19-第十九章-几何证明-八年级(上)-知识点汇总-沪教版

时间:2019-05-14 11:43:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《19-第十九章-几何证明-八年级(上)-知识点汇总-沪教版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《19-第十九章-几何证明-八年级(上)-知识点汇总-沪教版》。

第一篇:19-第十九章-几何证明-八年级(上)-知识点汇总-沪教版

沪教版数学八年级(上)第十九章几何证明知识点汇总

第十九章几何证明

19.1 命题和证明

1、我们现在学习的证明方式是演绎证明,简称证明

2、能界定某个对象含义的句子叫做定义

3、判断一件事情的句子叫做命题;其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题

4、数学命题通常由题设、结论两部分组成

5、命题可以写成“如果……那么……”的形式,如果后是题设,那么后市结论

19.2 证明举例

平行的判定,全等三角形的判定

19.3 逆命题和逆定理

1、在两个命题中,如果第一个命题的题设是第二个命题的结论,二第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题

2、如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理

19.4线段的垂直平分线

1、线段的垂直平分线定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。

2、逆定理:和一条线段的两个端点距离相等的点,在这条线段垂直平分线上。

19.5 角的平分线

1、角的平分线定理:在角的平分线上的点到这个角的两边距离相等。

2、逆定理:在一个角的内部(包括顶点)且到角的两边距离相等的点在这个角的平分线上。

19.6 轨迹

1、和线段两个端点距离相等的点的轨迹是这条线段的垂直平分线

2、在一个叫的内部(包括顶点)且到角两边距离相等的点的轨迹是这个角的平分线

3、到定点的距离等于定长的点的轨迹是以这个定点为圆心、定长为半径的圆

19.7 直角三角形全等的判定

1、定理1:如果直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等

2、(简记为H.L)

3、其他全等三角形的判定定理对于直角三角形仍然适用 / 2

沪教版数学八年级(上)第十九章几何证明知识点汇总

19.8 直角三角形的性质

1、定理2:直角三角形斜边上的中线等于斜边的一半

2、推论1:在直角三角形中,如果一锐角等于30,那么它所对的直角边等于斜边的一半

3、推论2:在直角三角形中,如果一条直角边等于斜边的一般,那么这条直角边所对的角等于30 19.9 勾股定理

1、定理:在直角三角形中,斜边大于直角边

2、勾股定理:直角三角形两条直角边的平方和,等于斜边的平方

3、勾股定理的逆定理:如果三角形的一条边的平方等于其他两条边的平方和,那么这个三角形是直角三角形

19.10 两点间距离公式

如果直角坐标平面内有两点A(x1,y1)、B(x2,y2),那么A、B两点的距离AB(x2x1)2(y2y1)2 / 2

第二篇:几何证明知识点(范文模版)

几何证明知识点

命题和证明

1、判断一件事情的句子,叫做命题。判断为正确的命题叫做真命题;判断为错误的命题叫做假命题。

2、数学命题通常由题设、结论两部分组成。题设是已知事项,结论是由已知事项推出的事项。因此命题可以写成“如果······,那么······”的形式。

3、人们从长期实践中总结出来的真命题叫做公理,它们可以作为判断其他命题真假的原始数据。

4、有些命题是从公理或其他真命题出发,用推理的方法证明为正确的,并进一步作为判断其他命题真假的依据,这样的真命题叫做定理。

证明举例

1、由题设、定义以及已被确定的公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明。

2、真命题的证明一般包括“画图、写已知求证、证明”三个基本步骤。“画图和已知求证”通常是告诉大家的,因此不必书写。

3、几何证明没有固定的方法可循,因此只能在训练的过程中,积累一般分析方法和思维方法。例如:证明线段、角相等的一般途径有哪些?证明两直线平行、垂直的一般途径有哪些?常用的添加辅助线的方法有哪几种?等等。

逆命题和逆定理

1、在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题。如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。

2、如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理。

3、每个命题都有逆命题,但每个定理不一定都有逆定理。

线段的垂直平分线

1、定理:线段垂直平分线上任意一点到这条线段两个端点的距离相等。

2、逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

3、线段垂直平分线可以看作和一条线段两个端点距离相等的点的集合。

角的平分线

1、角的平分线的概念:从角的顶点出发,等分这个角的射线,叫做这个角的平分线。

2、角是轴对称图形,它的对称轴是这个角的平分线所在的直线。

3、角的平分线性质:在角的平分线上的点到这个角的两边的距离相等。

4、角的平分线性质的逆定理:在一个角的内部(包括顶点)且到角的两边距离相等的点在这个角的平分线上。

5、角的平分线可以看作这个角的内部(包括顶点)到角的两边距离相等的点的集合。

轨迹

1、点的轨迹:符合某些条件的所有的点的集合叫做点的轨迹。

2、基本轨迹

(1)和线段两个端点距离相等的点的轨迹是这条线段的垂直平分线。

(2)在一个角的内部(包括顶点)且到角两边距离相等的点的轨迹是这个角的平分线。

(3)到定点的距离等于定长的点的轨迹是以这个定点为圆心、定长为半径的圆。

3、交轨法:先找出符合一部分作图要求的点的轨迹,再找出符合另一部分作图要求的点的轨迹,然后得出这两个轨迹的交点。这种利用轨迹相交进行作图的方法叫做交轨法。

直角三角形全等的判定

1、直角三角形是特殊的三角形,对于一般三角形全等的判定方法,直角三角形都适用。

2、直角三角形全等的判定定理

定理:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为H.L.)。

直角三角形的性质

直角三角形的性质,可以从它的角、边以及特殊线段之间构成的各种关系的特征去理解。

1、定理1:直角三角形的两个锐角互余。

2、定理2:在直角三角形中,斜边上的中线等于斜边的一半。

推论1:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。

推论2:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30。

勾股定理

1、在直角三角形中,斜边大于直角边。

2、勾股定理:直角三角形两条直角边的平方和,等于斜边的平方。

3、勾股定理的逆定理:如果三角形的一条边的平方等于其他两条边的平方和,那么这个三角形是直角三角形。

4、勾股定理及其逆定理在实际生活中有着广泛的应用。

两点的距离公式

在直角坐标平面内:

1、x轴或平行于x轴的直线上的两点P1(x1,y),P2(x2,y)间的距离P1P2x1x2。

2、y轴或平行于y轴的直线上的两点Q1(x,y1),Q2(x,y2)间的距离

Q1Q2y1y2。

22PQxyy3、在x轴上一点P与在轴上一点之间的距离(x,0)Q(0,y)111111114、任意两点A(x1,y1),B(x2,y2)之间的距离公式是AB(x1x2)2(y1y2)2

第三篇:八年级数学下册 几何证明初步知识点

第十一章 几何证明初步知识点整理

1.定义:用来说明一个名词含义的语句叫做定义.2.命题:对事情进行判断的语句叫做命题.每个命题都由条件和结论两部分组成.条件是已知事项,结论是由已知事项推断出的事项.一般地,命题可以写成“如果„„,那么„„”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.例如,下列句子都不是命题:(1)你喜欢数学吗?(2)作线段AB=CD.⑶清新的空气;⑷不许讲话。3.正确的命题称为真命题,不正确的的命题称为假命题.4.反例:要指出一个命题是假命题,只要能举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了。这种例子称为反例。

5.公理:人类经过长期实践后公认为正确的命题,作为判断其他命题的依据。这些公认为正确的命题叫做公理。

证明:除了公理外,其它真命题的正确性都通过推理的方法证实.推理的过程称为证明.定理:经过证明的真命题称为定理.本套教材以下列基本事实作为公理: 1.两点确定一条直线。

2.过直线外一点可以作且只能作一条直线与已知直线平行。3.两直线平行,同位角相等。

4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。5.判断三角形全等的方法:SAS ASA SSS。6.全等三角形的对应角相等,对应边相等。

7.在等式或不等式中,一个量可以用它的等量来代替.例如,如果a=b,b=c,那么a=c,这一性质也看作公理,称为“等量代换”.判断:

所有的命题都是公理。所有的真命题都是定理。所有的定理是真命题。所有的公理是真命题。

6.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题。把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。Eg:(1)两条直线平行,内错角相等.

(2)如果两个实数相等,那么它们的平方相等.(3)如果两个实数相等,那么它们的绝对值相等.(4)全等三角形的对应角相等.

注意: 一个命题是真命题,它的逆命题却不一定是真命题.如果一个定理的逆命题也是真命题,那么这个逆命题就是原来定理的逆定理!(勾股定理和它的逆定理)

7.三角形内角和定理:三角形三个角的内角和等于180° 推论一:三角形的一个外角等于与它不相邻的两个内角的和。推论二:三角形的一个外角大于与它不相邻的任意一个内角。8.直角三角形的两个锐角互余。有两角互余的三角形是直角三角形。三角形的外角和等于360°。

9.反证法:先提出与命题的结论相反的假设,推出矛盾,从而证明命题成立.这种证明的方法叫做反证法.反证法的步骤:否定结论—推出矛盾—肯定结论 Eg:

1、“a<b”的反面应是()(A)a≠>b(B)a >b(C)a=b(D)a=b或a >b

2、用反证法证明命题“三角形中最多有一个是直角”时,应如何假设? ___________________________________

3、写出下列各结论的反面:

(1)a//b(2)a≥0(3)b是正数(4)a⊥b(5)至多有一个(6)至少有一个 常用的互为否定的表述方式:

都是——不都是;大于——不大于;至少有一个——一个也没有;至少有三个——至多有两个;至少有n个——至多有(n-1)个;至多有一个——至少有两个

第四篇:沪教版_初二数学几何证明举例

1.已知:如图1,AD是BC上的中线,且BE∥CF.求证:DF=DE.2.已知:如图2,AD、BC相交于点O,OA=OD,OB=OC,点E、F

在AD上,∠ABE=∠DCF.求证:BE∥CF.3.已知:如图3,在△ABC中,EF∥BC,∠1=∠2,D是EF中点。

求证:AE=AF.4.已知:如图1,AB∥CD,BE、DE分别是∠ABD、∠BDC的平分线.求证:BE⊥

DE.5.已知:如图2,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC.求证:AO⊥BC.6.如图3,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于E.1)若BC在DE的同侧(如图①)且AD=CE,求证:BA⊥AC.2)若BC在DE的两侧(如图②)其他条件不变,问AB与AC仍垂直吗?若是,请予证明,若不是请说明理由.7.已知:如图1,AB=CD,AD=BC,AE=CF.B、A、E三点

共线,D、C、F三点共线.求证:∠E=∠F.8.已知:如图2,AB=AC,∠A=90°,AE=BF,BD=DC.求证:FD⊥ED.9.已知:如图3,AC=BD,AD⊥AC于A,BC⊥BD于B.求证:AD=BC.10.已知:如图1,在△ABC中,∠C=2∠B,AD⊥BC.求证:AC=BD-DC

11.已知:如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.12.已知:如图3,正方形ABCD中,点F在DC上,E在BC上,∠EAF=45°.求证:EF=BE+DF.

第五篇:八年级几何证明1

八年级几何证明精选

一、基础题:

1、在ΔABC中,a,b,c分别是∠A,∠B,∠C的对边,且∠A=60°,其三边a,b,c满足下列关a-b-c2系,则ΔABC的形状是.a-b-c2、在ΔABC中,AB=AC=2,BC边上有100个不同点P1,P2……P100,记Mi=APi+BPi×CPi(i=1,2……100),则M1+M2+……+M100的值是.3、在ΔABC中,若a+b=c+ab,则∠C的大小为()

A 60°B 45°C 35°D 22.5°

4、如图所示,在线段BC作ΔABC和ΔBCD,使AB=AC,BD>DC,且CΔABC=CΔDBC,若AC与BD相交于点E,则下列说法正确的是

A AEDED无法确定

5、如图已知,△ABC中,∠B=40°,∠C=62°,AD是BC边上的高,AE是∠BAC的平分线。则∠DAE的度数=。

2222333D B

CB6、如图5,在ABCD中,AEBC于E,AEEBECa,且a是一元二次方程E图5 C 

x22x30的根,则ABCD的周长为()

A.4.12.2.212

1、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.

求证:△PBC是正三角形.

D C2、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点. 求证:点P到边AB的距离等于AB的一半.

F3、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.

求证:CE=CF.(初二)

4、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.

求:∠APB的度数.

5、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.

6、如图所示,O为ΔABC内任意一点,AP,BO,CO的延长线分别交对边于A1,B1,C1。求证:

A0B0C0 为定值.AA1BB1CC1C

下载19-第十九章-几何证明-八年级(上)-知识点汇总-沪教版word格式文档
下载19-第十九章-几何证明-八年级(上)-知识点汇总-沪教版.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    沪教版八年级物理全册知识点

    物理八年级沪科版第一、二章知识要点 第一章 打开物理世界的大门 1、哥白尼提出了日心说。 2、伽利略率先用望远镜观察天空,支持了哥白尼的日心说。 3、牛顿与牛顿三大定律。......

    七年级上几何证明

    平行线和三角形1、如图,①画∠BAC的角平分线AD;②过点A画线段BC的垂线段AE;③取线段BC的中点F,连结AF;④过点A、C分别画BC、AB的平行线,两平行线交于点G.2、如图AB//CD,∠1与∠A互补......

    几何证明选讲知识点(五篇范文)

    几何证明选讲1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段相等。推论1: 经过三角形一边的中点与另一边平行的直线必平分第......

    几何证明考点考纲及知识点总结

    几何证明考点考纲及知识点总结教学目标:了解角平分线、垂直平分线的有关性质和定理,并能解决一些实际问题。重点、难点:1、 应用三角形全等的知识,解释角平分线的原理2、 会用......

    几何证明选讲--知识点1

    几 何 证 明 选 讲 1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段___. 推论1: 经过三角形一边的中点与另一边平行的直线必__......

    八年级(上)语文目录201106 沪教版

    八年级(上)语文目录 第一单元 爱在人间 一 笑 二 小巷深处 三 芦花荡 四 哦!冬夜的灯光 综合学习叙述爱的故事 每周一诗 (1)春日五首(其一)(秦观) (2)三衢道中(曾几道) 第二单元 面对逆......

    八年级命题与证明(知识点典型例题,动态几何问题)

    第四章命题与证明知识回顾:1一般地,能明确指出概念含义或特征的句子,称为定义。(定义必须是严密的,诸如“一些”,“大概”,“差不多”等不能在定义中出现)2. 判断一件事情的句子,叫做......

    初二上学期历史知识点总结(沪教版)

    初二上学期历史知识点总结(沪教版) 第一课练习题 1.目前世界上发现远古人类遗址最多的国家是(中国)。 2.四大文明古国有(中国)、(古埃及)、(古印度)、(古巴比伦)。 3.位于黄河流域的远古......