八年级命题与证明(知识点典型例题,动态几何问题)

时间:2019-05-13 07:38:20下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《八年级命题与证明(知识点典型例题,动态几何问题)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《八年级命题与证明(知识点典型例题,动态几何问题)》。

第一篇:八年级命题与证明(知识点典型例题,动态几何问题)

第四章命题与证明

知识回顾:

1一般地,能明确指出概念含义或特征的句子,称为定义。

(定义必须是严密的,诸如“一些”,“大概”,“差不多”等不能在定义中出现)

2.判断一件事情的句子,叫做命题。

命题必须是一个完整的句子,且必须对某件事情作出“是什么”或“不是什么”的判断。正确的命题称为真命题,错误的命题称为假命题。(注意:错误的命题也是命题)

3.命题的构成:命题由题设(或条件)和结论两部分构成。

命题表述的标准形式是:“如果„„那么„„”;或“若„„,则„„”

一般地,“如果(若)„„”是题设部分,“那么(则)„„”是结论部分。4公理与定理

公理与定理都是真命题.

经过人们长期实践中总结出来的,并作为判定其他命题真假的依据,这样的真命题叫公理.(公理是不需要证明的基本事实)

从公理或其他真命题出发,通过逻辑推理来判断一个命题是正确的,并可进一步作为判断其他命题真假的依据,这样的真命题叫定理.证明:

根据题设的条件以及定义、公理、定理等,经过逻辑推理来判断一个命题是否正确,这样的推理过程叫证明.反证法与举反例证明假命题

反证法的步骤为:先假设结论的反面是正确的,然后通过逻辑推理、推出与公理、已证的定理、定义或已知条件相矛盾,说明假设的不成立,从而得出原结论是正确的.若要证明一个命题为假命题,只要举出一个反例来说明命题不成立即可.

但所举的反例要简单、明确、有说服力.

【典型例题】:

例3.判断下列语句,是不是命题,如果是,请判断它是真命题还是假命题。

(1)画线段AB的中垂线。

(2)两条直线相交,有几个交点?

(3)如果a//b,b//c,那么a//c。

(4)两个角不相等,则它们不是对顶角。

(5)已知一个数能被4整除,这个数一定能被8整除。

(6)同位角相等。

例1.判断下列命题的真伪.如果是假命题,请举出一个反例.

①若a>b,则

1a1

b

②两个锐角的和是个锐角

③同位角相等,两直线平行

④一个角的补角大于这个角

解:①假命题.比如当a=2,b=-3时,就有1

21

3.②假命题.比如30°和80°均为锐角,但30°+80°>90°

③真命题.

④假命题.比如:130°的补角是70°,但70°<130°

(注:举反例说明命题为假只需举一个反例即可)

例2.下列各命题中是假命题的是()A.推理过程叫做证明B.定理都是命题

C.命题都是公理D.公理都是命题 解:C

例6.已知:(如图)MN//PQ,AC⊥PQ,BD、AC相交于点E,且DE=2AB.

求证:∠DBC=

3∠ABC.

MDAN

Q

C B

证明:取DE的中点G,连结AG

∵AC⊥PQ MN//PQ(已知)

∴∠CAD=90°(两直线平行,同旁内角互补)又G为DE中点 ∴AG=DG=

2(直角三角形中,斜边上的中线等于斜边的一半)DE.

∵DE=2AB

∴AG=AB∴∠ABD=∠AGB=2∠ADG=2∠DBC(等腰三角形底角相等,与三角形外角定理)

∴∠DBC=

∠ABC

7、反正法

1证明几何量之间的关系

:已知:四边形ABCD中,E、F分别是AD、BC的中点,EF

2(ABCD)。

求证:AB//CD。

证明:假设AB不平行于CD。如图,连结AC,取AC的中点G,连结EG、FG。∵E、F、G分别是AD、BC、AC的中点,∴GE//CD,GE∵AB不平行于CD,∴GE和GF不共线,GE、GF、EF组成一个三角形。∴GEGFEF① 但GEGF①与②矛盾。

2(ABCD)EF②

CD;GF//AB,GF

12AB。

A

B

∴AB//CD2、证明“唯一性”问题

在几何中需要证明符合某种条件的点、线、面只有一个时,称为“唯一性”问题。

例3:过平面上的点A的直线a,求证:a是唯一的。证明:假设a不是唯一的,则过A至少还有一条直线b,b ∵a、b是相交直线,∴a、b可以确定一个平面。设和相交于过点A的直线c。∵a,b,∴ac,bc。

这样在平面内,过点A就有两条直线垂直于c,这与定理产生矛盾。所以,a是唯一的。

【练习题】

1.判断下列命题是真还是假命题,简要说明理由.

(1)同一个角的邻补角是对顶角

(2)三条直线a,b,c,若a⊥b,c⊥b,则a//c

(3)若延长线段AB,延长射线CD后它们仍不相交,则这条线段与这条射线互相平行(4)点到直线的距离即是点到直线的垂线段(5)若同旁内角不互补,则这两条直线不平行(6)推论是真命题

(7)是9的倍数的数,它一定也是3的倍数(8)若一个数能被5整除,则它一定也能被10整除(9)只有开方开不尽的式子才是二次根式(10)当m≥0时,解不等式mx≥n,得到解集x

nm

6.如图,已知△ABC中,AD平分∠BAC,AB+BD=AC求证:∠B=2∠C.

BDC

*8.如图,△ABC中,AD平分∠BAC,BE=CE,过点E作GH⊥AD,交AC、以及AD、AB的延长线于H、F、G.

求证:AC=2BG+AB

A

BDHF

GC

1.(1)√(2)√(3)×(4)×(5)√

(6)√(7)√(8)×(9)×(10)×,理由略

6.提示:延长AB到点E,使BE=BD,连结ED,证明△AED△ACD8.提示:过B作BN//AC,证明△AGH为等腰三角形,则BG=BN又证明△BNE△CHE,∴BN=HC=BG

∴AC=AH+HC=AB+BG+HC=AB+2BG

八年级下学期几何动态问题

1.已知:等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒.

(1)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积;

(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间t变化的函数关系式,并写出自变量t的取值范围.

2.如图,在Rt△ABC中,A90,AB6,AC8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQBC于Q,过点Q作QR∥BA交

AC于

R,当点Q与点C重合时,点P停止运动.设BQx,QRy.

B

A M N

(1)求点D到BC的距离DH的长;

(2)求y关于x的函数关系式(不要求写出自变量的取值范围);

x的(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的A

C

H Q

值;若不存在,请说明理由.

3.如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动。设运动的时间为t(秒)。

(1)设△BPQ的面积为S,求S与t之间的函数关系式;

(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?

(3)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由。

4.如图,在梯形ABCD中,AD∥BC,AD3,DC5,BC10,梯形的高为4.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t(秒).

B

M

C

(1)当MN∥AB时,求t的值;

(2)试探究:t为何值时,△MNC为等腰三角形.

第二篇:八年级数学下册 几何证明初步知识点

第十一章 几何证明初步知识点整理

1.定义:用来说明一个名词含义的语句叫做定义.2.命题:对事情进行判断的语句叫做命题.每个命题都由条件和结论两部分组成.条件是已知事项,结论是由已知事项推断出的事项.一般地,命题可以写成“如果„„,那么„„”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.例如,下列句子都不是命题:(1)你喜欢数学吗?(2)作线段AB=CD.⑶清新的空气;⑷不许讲话。3.正确的命题称为真命题,不正确的的命题称为假命题.4.反例:要指出一个命题是假命题,只要能举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了。这种例子称为反例。

5.公理:人类经过长期实践后公认为正确的命题,作为判断其他命题的依据。这些公认为正确的命题叫做公理。

证明:除了公理外,其它真命题的正确性都通过推理的方法证实.推理的过程称为证明.定理:经过证明的真命题称为定理.本套教材以下列基本事实作为公理: 1.两点确定一条直线。

2.过直线外一点可以作且只能作一条直线与已知直线平行。3.两直线平行,同位角相等。

4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。5.判断三角形全等的方法:SAS ASA SSS。6.全等三角形的对应角相等,对应边相等。

7.在等式或不等式中,一个量可以用它的等量来代替.例如,如果a=b,b=c,那么a=c,这一性质也看作公理,称为“等量代换”.判断:

所有的命题都是公理。所有的真命题都是定理。所有的定理是真命题。所有的公理是真命题。

6.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题。把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。Eg:(1)两条直线平行,内错角相等.

(2)如果两个实数相等,那么它们的平方相等.(3)如果两个实数相等,那么它们的绝对值相等.(4)全等三角形的对应角相等.

注意: 一个命题是真命题,它的逆命题却不一定是真命题.如果一个定理的逆命题也是真命题,那么这个逆命题就是原来定理的逆定理!(勾股定理和它的逆定理)

7.三角形内角和定理:三角形三个角的内角和等于180° 推论一:三角形的一个外角等于与它不相邻的两个内角的和。推论二:三角形的一个外角大于与它不相邻的任意一个内角。8.直角三角形的两个锐角互余。有两角互余的三角形是直角三角形。三角形的外角和等于360°。

9.反证法:先提出与命题的结论相反的假设,推出矛盾,从而证明命题成立.这种证明的方法叫做反证法.反证法的步骤:否定结论—推出矛盾—肯定结论 Eg:

1、“a<b”的反面应是()(A)a≠>b(B)a >b(C)a=b(D)a=b或a >b

2、用反证法证明命题“三角形中最多有一个是直角”时,应如何假设? ___________________________________

3、写出下列各结论的反面:

(1)a//b(2)a≥0(3)b是正数(4)a⊥b(5)至多有一个(6)至少有一个 常用的互为否定的表述方式:

都是——不都是;大于——不大于;至少有一个——一个也没有;至少有三个——至多有两个;至少有n个——至多有(n-1)个;至多有一个——至少有两个

第三篇:命题与证明的知识点总结

命题与证明的知识点总结(湘教版)

一、知识结构梳理

1.定义:

(1)概念①;(2)分类

2.命题② 假命题(可通过来说明)

(3的形式。

命题与证明

(4)互逆命题(1)公理:

(2)定理:3.公理与定理

(1)概念:4.证明①理解题意,画出

(2)证明命题的一般步骤②写出已知,③写出

(3)反证法

二、知识点归类

知识点定义的概念对于一个概念特征性质的描述叫做这个概念的定义。如:“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义。

注意:定义必须严密的,一般避免使用含糊不清的语言,例如“一些”、“大概”、“差不多”

等不能在定义中出现。

例1 在下列横线上,填写适当的概念:

(1)连结三角形两边中点的线段叫作三角形的;

(2)能够完全重合的两个图形叫做;

(3)两组对边分别平行的四边形叫做;

例2 叙述概念的定义

(1)数轴;(2)等腰三角形

知识点命题

知识点一命题的概念

叙述一件事情的句子(陈述句),要么是真的,要么是假的,那么称这个陈述句是一个命 如“你是一个学生”、“我们所使用是教科书是湘教版的”等。

注意:(1)命题必须是一个完整的句子。

(2)这个句子必须对某事情作出肯定或者否定的判断,二者缺一不可。

例 下列句子中不是命题的是()

A 明天可能下雨B 台湾是中国不可分割的部分

C 直角都相等D 中国是2008年奥运会的举办国

知识点二真命题与假命题

如果一个命题叙述的事情是真的,那么称它是真命题;如果一个命题叙述的事情是假的,那么称它是假命题

注意:真、假命题的区别就在于其是否是正确的,在判断命题的真假时,要注意把握这点。例 下列命题中的真命题是()

A 锐角大于它的余角B 锐角大于它的补角

C 钝角大于它的补角D 锐角与钝角等于平角

知识点三命题的结构

每个命题都有条件和结论两部分组成。条件是已知的事项,结论是由已知事项推断出的事项。一般地,命题都可以写出“如果------,那么-------”的形式。有的命题表面上看不具有“如果------,那么-------”的形式,但可以写成这种形式。如:“对顶角相等”,改写成“如果两个角是对顶角,那么这两个角相等”。

例 把下列命题改写成“如果------,那么-------”的形式,并指出条件与结论。

1、同角的余角相等

2、两点确定一条直线

知识点四证明及互逆命题的定义

1、从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,这个过程叫作证明。注意:证明一个命题是假命题的方法是举反例,即找出一个例子,它符合命题条件,但它不满足命题的结论,从而判断这个命题是假命题。

2、一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题称为互逆的命题,其中的一个命题叫作另一个命题的逆命题。

注意:一个命题为真不能保证它的逆命题为真,逆命题是否为真,需要具体问题具体分析。例 说出下列命题的逆命题,并指出它们的真假。

(1)直角三角形的两锐角互余;(2)全等三角形的对应角相等。

公理与定理

知识点一公理与定理

数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其它命题真假的原始依据,这样的真命题叫做公理。

以基本定义和公理作为推理的出发点,去判断其他命题的真假,已经判断为真的命题称为定理。

注意:(1)公理是不需要证明的,它是判断其他命题真假的依据,定理是需要证明;(2)定理都是真命题,但真命题不一定都是定理。

例 填空:(1)同位角相等,则两直线;(2)平面内两条不重合的直线的位置关系是;(3)四边形是平行四边形。

知识点二互逆定理

如果一个定理的逆命题也是定理,那么称它是原来定理的逆定理,这两个定理称为互逆定理。

注意:每个命题都有逆命题,但并非所有的定理都有逆定理。如:“对顶角相等”就没逆定理。

证明

知识点一证明的含义

从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,从而判定该命题为真,这个过程叫做证明。

注意:(1)证明一个命题时,首先要分清命题条件和结论,其次要从已知条件出发,运用定义、公理、定理进行推理,得出结论。

(2)证明的过程必须做到步步有据。

例.已知:如图正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF

(1)求证:ΔBCE≌ΔDCF

(2)若∠FDC=30°,求∠BEF的度数。

AD

BCF

知识点二反证法

从命题结论的反面出发,引出矛盾,从而证明原命题成立,这样的证明方法叫做反证法。

反证法的关键在于反设所证命题的结论。适用范围:证明一些命题,且正面证明有困难,情况多或复杂,而否定则比较简单。

反证法证题步骤:(1)假设命题的结论不成立,即假设命题结论的反面成立;(2)从假设出发,经过推理,得出矛盾;(3)由矛盾判断假设不正确,从而肯定命题的结论成立。例在 △ABC中,∠A、∠B、∠C是它的三个内角。

求证:在∠A、∠B、∠C中不可能有两个直角。

三、巩固训练

一、填空

1.把命题“三边对应相等的两个三角形全等”写成“如果„„,那么„„”的形式是________________________________________________________________________.222.命题“如果ab ,那么ab”的逆命题是________________________________.3.命题“三个角对应相等的两个三角形全等”是一个______命题(填“真”或“假”).4.如图,已知梯形ABCD中, AD∥BC, AD=3,AB=CD=4, BC=7,则∠B=_______.5.用反证法证明“b1∥b2”时,应先假设_________.二、选择题

1.下列语句中,不是命题的是()

A.直角都等于90°B.面积相等的两个三角形全等

C.互补的两个角不相等D.作线段AB

2.下列命题是真命题的是()

A.两个等腰三角形全等B.等腰三角形底边中点到两腰距离相等

C.同位角相等D.两边和一角对应相等的两个三角形全等

3.下列条件中能得到平行线的是()

①邻补角的角平分线;②平行线内错角的角平分线;③平行线同位角的平分线; ④平行线同旁内角的角平分线.A.①②B.②④C.②③D.④

4.下列命题的逆命题是真命题的是()

A.两直线平行同位角相等B.对顶角相等

C.若ab,则a2b2D.若(a1)xa1,则x

15.三角形中,到三边距离相等的点是()

A.三条高的交点B.三边的中垂线的交点

C.三条角平分线的交点D.三条中线的交点

6.下列条件中,不能判定两个直角三角形全等的是()

A.两条直角边对应相等B.斜边和一锐角对应相等

C.斜边和一条直角边对应相等D.面积相等

7.△ABC的三边长a,b,c满足关系式(ab)(bc)(ca)0,则这个三角形一定是(A.等腰三角形B.等边三角形

C.等腰直角三角形D.无法确定

8.如图,点E在正方形ABCD的边AB上,若EB的长为1,EC的长为2,那么正方形ABCD的面积是()

三、判断下列命题是真命题还是假命题,若是假命题,请举一个反例说明.(1)有一个角是60°的等腰三角形是等边三角形.(2)有两个角是锐角的三角形是锐角三角形.)

第四篇:命题与证明的知识点总结

命题与证明的知识点总结(湘教版)

一、知识结构梳理

1.定义:

(1)概念

(2)分类

2.命题② 假命题(可通过

(3)形式:命题都可写成的形式。

命题与证明(4)互逆命题

1)公理:

3.公理与定理

(2)定理:

(1)概念:

4.证明①理解题意,画出

(2)证明命题的一般步骤②写出已知,③写出

(3)反正法

二、知识点归类

知识点定义的概念对于一个概念特征性质的描述叫做这个概念的定义。如:“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义。

注意:定义必须严密的,一般避免使用含糊不清的语言,例如“一些”、“大概”、“差不多”

等不能在定义中出现。

例1 在下列横线上,填写适当的概念:

(1)连结三角形两边中点的线段叫作三角形的;

(2)能够完全重合的两个图形叫做;

(3)两组对边分别平行的四边形叫做;

例2 叙述概念的定义

(1)数轴;(2)等腰三角形

知识点命题

知识点一命题的概念

叙述一件事情的句子(陈述句),要么是真的,要么是假的,那么称这个陈述句是一个命 如“你是一个学生”、“我们所使用是教科书是湘教版的”等。

注意:(1)命题必须是一个完整的句子。

(2)这个句子必须对某事情作出肯定或者否定的判断,二者缺一不可。

例 下列句子中不是命题的是()

A 明天可能下雨B 台湾是中国不可分割的部分

C 直角都相等D 中国是2008年奥运会的举办国

知识点二真命题与假命题

如果一个命题叙述的事情是真的,那么称它是真命题;如果一个命题叙述的事情是假的,那么称它是假命题

注意:真、假命题的区别就在于其是否是正确的,在判断命题的真假时,要注意把握这点。例 下列命题中的真命题是()

A 锐角大于它的余角B 锐角大于它的补角

C 钝角大于它的补角D 锐角与钝角等于平角

知识点三命题的结构

每个命题都有条件和结论两部分组成。条件是已知的事项,结论是由已知事项推断出的事项。一般地,命题都可以写出“如果------,那么-------”的形式。有的命题表面上看不具有“如果------,那么-------”的形式,但可以写成这种形式。如:“对顶角相等”,改写成“如果两个角是对顶角,那么这两个角相等”。

例 把下列命题改写成“如果------,那么-------”的形式,并指出条件与结论。

1、同角的余角相等

2、两点确定一条直线

知识点四证明及互逆命题的定义

1、从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,这个过程叫作证明。注意:证明一个命题是假命题的方法是举反例,即找出一个例子,它符合命题条件,但它不满足命题的结论,从而判断这个命题是假命题。

2、一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题称为互逆的命题,其中的一个命题叫作另一个命题的逆命题。

注意:一个命题为真不能保证它的逆命题为真,逆命题是否为真,需要具体问题具体分析。例 说出下列命题的逆命题,并指出它们的真假。

(1)直角三角形的两锐角互余;(2)全等三角形的对应角相等。

公理与定理

知识点一公理与定理

数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其它命题真假的原始依据,这样的真命题叫做公理。

以基本定义和公理作为推理的出发点,去判断其他命题的真假,已经判断为真的命题称为定理。

注意:(1)公理是不需要证明的,它是判断其他命题真假的依据,定理是需要证明;(2)定理都是真命题,但真命题不一定都是定理。

例 填空:(1)同位角相等,则两直线;(2)平面内两条不重合的直线的位置关系是;(3)四边形是平行四边形。

知识点二互逆定理

如果一个定理的逆命题也是定理,那么称它是原来定理的逆定理,这两个定理称为互逆定理。

注意:每个命题都有逆命题,但并非所有的定理都有逆定理。如:“对顶角相等”就没逆定理。

证明

知识点一证明的含义

从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,从而判定该命题为真,这个过程叫做证明。

注意:(1)证明一个命题时,首先要分清命题条件和结论,其次要从已知条件出发,运用定义、公理、定理进行推理,得出结论。

(2)证明的过程必须做到步步有据。

知识点二命题的证明

证明几何命题的表述格式:(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写条件,在“求证”中写出结论;(3)在“证明”中写出推理过程。知识点三折叠问题

1、同旁,与其重叠或不重叠;显然,“折”是过程,“叠”是结果。折叠,就是将图形的一部分沿着一条直线翻折180°,使它与另一部分在这条直线

2、折叠的性质:折叠不改变图形的大小和形状,即折叠部分在折叠前后是全等的图形,满足公理“轴反射”

知识点四反证法

从命题结论的反面出发,引出矛盾,从而证明原命题成立,这样的证明方法叫做反证法。

反证法的关键在于反设所证命题的结论。适用范围:证明一些命题,且正面证明有困难,情况多或复杂,而否定则比较简单。

反证法证题步骤:(1)假设命题的结论不成立,即假设命题结论的反面成立;(2)从假设出发,经过推理,得出矛盾;(3)由矛盾判断假设不正确,从而肯定命题的结论成立。例在 △ABC中,∠A、∠B、∠C是它的三个内角。

求证:在∠A、∠B、∠C中不可能有两个直角。

第五篇:7.2定义与命题例题与讲解(2013-2014学年北师大八年级上)

定义与命题

1.定义

对某些名称或术语的含义加以描述,作出明确的规定,就是对名称和术语下定义. 谈重点下定义的注意事项

①在定义中,必须揭示出事物与其他事物的本质属性的区别.②定义的双重性:定义本身既可以当性质用,又可以当判定用.③语句必须通顺、严格、准确,一般不能用“大约”“大概”“差不多”“左右”等含糊不清的词语.要有利于人们对被定义的事物或名词与其他事物或名词区别.

【例1】 下列语句,属于定义的是().

A.两点之间线段最短

B.连接三角形两边中点的线段叫做三角形的中位线

C.三角形的中位线平行于第三边并且等于第三边的一半

D.三人行则必有我师焉

解析:判断是不是定义,关键看是否对名称或术语的含义加以描述,而且作出了规定.很明显,A,C,D没有对名称或术语作出描述,故应选B.答案:B

点技巧分清定义与命题

注意定义与命题的区分,作出判断的是命题,对名称或术语作出描述的是定义.

2.命题

(1)定义:判断一件事情的句子,叫做命题.

(2)命题的组成结构:

①每个命题都是由条件和结论两部分组成.条件是已知事项,结论是由已知事项推断出的事项.命题一般写成“如果„„那么„„”的形式.“如果”引出的部分是条件,“那么”引出的部分是结论.

②有些命题没有写成“如果„„那么„„”的形式,条件和结论不明显.对于这样的命题,要经过分析才能找到条件和结论,也可以将它们改写成“如果„„那么„„”的形式.命题的条件部分,有时也可用“已知„„”或“若„„”等形式表述.命题的结论部分,有时也可用“求证„„”或“则„„”等形式表述.

谈重点改写命题

命题的改写不能是简单地加上“如果”“那么”,而应当使改写的命题和原来的命题内容不变,且语句通顺完整,命题的条件、结论要清楚可见.有些命题条件和结论不一定只有一个,要注意区分.

【例2】 指出下列命题的条件和结论:①平行于同一直线的两条直线互相平行;②若ab=1,则a与b互为倒数;③同角的余角相等;④矩形的四个角都是直角.

分析:命题的条件是已知事项,结论是由已知事项推断出的事项.命题一般写成“如果„„,那么„„”的形式.“如果”引出的部分是条件,“那么”引出的部分是结论. 解:①条件:两条直线都和第三条直线平行,结论:这两条直线互相平行. ②条件:ab=1,结论:a与b互为倒数.

③条件:两个角是同一个角的余角,结论:这两个角相等.

④条件:一个四边形是矩形,结论:这个四边形的四个角都是直角.

点技巧分清条件和结论

“若„„则„„”形式的命题中“若”后面是条件,“则”后面是结论.

3.公理、定理、证明

(1)公理

公认的真命题称为公理.

①公理是不需推理论证的真命题. ②公理可以作为推理论证定理及其他命题真假的依据. 常用的几个公理:

①两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.

②两条平行线被第三条直线所截,同位角相等. ③两边及其夹角对应相等的两个三角形全等.

④两角及其夹边对应相等的两个三角形全等.

⑤三边对应相等的两个三角形全等.

⑥全等三角形的对应边相等、对应角相等.

其他公理:等式和不等式的有关性质,等量代换都可以看作公理.

(2)定理

有些命题的正确性是通过推理的方法证实的,这样的真命题叫做定理.

①定理是经过推理论证的真命题,但真命题不一定都是定理.

②定理可以作为推理论证其他命题的依据.

(3)证明

推理的过程叫证明.推理必须做到步步有据,条条有理.

【例3】 下列说法正确的是().

A.真命题都可以作为定理

B.公理不需要证明

C.定理不一定都要证明

D.证明只能根据定义、公理进行

解析:真命题并不都是定理,故选项A不正确;定理必须经过证明,故选项C不正确;证明可以根据定义、公理、定理进行,故选项D不正确;公理是公认的真命题,不需要证明,故选B.答案:B

点评:掌握公理、定理、命题之间的区别,明确其含义,是解决本题的关键.

4.命题及真假命题的判断

(1)命题的判断

判断一个句子是否为命题,要根据命题的定义.

①命题的特征:一是必须为一个完整的句子;二是必须对某件事情做出肯定或否定的判断,即具有明确的判断性.如果一个句子对某一件事情没有作出任何判断,那么它就不是命题.

②命题并不是数学所独有,凡是判断某一件事情的正确或错误的语句都是命题.

③命题是陈述语句,其他形式的句子,如:疑问句、感叹句、祈使句等都不是命题.如:“你爱好什么运动?”没有作出判断,这不是命题. 注意:错误的判断也是命题,不能以正确与否来判断是否为命题.

(2)真假命题的判断

命题是一个判断,这个判断可能正确,也可能错误.因此可以将命题分为真命题和假命题.

①正确的命题称为真命题.

②不正确的命题称为假命题.

③真命题、假命题的判断与比较:

要说明一个命题是假命题,通常可以举出一个例子,使之具有命题的条件,而不具有命题的结论,这种例子称为反例;要说明一个命题是真命题需根据公理和定理证明.

谈重点判断真假命题的方法

①如果题设成立,结论也一定成立,那么这样的命题为真命题;②如果题设成立,但结论不成立,这样的命题为假命题.

【例4-1】 下列句子中是命题的有__________(填序号).①直角三角形中的两个锐角互余.②正数都小于0.③如果∠1+∠2=180°,那么∠1与∠2互补.④太阳不是行星.⑤

对顶角相等吗?⑥作一个角等于已知角.

解析:判断是否为命题,要根据命题的特征:一是必须为一个完整的句子;二是必须对某件事情做出肯定或否定的判断.所以①②③是命题,它们都对事情作出了肯定回答;④是命题,它对事情作出了否定回答;⑤不是陈述语句;⑥只是描述了一个作图的过程,并未作出判断,不是命题.

答案:①②③④

【例4-2】 下列命题中,真命题是().

A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0

C.若a·b=0,则a=0,且b=0D.若a·b=0,则a=0,或b=0

解析:分析是否为真命题,需要分析各题设能否推出结论,从而利用排除法得出答案.由a·b>0可得a,b同号,可能同为正,也可能同为负,所以A是假命题;a·b<0可得a,b异号,所以B是假命题;a·b=0可得a,b中必有一个字母的值为0,但不一定同时为零,所以C是假命题;若a·b=0,则a=0,或b=0,或二者同时为0,所以D是真命题.故选

D.答案:D

【例4-3】 已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.

其中假命题有__________(填序号).

解析:

答案:析规律巧判真假命题

命题是判断事情的语句.若命题判断的事情是正确的,则命题是真命题;反之,命题为假命题.

5.命题的组合命题是由条件和结论组成的,当条件成立,结论也成立时,该命题即为真命题.命题的组成就是通过选择一定的条件,使结论成立,即组成真命题.

组合新的命题是考察命题的概念及有关知识的重要题型.该题型常见于对几何的考查,一般是给出几个单独的论断,根据有关知识内容结合图形重新组合写出正确的命题.

命题的条件和结论往往不是固定的,要使所组合的命题是正确的,要求必须理解掌握有关的知识内容.

点评:①命题组合时,条件可能不止一个,注意两个条件的情况.②组合命题一般是几何中的某一图形的性质或者判定.

【例5-1】 如图,在△ABD和△ACE中,有下列四个论断:①AB=AC;②AD=AE;③∠B=∠C;④BD=CE.请以其中三个论断作为条件,余下的一个论断作为结论,写出一个正确的命题__________.(用序号的形式写出)

解析:答案不唯一,如:由AB=AC,∠B=∠C,BD=CE,得到△ABD≌△ACE,则AD=AE.所以①③④②.答案:①③④②

【例5-2】 对同一平面内的三条直线a,b,c,给出下列五个论断:①a∥b;②b∥c;

③a⊥b;④a∥c;⑤a⊥c.以其中两个论断为条件,另一个论断为结论,组成一个你认为正确的命题:__________(用序号表示).

解析:答案不唯一.根据“如果两条直线都和第三条直线平行,那么这两条直线也平行”,可得出:若①②,则④.答案:若①②,则④

下载八年级命题与证明(知识点典型例题,动态几何问题)word格式文档
下载八年级命题与证明(知识点典型例题,动态几何问题).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐