东分校张杨路校区学生个性化教案 教育是一项良心工程 【考点精练】 1.(2005年西宁市)如图1,将正方形ABCD中的△ABP绕点B顺时针旋转能与△CBP重合,若BP=4,则点P所走过的路径长为_________. (1) (2) (3)2.(2005年福州市)如图2,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD面积的() A.111B. C. D. 543103.(2005年北京市)如图3,在ABCD中,∠DAB=60°,BC=3,点P从起点O出发,•沿DC、CB向终点B匀速运动.设点P所走过的路程为x,点P经过的线段与线段AD、AP所围成图形的面积为y,y随x的变化而变化.在下列图像中,能正确反映y与x的函数关系的是() 4.(2006年临沂市)如图,小正六边形沿着大正六边形的边缘顺时针滚动,小正方形的边长是大正六边形边长的一半,当小正六边形由图①位置滚动到图②位置时,线段OA绕点O顺时针转过的角度为_______度. 5.如图直角坐标系中,已知点A(2,4),B(5,0),动点P从B点出发,沿BO向终点O•运动,动点Q从A点出发向点B运动,两点同时出发,速度均为每秒1个单位,设从出发起运动了xs. (1)点Q坐标为______(用含x的式子表示) (2)当x为何值时,△APQ为一个以AP为腰的等腰三角形? (3)设PQ的中点为G,请你探求点G随点P、Q运动所形成的图形并说明理由. 地址:张杨路1818号(近巨野路) 电话:021—50280417 您的孩子就是我们的孩子 龙文教育浦东分校张杨路校区学生个性化教案 教育是一项良心工程 6.(2006年杭州市)在三角形ABC中,∠B=60°,BA=24cm,BC=16cm.现有动点P从点A出发,沿射线AB向点B方向运动;动点Q从点C出发,沿射线CB也向点B方向运动,•如果点P的速度是4cm/s,点Q的速度是2cm/s,它们同时出发,求: (1)几秒钟以后,△PBQ的面积是△ABC的面积的一半? (2)在第(1)问的前提下,P、Q两点之间的距离是多少? 7.(2006年济南市)已知半径为R的⊙O′经过半径为r的⊙O的圆心,⊙O与⊙O•′交于E、F两点. (1)如图甲,连结⊙O′交于⊙O于点C,并延长交⊙O′于点D,过点C作⊙O•的切线交⊙O′于A、B两点,求OA.OB的值; (2)若点C为⊙O上一动点,.. ①当点C运动到⊙O′内时,如图乙,过点C作⊙O′的切线交⊙O于A、B两点,则OA·OB的值与(1)中的结论相比较有无变化?请说明理由. ②当点C运动到⊙O′外时,过点C作⊙O的切线,若能交⊙O′于A、B两点,如图丙,则OA·OB的值与(1)中的结论相比较有无变化?请说明理由. 8.(2005年黄冈市)如图,在直角坐标系中,O是原点,A、B、C三点的坐标分别为A(18,0),B(18,6),C(8,6),四边形OABC是梯形.点P、Q同时从原点出发,•分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC,CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动. (1)求出直线OC的解析式及经过O、A、C三点的抛物线的解析式. (2)试在(1)中的抛物线上找一点D,使得以O、A、D为顶点的三角形与△AOC全等,请直接写出点D的坐标. 地址:张杨路1818号(近巨野路) 电话:021—50280417 您的孩子就是我们的孩子 龙文教育浦东分校张杨路校区学生个性化教案 教育是一项良心工程 (3)设从出发起,运动了t秒,如果点Q的速度为每秒2个单位,试写出点Q的坐标,•并写出此时t的取值范围. (4)设从出发起,运动了t秒,当P、Q两点运动的路程之和恰好等于梯形OABC周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分,如有可能,请求出t•的值;如不可能,请说明理由. 9.(2005年呼和浩特市)如图(1),AB是⊙O直径,直线L交⊙O于C1,C2,AD⊥L,垂足为D. (1)求证:AC1·AC2=AB·AD; (2)若将直线L向上平移(如图(2)),交⊙O于C1,C2,使弦C1C2与直径AB相交(交点不与A,B重合),其他条件不变,请你猜想,AC1,AC2,AB,AD之间的关系,并说明理由. (3)若将直线L平移到与⊙O相切时,切点为C,其他条件不变,请你在图(3)上画出变化后的图形,标好相应字母并猜想AC,AB,AD的关系是什么?(只写出关系,不加以说明). 地址:张杨路1818号(近巨野路) 电话:021—50280417 您的孩子就是我们的孩子 初中几何动态教学初探 “九年义务教育全日制初级中学《数学教学大纲》(试用)”中提出,初中数学的教学目的之一:培养学生良好的个性品质和初步辨证唯物主义观点。良好的个性品质是指:正确的学习目的,浓厚的学习兴趣,顽强的学习毅力,实事求是的科学态度,独立思考、勇于创新的精神和良好的学习习惯;而初中数学中的辨证唯物主义教育因素之一是:数学内容中,普遍存在的运动变化、相互联系、相互转化等观点。本文想就初中几何教学中如何通过几何动态教学对学生进行辨证唯物主义思想教育,谈谈我的粗浅认识。 我们经常会听到老师和学生有这样的反映,几何难教,几何难学。“难”的原因之一就是图形关系复杂,变化多样。老师在几何教学中演示的图形都是静态的,不能将图形的任意位置展示给学生,在给出一个或有限的几个图形之后,就将一些重要的几何规律简单地介绍给了学生。而学生在作题时,由于图形位置变化,或位置关系复杂,就变得茫然不知所措了,这时老师也开始变得急燥了,觉得概念已讲得很清楚了,怎么还不会,几何难教难学的矛盾就产生了。 如何解决这个矛盾呢?我想还是要从几何的精髓问题入手。“几何就是在不断变化的几何图形中,研究不变的几何规律”。比如 图1 1.不论三角形的位置、大小、形状和方向如何变化,三角形的3条高线都交于一点(如图1); 图2 2.不论四边形如何变化,四边形的四边中点顺序连接成的图形永远是平行四边形(如图2)等等,不胜枚举。对于第一个问题,传统教学中都是利用尺子作图,各种情况只作一个图形,很有限,不能说明问题;对于第二个问题,在以往的教学中绝大多数老师都是以例题形式给让学生证明。我现在想办法让三角形或四边形任意动起来,让学生观察:三角形的3条高线交于一点;四边中点顺序连接成的图形永远是平行四边形。有了这样一个感性认识,再深入研究就成为自觉自愿的了。学生从运动的几何图形中找出的几何规律,印象会很深,而且几何图形有这样的动态效果,很容易吸引这些初中学生,让他们觉得几何课有意思,从而愿意上几何课。 我的这些想法是有理论根据的,因为运动的观点是现代数学思想的一个重要方面,在中学几何教学中应加强运动观点的建立。现代教育理论认为:数学知识不是老师教会的,而是学生必须经过头脑想象和理解椉唇ü箺才能真正学会的。老师传递给学生的只是知识信息,学生通过接收这些信息,联系他们头脑中旧有的知识结构,构造出他所能理解掌握的新知识,在几何教学中,对于那些相对于学生来说复杂而又抽象的图形,需要在老师的引导下,从不断运动变化的图形中,从不同的角度反复观察、探索、发现,找出规律,“从而建立起学生自己的‘经验体系’棗即猜想可能的结论,最后再在老师和书本的帮助下证明猜想的结论,从而建立起学生自己的‘逻辑思维体系’。即完成‘在变化的图形中发现恒定不变的几何规律’”。 对于一个几何图形来说,各种元素之间的位置关系实际上是处于变化的相互依存的状态,动是绝对的,静是相对的,这就产生了几何变换。在初中平面几何中,常见的几何变换有:全等变换、相似变换和等积变换等。在实际教学中,要想办法创造有变有不变的状态,让有利于解题的条件保持不变,而将不利于解题的条件变为有利的,这就是利用运动变化中不变的规律解题的主要思想。 如何实现让几何图形动起来,让学生在“动中找静”,以往的几何教学很难做到,因为在传统的几何教学中,用常规作图工具(纸、笔、尺)手工绘制的图形都是静态的,虽然它能教给学生规范作图,但这样很容易掩盖极其重要的几何规律。有的老师可以制作很精制的投影抽拉片,使部分图形动起来,却很难体现图形的任意性,以及图形各部分之间的密切联系。针对这个问题,我们可利用计算机辅助数学教学,利用一个软件工具棗“几何画板”制作我们需要的几何图形,并使之任意运动和动画,在图形不停地变化过程中,让学生观察,发现不变的几何规律,让学生认识到几何规律是实实在在的科学,不是凭空任意造出来的,要用科学的头脑,去分析动态的几何图形,从而得到“静态”的几何规律。 下面结合例子来说明如何对初中几何进行动态教学。(主要设计思路) 例1.初中几何教材P125 *7.12 和圆有关的比例线段,这一节的内容是相交弦定理,切割线定理及其推论(即圆幂定理)一.相交弦定理: 1.弦AB、CD相交于圆内一点P,几何画板测算PA、PB、PC、PD,并计算PA*PB, PA*PC, PA*PD, PB*PC, PB*PD, PC*PD, 图形运动,让学生观察6个乘积,反复几次,学生得出结论:只有PA*PB=PC*PD(如图3)图3: 教师给出相交弦定理:圆内的两条相交弦, 被交点分成的两条线段的长的积相等。 要引导学生证明(略) 2·将D点向B点运动,C、A、B固定,学生观察,PD逐渐变短,当测算值PD=0时,同时PB=0,此时P、B、D三点重合。问学生结论是否成立。(如图4) 图4: 3.让AB运动至过圆心时停住,AB为直径,让CD任意与AB垂直,此时观察四个测算值,总有PC=PD,让学生修改结论PC² =PA*PB。引导学生用语言叙述:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。(如图5)图5: 二.割线定理: 图6: 将P点运动,在P点从圆内到圆外之间反复运动的过程中,让学生观察6个乘积,发现依然有PA*PB=PC*PD。引导学生叙述:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。(注:此处与教材讲解顺序不一样,有待探讨)。 通过观察分析,比较图形,引导学生归纳出相交弦定理与割线定理的相同点:0 ①定理中的条件都是两条相交直线分别与圆相交 ②定理中的结论都是两条直线的交点到各弦两端的距离之积相等。于是,可以把相交弦定理和割线定理统一如下形式: 两条相交直线分别与圆相交,则两直线的交点到各弦两端的距离之积相等 3、切割线定理 1.将PA绕P点运动,让学生观察A、B重合时,有 ⑴PA=PB ⑵PA*PB=PC*PD 由学生修改结论:PA² =PC*PD(注:教材上是PT² =PA*PB)(如图7)图7: 引导学生用语言叙述:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。 2.将PD绕P点运动,C、D重合时观察时:(1)PC=PD=PA=PB PA*PB=PC*PD(如图8)图8: 由学生修改 PA² =PC² ∴PA=PC 正是前面学过的切线长定理 四.深入讨论 进一步引导学生:点P到各弦两端的距离之积相等,等于什么?有没有一般规律?(这是课本P134习题T 7.4 B组4) 引导学生分析当点P固定,∵过P点的弦有无数条,选一条过圆心的弦,即直径:1.当P点在圆内时,引导学生: ∵PA*PB=PC*PD 又PB=R-OP PA=R+OP ∴PA.PB=(R+OP)(R-OP)= R² -OP² 当P为定点时, OP和R均为定值(如图9)图9: 当P点在圆外时, 学生独立完成。 图10: 3.归纳总结: 一直线与半径为R的⊙0相交, 在直线上取一不在圆周上的点P, 则该点到弦两端的距离之积是定值│R²-OP²│ 告诉学生:你们和我一起讨论并验证的这个问题实际上是直线与圆这一节中一个重要定理。一方面不仅使学生数学思维得到发展,也使他们从中 获得成功的喜悦;另一方面,可以使学生从不断变化的几何图形中发现不变的几何规律。 例2.①同底等高的一组三角形,底BC固定不动,顶点A在平行于底边的直线上滑动,观察重心的位置及重心轨迹(计算机动画演示)图:11 观察发现: ⑴不论三角形如何变化,重心永远在三角形内。 ⑵同底等高的一组三角形的重心轨迹是一条直线(证明略)。 ②同底等高的一组三角形,底BC固定不动,顶点A在平行于底边的直线上滑动,观察垂心的位置及垂心轨迹(计算机动画演示) 观察发现: ⑴锐角三角形的垂心在锐角三角形的内部;直角三角形 的垂心在直角三角形的直角顶点处;钝角三角形的垂心在钝角三角形的外部。 ⑵ 同底等高的一组三角形垂心的轨迹是一条抛物线。(证明略)等等。 尽管在初中几何中不涉及轨迹问题,我们也可以不提它,但它确是计算机演示实验的结果,可以给学生看,引起学生的兴趣。 以上是我对初中几何进行动态教学的粗浅看法,得到多名老师的一致认可,同时我也给亲戚朋友的孩子(初三学生)进行了课余辅导,效果不错,这些学生在做习题时,大部分首先回忆的是计算机演示的图形。然后是定理,并很快结合已知条件做出了习题。我想这就达到了目的,学生知道从变化的图形中找出不变的规律为自己所用。在介绍知识的同时,渗透了辩证唯物主义思想。文中出现不妥之处,请专家和同行批评指正。 《几何画板》学习心得 几何画板是一个在数学领域里进行创造、探索和分析等方面有着广泛应用的软件系统。利用几何画板,我们可以构造交互式的数学模型,可用于从事形与数的基础研究,构造高级的、动态的复杂系统的插图。 通过这一学期的学习,我了解了几何画板的有关知识,掌握了几何画板的一些基础应用,如一些基本图形的构造、图形的平移与旋转、函数图象的绘制等。联想到日常教学中,比如圆和圆的位置关系、直线和圆的位置关系、二次函数图像的变换、三角形的全等和相似、还有一些常见题目的动画演示等,这些知识若通过几何画板演示,学生就能直接观察到它们的运动路径,使抽象的知识变得更加形象和直观,学生接受起来就很容易了。同时,如果学好了几何画板,直接在课堂上操作,通过多媒体演示,既节省了时间,又提高了课堂效率。由此我体会到几何画板在数学教学中的用途如此之大,与日常教学息息相关。同时,通过学习,我体会到,在运用课件辅助教学时,不仅仅是去制作课件,在制作过程中,要对这节课完全理解,从原理上明白这节课的实质内容,再细化到如何去制作,才能简单明了的理解这节课,是在制作过程中的关键点。 而对于我们自己,几何画板在日常的学习中也有很大作用。比如这次写毕业论文,过程中有许多图需要自己手画,在学习几何画板之前,我也许会用其他画图工具,但是图画的准确度、可观性,都会大打折扣。而正是刚刚学习了几何画板,我利用平时所学的知识、技巧等,画出了标准而美观的图画。也许我对几何画板的掌握还不太熟练,但在不断的学习运用中,我一定可更加熟练的掌握它,几何画板对我的帮助也会越来越大。 总之,《几何画板》是一个适用于教学和学习的工具软件平台,既可用于平面几何、平面解析几何、代数、三角、立体几何等学科的教学或学习中,也可用于物理、化学等课程的教学中。目前,各学校的电教化设施不断改进,多媒体设备已普及到班级,网络已深入课堂和家庭生活,我相信几何画板会被越来越多的数学老师掌握,它会深入课堂,深入学生。 学习心得 当今世界,科学技术突飞猛进,“信息爆炸”,令人目不暇接。据联合国教科文组织的统计,人类近30年来所积累的科学知识只占90%。随着计算机的出现,更加速了科学技术的发展。多媒体计算机技术和网络技术的出现及应用,成为人类进入信息社会的重要标志,并且已经渗透到科学技术好社会的各个领域。对于我们这些新时代的老师来说,学会并掌握多媒体辅助教学,可以说是一种必修课。 随着计算机的普及,科学技术的飞速发展,多媒体计算机技术和网络技术也对当代社会产生了深远的影响。也在逐渐的改变我们的生活与工作,对劳动者也提出了更高的要求。当计算机和网络技术等现代消息技术进入教育领域时,可以说是在冲击着传统的教学模式,推动学校教学改革。历史经验告诉我们,教育的每一次重大发展都离不开科学技术。 对于数学来说,由于本身的性质,对于传统教学来说,数学是一门比较枯燥的学科。但是对于多媒体教学来说,我们却可以让它变得生动有趣。因计算机多媒体固有的优势和特色,使其在教学中显示了强大的生命力,发挥了不可替代的作用。几何画板是一种适合数学教学的简单工具,它容易掌握,容易进入课堂,在推进教学改革和计算机辅助教学方面取得了明显的效果。 对于一般老师来说,都能在一周之内学会运用几何画板来开发课件,而无须专门学习计算机编程。凭借这样的一个软件平台,教师可以方便的体现自己的教学意图,灵活的编制适合本校教学实际的个性化的教学课件。正所谓“教无定法”,很难把一个统一的单一模式的课件像产品一样推向所有课堂。所有教育技术的引进对教师提出了更高的要求,这个要求不是计算机编程,而更多的是计算机意识和学科教学本身的修养,在计算机技术支持下进行全新教学设计的能力。 在中学数学课程标准中要求:“要重视现代教育技术在教学中的应用,有条件的地区,要尽可能合理、有效的使用计算机和有关的软件,提高教学效率”。而课本的编写者也不断向我们发出一个信号,就是新时代的教师和学生都应该掌握新的信息技术,这是一个趋势。 在学习几何画板中,我学会了如何利用课件讲解、分析要学习的数学内容,并提出要探求的问题、介绍探索问题的方法。利用几何画板化抽象为具体,克服数学逻辑思维所造成的抽象化,将数学知识形象化的表现出来,更好的方便学生的学习与理解。还有运用几何画板的化静为动。给学生创设一个动静结合的教学环境,是单调、静止的点、线转化为动态的变化的图像,引导学生学会运用动态思维去思考问题。在教学中适当的运用几何画板辅助教学能使许多原本枯燥、抽象的知识形象化,培养学生的学习兴趣,同时培养学生提出问题、发现问题的能力。 对于我们新时代的教师,我们可以通过主题活动,使学生置身于提出问题、思考问题、解决问题的动态过程中进行学习。通过几何画板有机的把有关的数学知识和能力要求结合成为一个整体,使学生在完成任务的同时,完成所需要掌握的学习目标。 信息技术在数学教学中的作用有目共睹,然而,信息技术与初中数学实验的整合课,就其实质而言,它首先是一堂数学课,只是适时地借助信息技术,给学生提供充分从事数学活动的机会,从而更好地在现实情境和生活经验中来体验数学、探索数学、发现真理在今后的教学。我希望我能在今后的教学中更好的运用和发展几何画板的作用,在学习和研究的基础上,不断改进,不断深入,更好的把几何画板运用到教学实际当中去,我也会尝试把更多的多媒体信息技术运用到教学中去,不断提升自己。第三篇:初中几何动态教学初探[原创]
第四篇:几何画板学习心得
第五篇:几何画板学习心得