第一篇:19-第十九章-几何证明-八年级(上)-知识点汇总-沪教版
沪教版数学八年级(上)第十九章几何证明知识点汇总
第十九章几何证明
19.1 命题和证明
1、我们现在学习的证明方式是演绎证明,简称证明
2、能界定某个对象含义的句子叫做定义
3、判断一件事情的句子叫做命题;其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题
4、数学命题通常由题设、结论两部分组成
5、命题可以写成“如果……那么……”的形式,如果后是题设,那么后市结论
19.2 证明举例
平行的判定,全等三角形的判定
19.3 逆命题和逆定理
1、在两个命题中,如果第一个命题的题设是第二个命题的结论,二第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题
2、如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理
19.4线段的垂直平分线
1、线段的垂直平分线定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。
2、逆定理:和一条线段的两个端点距离相等的点,在这条线段垂直平分线上。
19.5 角的平分线
1、角的平分线定理:在角的平分线上的点到这个角的两边距离相等。
2、逆定理:在一个角的内部(包括顶点)且到角的两边距离相等的点在这个角的平分线上。
19.6 轨迹
1、和线段两个端点距离相等的点的轨迹是这条线段的垂直平分线
2、在一个叫的内部(包括顶点)且到角两边距离相等的点的轨迹是这个角的平分线
3、到定点的距离等于定长的点的轨迹是以这个定点为圆心、定长为半径的圆
19.7 直角三角形全等的判定
1、定理1:如果直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等
2、(简记为H.L)
3、其他全等三角形的判定定理对于直角三角形仍然适用 / 2
沪教版数学八年级(上)第十九章几何证明知识点汇总
19.8 直角三角形的性质
1、定理2:直角三角形斜边上的中线等于斜边的一半
2、推论1:在直角三角形中,如果一锐角等于30,那么它所对的直角边等于斜边的一半
3、推论2:在直角三角形中,如果一条直角边等于斜边的一般,那么这条直角边所对的角等于30 19.9 勾股定理
1、定理:在直角三角形中,斜边大于直角边
2、勾股定理:直角三角形两条直角边的平方和,等于斜边的平方
3、勾股定理的逆定理:如果三角形的一条边的平方等于其他两条边的平方和,那么这个三角形是直角三角形
19.10 两点间距离公式
如果直角坐标平面内有两点A(x1,y1)、B(x2,y2),那么A、B两点的距离AB(x2x1)2(y2y1)2 / 2
第二篇:几何证明知识点(范文模版)
几何证明知识点
命题和证明
1、判断一件事情的句子,叫做命题。判断为正确的命题叫做真命题;判断为错误的命题叫做假命题。
2、数学命题通常由题设、结论两部分组成。题设是已知事项,结论是由已知事项推出的事项。因此命题可以写成“如果······,那么······”的形式。
3、人们从长期实践中总结出来的真命题叫做公理,它们可以作为判断其他命题真假的原始数据。
4、有些命题是从公理或其他真命题出发,用推理的方法证明为正确的,并进一步作为判断其他命题真假的依据,这样的真命题叫做定理。
证明举例
1、由题设、定义以及已被确定的公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明。
2、真命题的证明一般包括“画图、写已知求证、证明”三个基本步骤。“画图和已知求证”通常是告诉大家的,因此不必书写。
3、几何证明没有固定的方法可循,因此只能在训练的过程中,积累一般分析方法和思维方法。例如:证明线段、角相等的一般途径有哪些?证明两直线平行、垂直的一般途径有哪些?常用的添加辅助线的方法有哪几种?等等。
逆命题和逆定理
1、在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题。如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。
2、如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理。
3、每个命题都有逆命题,但每个定理不一定都有逆定理。
线段的垂直平分线
1、定理:线段垂直平分线上任意一点到这条线段两个端点的距离相等。
2、逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
3、线段垂直平分线可以看作和一条线段两个端点距离相等的点的集合。
角的平分线
1、角的平分线的概念:从角的顶点出发,等分这个角的射线,叫做这个角的平分线。
2、角是轴对称图形,它的对称轴是这个角的平分线所在的直线。
3、角的平分线性质:在角的平分线上的点到这个角的两边的距离相等。
4、角的平分线性质的逆定理:在一个角的内部(包括顶点)且到角的两边距离相等的点在这个角的平分线上。
5、角的平分线可以看作这个角的内部(包括顶点)到角的两边距离相等的点的集合。
轨迹
1、点的轨迹:符合某些条件的所有的点的集合叫做点的轨迹。
2、基本轨迹
(1)和线段两个端点距离相等的点的轨迹是这条线段的垂直平分线。
(2)在一个角的内部(包括顶点)且到角两边距离相等的点的轨迹是这个角的平分线。
(3)到定点的距离等于定长的点的轨迹是以这个定点为圆心、定长为半径的圆。
3、交轨法:先找出符合一部分作图要求的点的轨迹,再找出符合另一部分作图要求的点的轨迹,然后得出这两个轨迹的交点。这种利用轨迹相交进行作图的方法叫做交轨法。
直角三角形全等的判定
1、直角三角形是特殊的三角形,对于一般三角形全等的判定方法,直角三角形都适用。
2、直角三角形全等的判定定理
定理:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为H.L.)。
直角三角形的性质
直角三角形的性质,可以从它的角、边以及特殊线段之间构成的各种关系的特征去理解。
1、定理1:直角三角形的两个锐角互余。
2、定理2:在直角三角形中,斜边上的中线等于斜边的一半。
推论1:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。
推论2:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30。
勾股定理
1、在直角三角形中,斜边大于直角边。
2、勾股定理:直角三角形两条直角边的平方和,等于斜边的平方。
3、勾股定理的逆定理:如果三角形的一条边的平方等于其他两条边的平方和,那么这个三角形是直角三角形。
4、勾股定理及其逆定理在实际生活中有着广泛的应用。
两点的距离公式
在直角坐标平面内:
1、x轴或平行于x轴的直线上的两点P1(x1,y),P2(x2,y)间的距离P1P2x1x2。
2、y轴或平行于y轴的直线上的两点Q1(x,y1),Q2(x,y2)间的距离
Q1Q2y1y2。
22PQxyy3、在x轴上一点P与在轴上一点之间的距离(x,0)Q(0,y)111111114、任意两点A(x1,y1),B(x2,y2)之间的距离公式是AB(x1x2)2(y1y2)2
第三篇:八年级数学下册 几何证明初步知识点
第十一章 几何证明初步知识点整理
1.定义:用来说明一个名词含义的语句叫做定义.2.命题:对事情进行判断的语句叫做命题.每个命题都由条件和结论两部分组成.条件是已知事项,结论是由已知事项推断出的事项.一般地,命题可以写成“如果„„,那么„„”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.例如,下列句子都不是命题:(1)你喜欢数学吗?(2)作线段AB=CD.⑶清新的空气;⑷不许讲话。3.正确的命题称为真命题,不正确的的命题称为假命题.4.反例:要指出一个命题是假命题,只要能举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了。这种例子称为反例。
5.公理:人类经过长期实践后公认为正确的命题,作为判断其他命题的依据。这些公认为正确的命题叫做公理。
证明:除了公理外,其它真命题的正确性都通过推理的方法证实.推理的过程称为证明.定理:经过证明的真命题称为定理.本套教材以下列基本事实作为公理: 1.两点确定一条直线。
2.过直线外一点可以作且只能作一条直线与已知直线平行。3.两直线平行,同位角相等。
4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。5.判断三角形全等的方法:SAS ASA SSS。6.全等三角形的对应角相等,对应边相等。
7.在等式或不等式中,一个量可以用它的等量来代替.例如,如果a=b,b=c,那么a=c,这一性质也看作公理,称为“等量代换”.判断:
所有的命题都是公理。所有的真命题都是定理。所有的定理是真命题。所有的公理是真命题。
6.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题。把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。Eg:(1)两条直线平行,内错角相等.
(2)如果两个实数相等,那么它们的平方相等.(3)如果两个实数相等,那么它们的绝对值相等.(4)全等三角形的对应角相等.
注意: 一个命题是真命题,它的逆命题却不一定是真命题.如果一个定理的逆命题也是真命题,那么这个逆命题就是原来定理的逆定理!(勾股定理和它的逆定理)
7.三角形内角和定理:三角形三个角的内角和等于180° 推论一:三角形的一个外角等于与它不相邻的两个内角的和。推论二:三角形的一个外角大于与它不相邻的任意一个内角。8.直角三角形的两个锐角互余。有两角互余的三角形是直角三角形。三角形的外角和等于360°。
9.反证法:先提出与命题的结论相反的假设,推出矛盾,从而证明命题成立.这种证明的方法叫做反证法.反证法的步骤:否定结论—推出矛盾—肯定结论 Eg:
1、“a<b”的反面应是()(A)a≠>b(B)a >b(C)a=b(D)a=b或a >b
2、用反证法证明命题“三角形中最多有一个是直角”时,应如何假设? ___________________________________
3、写出下列各结论的反面:
(1)a//b(2)a≥0(3)b是正数(4)a⊥b(5)至多有一个(6)至少有一个 常用的互为否定的表述方式:
都是——不都是;大于——不大于;至少有一个——一个也没有;至少有三个——至多有两个;至少有n个——至多有(n-1)个;至多有一个——至少有两个
第四篇:沪教版_初二数学几何证明举例
1.已知:如图1,AD是BC上的中线,且BE∥CF.求证:DF=DE.2.已知:如图2,AD、BC相交于点O,OA=OD,OB=OC,点E、F
在AD上,∠ABE=∠DCF.求证:BE∥CF.3.已知:如图3,在△ABC中,EF∥BC,∠1=∠2,D是EF中点。
求证:AE=AF.4.已知:如图1,AB∥CD,BE、DE分别是∠ABD、∠BDC的平分线.求证:BE⊥
DE.5.已知:如图2,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC.求证:AO⊥BC.6.如图3,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于E.1)若BC在DE的同侧(如图①)且AD=CE,求证:BA⊥AC.2)若BC在DE的两侧(如图②)其他条件不变,问AB与AC仍垂直吗?若是,请予证明,若不是请说明理由.7.已知:如图1,AB=CD,AD=BC,AE=CF.B、A、E三点
共线,D、C、F三点共线.求证:∠E=∠F.8.已知:如图2,AB=AC,∠A=90°,AE=BF,BD=DC.求证:FD⊥ED.9.已知:如图3,AC=BD,AD⊥AC于A,BC⊥BD于B.求证:AD=BC.10.已知:如图1,在△ABC中,∠C=2∠B,AD⊥BC.求证:AC=BD-DC
11.已知:如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.12.已知:如图3,正方形ABCD中,点F在DC上,E在BC上,∠EAF=45°.求证:EF=BE+DF.
第五篇:八年级几何证明1
八年级几何证明精选
一、基础题:
1、在ΔABC中,a,b,c分别是∠A,∠B,∠C的对边,且∠A=60°,其三边a,b,c满足下列关a-b-c2系,则ΔABC的形状是.a-b-c2、在ΔABC中,AB=AC=2,BC边上有100个不同点P1,P2……P100,记Mi=APi+BPi×CPi(i=1,2……100),则M1+M2+……+M100的值是.3、在ΔABC中,若a+b=c+ab,则∠C的大小为()
A 60°B 45°C 35°D 22.5°
4、如图所示,在线段BC作ΔABC和ΔBCD,使AB=AC,BD>DC,且CΔABC=CΔDBC,若AC与BD相交于点E,则下列说法正确的是
A AE
5、如图已知,△ABC中,∠B=40°,∠C=62°,AD是BC边上的高,AE是∠BAC的平分线。则∠DAE的度数=。
2222333D B
CB6、如图5,在ABCD中,AEBC于E,AEEBECa,且a是一元二次方程E图5 C
x22x30的根,则ABCD的周长为()
A.4.12.2.212
1、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.
求证:△PBC是正三角形.
D C2、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点. 求证:点P到边AB的距离等于AB的一半.
F3、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.
求证:CE=CF.(初二)
4、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.
求:∠APB的度数.
5、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.
6、如图所示,O为ΔABC内任意一点,AP,BO,CO的延长线分别交对边于A1,B1,C1。求证:
A0B0C0 为定值.AA1BB1CC1C