第一篇:浅谈变式教学在高中数学教学中的应用
浅谈变式教学在高中数学教学中的应用
【摘要】本文结合笔者实践教学经验,在文中先分析了高中数学教学中变式教学应用的意义,之后从三个方面探讨了高中数学变式教学应用的策略,希望对高中数学教学质量的提升有所帮助.【关键词】变式教学;高中数学;应用
高中数学学科作为高考的重点,学好高中数学对学生具有深远的影响,教师教学方法的运用对学生学习效果会产生很大的影响.变式教学在高中数学教学的应用,能使学生更好地掌握和理解数学知识,有效提升了高中数学教学质量和学生的学习效率.一、高中数学教学中变式教学应用的意义
(一)降低数学知识理解难度
数学作为高中教育阶段的重要学科,也是所有学科中的学习难点,很多学生在数学知识的学习和理解中经常存在很多的问题.而变式教学在高中数学教学中的应用,使学生可以从熟悉的实例入手,推导数学原理,再通过练习加深和巩固对数学知识的理解,这整个过程都是以学生为主的,所以学生对数学知识形成的全过程了如指掌,那么学生学习起来就会轻松很多,这便降低了学生对数学知识的理解难度.(二)培养灵活思维能力
变式教学的关键是要把握本质,通过各种形式都可以表达数学知识,通过不同的条件、背景和层次表达相同的数学本质,学生在训练中便能够对各种数学公式全面掌握,同时可以灵活运用,运用到多变的数学题中,并找出数学的本质.因此,变式教学在高中数学教学的应用,更利于培养学生灵活的思维能力.(三)激发学习兴趣
变式教学与传统教学方法不同的是,变式教学的全过程学生都要参与其中,并能够主动积极地探究和总结,在这个过程中学生的学习积极性被有效地激发.学生在高中数学课堂中也更放松、更自由,可以自由地表达出自己的想法,也能够更好地掌握抽象的数学知识,这样学生在学习中能够感受到学习的乐趣,能有效激发学生的学习兴趣,使学生更积极主动地参与到数学学习中.(四)培养学生逻辑思维
变式教学要求学生在学习中要主动地去发现、总结、验证,最后通过自己的努力得出数学结论.在这个过程中要求学生的逻辑思维要紧密相连,有一个步骤出错,整个过程都是不成立的,这个过程完全由学生独立完成,因此,学生的逻辑思维能力得到了很大的提升.(五)解放学生思想
高中数学传统教学中以教师为课堂教学的主角,学生被动地接受知识,教师习惯在教学中先讲解抽象的理论知识,之后通过题海战术加深学生对知识的理解.这种教学方式使得学生的学习压力很大,同时也束缚了学生的数学思维.通过变式教学开展高中数学教学,使学生在轻松自由的环境下发挥,鼓励学生大胆地创新和思考,学生根据自己的理解去验证,解放学生的思维,促进学生全面发展.二、高中数学教学变式教学应用的策略
(一)对数学概念进行变式教学
在高中阶段的数学教学过程中,有很多的数学概念,学生理解起来非常困难,并极易产生差错,因此,高中数学变式教学应当应用到概念教学中,使学生了解概念的内涵,对概念进行变式,使数学概念拓展延伸,使学生可以从多个角度理解数学概念,使学生更好地掌握和理解数学概念.如,在学习“函数概念”知识点时,我们就可以从学生日常经常接触的事物入手,如,平时的升旗仪式,使学生理解国旗高度是会随着时间变化而发生变化的,进而更深入地掌握函数概念,清楚在生活中函数发挥的作用,这便是对函数概念进行的引入变式,在客观实例中呈现数学概念,通过变式呈现出数学概念形成的全过程,使学生更全面地掌握数学概念,从而为后面知识的学习打下良好的基础.(二)对数学命题进行变式教学
在高中数学教学过程中,学生的学习兴趣是确保教学活动顺利开展的关键,而激发学生对数学知识学习产生浓厚兴趣的关键,就是对数学命题进行变式教学,这样不但能够使学生掌握数学知识和解题技巧,而且使学生感受到数学学习的乐趣.数学命题的变式有很多,其中包括数学定理形成的变式、数学公式变形变式、公式定理多?C变式.对数学命题进行变式教学,能够使得学生从客观角度出发,理解数学命题的本质,还能从多个角度去观察和推理数学命题,对数学重要公式和定理进行变式应用,使学生形成数学思维,并掌握快速解题的能力.如,在学习直线、圆的位置关系内容时,笔者先为学生演示多个角度的直线与圆的位置关系,通过仔细的观察和推理,多次变换命题,加深学生对数学知识的理解和记忆.(三)对解题方法进行变式教学
在高中数学整个教学过程中,解决数学问题是非常重要的,解题方法更是解决数学问题的关键,掌握了灵活的解题方法,数学问题才能够迎刃而解.好的解题方法,能够将数学知识联系起来,使学生在掌握数学知识的同时,发现数学规律,同时启发了学生的数学思维和创造性思维.对解题方法进行变式教学,使学生不再受定式思维的束缚,使学生的数学思维更活跃,如,我们在教学中常用到的一题多证、一题多变、一题多解等.在解题技巧和解题方法上进行变式教学,强化学生对数学知识的理解,使学生真正地掌握知识,并可以在数学学习中融会贯通,应用数学知识解决实际问题.三、结束语
总之,变式教学在高中数学教学中的应用,使学生能够更深入地理解数学知识的本质,形成正确的数学概念,这使得学生更好地把握重点知识,同时也提高了学生的学习效率,降低了学生的数学学习难度,促进高中数学教学质量的提升.【参考文献】
[1]张宏江.运用变式教学改善学生数学思维品质的初步研究[J].延边教育学院学报,2010(4):103-106.[2]李丽泉.变式教学在高中数学教学中的有效性研究[D].长沙:湖南师范大学,2016.
第二篇:高中数学变式教学应用的分析
高中数学变式教学应用的分析
一、问题提出的缘由
我们正处在高考命题改革时期,“新高考”对中学生综合素质的发展提出了明确的要求,重点增强基础性、综合性,突出能力立意,主要考查学生运用所学知识独立思考与分析问题、解决问题的能力。“新高考”改革的启动势必促进新课程改革的实施。伴随着新课程改革向纵深的发展,高中数学课程的功能、内容、结构、评价都发生了根本性的改变。数学教学方法也在不断改进、创新,既要训练学生基础知识、基本技能,又要培养学生自主创新的能力。而自主创新的能力培养的一条有效的途径就是在平时教学过程中着重对学生发现问题、分析问题、解决问题的能力培养。就数学而言,解决问题不仅是要知道问题的结果,更重要的是掌握解决问题的思想、方法、途径。而“变式教学”的思想与方法是我们解决问题的重要途径之一。
所谓“变式”,就是指教师有目的、有计划地对命题进行合理的转化。即教师可不断更换命题中的非本质特征;变换问题中的条件或结论;转换问题的内容和形式;配置实际应用的各种环境,但应保留好对象中的本质因素,从而使学生掌握数学对象的本质属性。
而我们的目的就是通过合理恰当地运用“变式教学”,把互相关联的知识融合在一起,使学生深刻理解所学知识,识别问题的本质。这不仅有助于培养学生分析、归纳、解决问题的能力,也有利于激发学生的学习兴趣、拓宽学生的学习视野,并力求在遏制“题海战术”、轻负高效方面达到良好效果。
二、研究目标
1.以“变式教学”为研究平台,全面贯彻新课程标准的教育理念。以培养学生的创新精神和探究问题、解决问题的能力为目的,让学生充分展示个性和潜力,激发学生潜能多元化发展。
2.发挥学生主体作用,充分尊重学生的主观能动性,通过变式思想在数学教学中的研究,引导学生主动参与教学活动,在获取知识的同时,激发他们强烈的求知欲和创造欲,从而得到提高数学课堂教育效益的目的,增加数学实践的本领的同时获得可持续发展能力---创新能力和自我发展能力。
3.在严格控制学生活动总量,减轻学习负担的前提下,使学生数学素质获得更为全面的发展,数学基本知识、基本能力有所提高。
三、研究原则
1.针对性原则。习题变式教学,不同于习题课的教学,它贯穿于新授课、习题课和复习课,与新授课、习题课和复习课并存,一般情况下不单独成课。因此,对于不同的授课,对习题的变式也应不同。例如,新授课的习题变式应服务于本节课的教学目的;习题课的习题变式应以本章节内容为主,适当渗透一些数学思想和数学方法;复习课的习题变式不但要渗透数学思想和数学方法,还要进行纵向和横向的联系,同时变式习题要紧扣考纲。在习题变式教学时,要根据教学目标和学生的学习现状,切忌随意性和盲目性。
2.可行性原则。选择课本习题进行变式,不要“变”得过于简单,过于简单的变式题会让学生认为是简单的“重复劳动”,没有实际效果,而且会影响学生思维的质量;难度“变”大的变式习题易挫伤学生的学习积极性,使学生难以获得成功的喜悦,长此以往将使学生丧失自信心,因此,在选择课本习题进行变式时要变得有“度”,恰到好处。
3.参与性原则。在习题变式教学中,教师要让学生主动参与,不要总是教师“变”,学生“练”。要鼓励学生大胆地“变”,有目的、有意识地引导学生从“变”的现象中发现“不变”的本质,从“不变”的本质中探究“变”的规律,可以帮助学生使所学的知识点融汇贯通,同时培养了学生的创新意识和创新精神以及举一反三的能力。
四、研究内容
1.研究学生:着重研究学生平时的学习行为和效果,发现不足和缺憾,然后着力通过数学变式来培养学生创新能力来加以克服,观察克服的程度,再加以改进,总结经验,试图发现一种科学的教学体系来增强学生在课堂中的主动学习意识、提高数学课堂教学效益。2.研究教法:给出不同条件时如何引导学生联系旧知解决新问题,培养学生将几何问题、图形问题、抽象问题等代数化,把握数学知识的核心部分,提高思考问题、解决问题能力。
3.研究教学:不同的课型该用哪种模式体现“变式教学”的精神。
五、研究意义
1.利用变式教学创设教学情境,激发学生学习积极性。高中数学的大部分概念比较抽象,教师在教学中如果直接抛出概念,学生很难接受。而如果根据概念类型,设计一系列变式,将概念还原到客观实际(如实例、模型或已有经验、题组等)提出问题,为学生创设生动形象的教学情境,就可以大大激发学生学习数学的热情和积极性。
2.利用变式教学预设“陷阱”,培养学生思维的严谨性。在概念、定理及公式的教学过程中,通过对有关数学概念、定理、公式等进行不同角度、不同层次、不同背景的变化,有意识地引导学生发现变化中的不变,明确并凸显出概念、定理及公式的条件、结论和适用范围、注意事项等关键之处,让学生深入理解概念、定理及公式的本质,从而培养学生严密的逻辑推理能力。
3.利用变式教学深化基础知识,拓展学生的数学思维。着名的数学教育家波利亚曾形象地指出:“好问题同某种蘑菇有些相像,它们都成堆地生长,找到一个以后,你应当在周围找找,很可能附近就有好几个。”数学教学中,通过对一个基本问题的变式,引导学生运用类比、联想、特殊化和一般化的思维方法,探索问题的发展变化,使其在更深入、更透彻地理解问题的本质的同时拓展了数学思维。
六、研究方法
在形式上,将采取尝试法、实验法、比较分析法、文献资料法等多种研究方法以“变”应“变”,通过合理恰当地运用变式教学,把互相关联的知识通过变式教学融合在一起,使学生深刻理解所学知识,识别问题的本质;在研究过程中,通过记录比较课后作业的正答率,每一章节配套试题的测验结果,即学生对知识掌握的程度来辨别和判定提高数学课堂效益的程度,研究学生自主学习能力的提高与数学课堂效益的提高是否相关或一致,从而确保研究的客观性和科学性。
第三篇:变式教学在初中教学中的应用
变式教学在初中教学中的应用
变式教学法,它的核心是利用构造一系列变式的方法,来展示知识发生、发展过程,数学问题的结构和演变过程,解决问题的思维过程,以及创设暴露思维障碍情境,从而,形成一种思维训练的有效模式。它的主要作用在于凝聚学生的注意力,培养学生在相同条件下迁移、发散知识的能力。它能做到结构清晰、层次分明,使优、中、差的学生各有所得,尝试到成功的乐趣,并激发学生的学习热情,达到举一反
三、触类旁通的效果,使他们的应变能力得以提高,进而提高教学质量。
一、变式教学法对新概念教学的促进作用
概念,在数学课中的比例较大,初中数学教学又往往是从新概念入手。能否正确理解概念,是学生学好数学的关键。概念教学有其特殊性,它不仅要求学生要识记其内容,明确与它相关知识的内在联系,还要能灵活运用它来解决相的实际问题。概念往往比较的抽象,从初中生心理发展程度来看:他们对这些枯燥的东西,学习起来往往是索然无味,对抽象的概念的理解很困难。而采取变式教学却能有效的解决这一难题,使学生度过难关。通过变式或前后知识对比,或联系实际情况或创设思维障碍情境,来散发学生学习兴趣,变枯燥的东西为乐趣。例如,在学习“正数”与“负数”前,教师先提出:某地气候,白天最高气温为10℃,夜晚最高气温为零下10℃,问昼夜最高温度一样吗?学完这节课后你就能回答这个问题了!这样激发了学生的好奇心和求知欲,便能产生“乐学”的氛围,这样对新概念撑握则通过变式使之内化并上升为能力。又例如,学习了“梯形”和“等腰梯形”的定义后,提出:
1、有一组对边平行的四边形是梯形吗?
2、一组对边平行加一组对边相等的四边形是等腰梯形吗?通过反例变式进行反面刺激,使学生更明确的理解和掌握“梯形”、“等腰梯形”、“平行四边形”等概念。
二、变式教学有利于培养学生良好的思维品质
众所周知,发展智力,培养能力的关键是培养学生良好的思维品质,而运用变式手法恰好是训练和培养学生思维的有效途经。
1,利用兴趣培养学生思维主动性积极性,在教学中,教师有意识的运用兴趣变式来诱发学生的好奇心,激发他们主动钻研,积极思考,可以克服惰性,培养思维主动积极性。具体而言,我们要提倡建立“畅所欲言,各抒己见”的课堂氛围,为学生提供独立活动、自我表现的机会和条件;应鼓励学生对老师的提问产生质疑,能够提出自己不同的观点和看法;应鼓励学生由此及彼,从一个问题衍生开来,提出崭新的、有创造性的问题。只有这样,教师的设问才会最大可能地激发学生的创造性思维。
2,利用反例变式,培养学生思维的严谨性和批判性。教学时,通过反例变式的训练有意识的设置一些陷阱,去刺激学生让其产生“吃一堑,长一智”。数学学习是通过思考进行的,没有学生的思考就没有真正的数学学习,思考问题是需要一定的时间的。值得研究的是,教师提出问题后,应该给学生多少思考时间。实验表明,思考时间若非常短,学生的回答通常也很简短,但若把思考时间延长一些,学生就会更加全面、较为完整地回答问题,这样,问题回答的准确率就会提高。当然,思考时间的长短,是与问题的难易程度和学生的实际水平密切相关的。目前,在课堂学习中,教师往往是提出问题后,几乎不给出思考时间,就要求学生立刻作答,而一旦学生不能立刻说出答案,教师便不断重复其问题,催促答案或者干脆另外提出一些问题来弥补这个“冷场”。其实,这恰恰是在干扰学生表面看似平静,实则活跃的思维过程。
3、发散思维是创造性思维的主导成分,又是创造性思维的核心,它着眼于探索未知的事物,发现事物间的新关系,寻找多方面解决问题的方法。因此,将一个问题从不同角度、不同层次进行设问,也可训练学生的发散思维,进而培养学生的创造性思维。具体而言,思考问题时,根据同一来源材料,以比较丰富的知识为依托,沿着不同的方向去思考,以探求不同方向的解答,即通常所说的“一题多解”、“一题多变”。利用一题多解培养学生思维的灵活性,在教学中教师利用解题过程的变式训练,引导学生善于运用新观点,从多用度去思考问题,用自由联想的方式,使学生广泛建立联系,多用度地认识事物和解决问题,打破那种“自古华山一条路”的思维定势,使他们开动脑筋,串联有关知识,养成灵活的思维习惯。
4、运用逆向变式培养逆向思维能力。在教学中培养学生的双向思维习惯,这种训练要保持经常性和多样性,逐步优化他们的思维品质。教师们在教学中,常常引导学生通过归纳、总结得出解决某一问题的“通法”,这种做法固然是必要的,而且也是有效的,但我们认为过分强调“通法”让学生对号入座,这样或许会收到“有心栽花花不开”的苦果,导致学生思维呆板,一旦“通法”在某个题目中“失效”时,便束手无策。因而,教师在引导学生进行归纳总结时,别忘了鼓励学生大胆探索,敢于创新,寻求解决问题的新路子。有些问题正向思维比较繁,如果改为逆向思维,则能化繁为简。
5、采用对一题多变和开放性题目的探讨,培养思维的创造性。教学中,在加强双基训练的前提下,运用一题多变和将结论变为开放性的方式来引导学生独立思考,变重复性学习为创造性学习。创造性思维是对学生进行思维训练的归宿与新的起点,是思维的高层次化。实践证明,教学中经常改变例题结论,引导学生自编一些开放性题目,对激发学生兴趣,培养其研究探索能力,发展创造性思维大有益处。
三、利用变式教学有利于学困生的转换
在初中阶段,随着年龄的增大和年级的增高,会感到数学越来越难学,学困生的面就逐渐增大,并呈增长的趋 势。摆在教学面前的重要问题除防止新的学困生形成外,还要注重学困生的转化工作。传统的教学方式解决这一问 题是远远不够的。通过实践,对学习和掌握不同的知识采用不同的变式手段,使用不同的授课类型,可以适应各种 层次的学生人,使学生听课有针对性,从而避免教师一讲到底。利用章头图和实例进行兴趣变式,激发学困生的学习兴趣和学习知识的自觉性、主动性,甚至让他们主动参与变式,将几种变式有机结合,增强他们的学习信心,充 分暴露他们的思维障碍,以减轻他们的心理负担。当然老师也要关心和爱护他们,对症下药,优化疏导,才能使他
们的思维得到锻炼和最佳发展,使学困生发生转化。
四、运用变式教学手段,有利于提高毕业复习效率
初三毕业复习时间仓促,为了取得理想效果,这时师生往往会陷入传统的“题海战术”之中难以自拔。这种“沙里 淘金”的办法不但使师生倍加疲劳,且效果不尽人意。变式教学在这里却有着它的独到功效,因为它是培养学生思维 能力,提高应变能力的一种有效的教与学的手段。事实上,复习?不同于新课,新课一节仅需要掌握一两个知识点,而复习课要在有限的时间内大容量、高效率完成一章节的复习任务,使知识条理化、系统化、网络化,不仅要掌握 知识,而且要形成基本技能,同时要掌握基本数学思想和数学方法,还要培养数学意识从历年的中考试题来看,绝 大多数的题目源于教材,活于教材,部分综合性强的题目略高于教材。因此,复习中老师应立足于课本,精选课本 中的典型例题、习题,充分运用各种变式进行挖掘、延伸、改造,用问题编成变式题进行教学,注重剖析破题思路,优化课堂结构,沟通知识间的联系,充分暴露思维障碍,展示知识的形成、演变过程,提高思维品质和应变能力,从而提高复习效率。实践证明,变式教学能摆脱“题海”变被动思维为主动自觉思维,形成“趣学”、“乐学”的氛围,让 学生成为学习的主人,减小差生面,培养学生良好的思维品质,提高教学效益,从而大面积提高教学质量。
2008-6-5
第四篇:学导式教学法在高中数学教学中的应用
摘 要:所谓学导式教学法是指把教与学重点放在“学”字上,让学生成为教学活动主体的一种教学活动。所以,在新课程改革下,教师要认真贯彻落实课改基本理念,要有效地将“以生为本”的教学理念应用到高中数学教学活动之中,以确保学生在主动求知、自主探究中掌握基本的数学知识,同时,也能真正将高中数学打造成“以学为中心”“以主动求知为核心”课堂。
关键词:学导式教学法;三角函数;演练环节
学导式教学法是一种新的教学方式,也是凸显学生课堂主体性的重要方式之一。所以,在新课程改革下,作为新时期的教师,我们要认真学习学导式教学法的核心思想,要有效地将学导式教学法应用到高中数学教学过程之中,以为学生综合素质水平的提高做好保障工作。因此,本文就按照“自学、解疑、精讲、演练”四个环节对如何有效地将学导式教学法应用到《三角函数的图象与性质》中进行论述,以确保高效数学课堂顺利实现。
一、自学环节
该环节是指让学生带着目标进行自主学习,即:熟练掌握y=sinx;y=cosx;y=tanx的图象与性质;能熟练进行图象的平移伸缩,等。组织学生带着目标结合教材内容进行自主学习,并组织学生将自学过程中遇到的问题进行总结归纳,如:有学生提出:在函数图象的移动中,很多学生分不清楚应该怎样移动?还有学生提出:是不是在制作图象时,我们只能选择0、π/
2、π、3π/
2、2π这样的
特殊值?更有学生提出:能否在正弦函数与余弦函数之间进行图像转化?„„这些都是很多学生在自主学习过程中遇到的问题。之后,引导学生进入“解疑环节”,以锻炼学生的独立思考能力,提高学生的学习效率。
二、引导学生进行解疑
在自主学习环节,我们不要急着组织学生对所提出的问题进行思考、讨论,而要在解疑环节给学生足够的时间进行思考讨论,使其能在互相讨论中顺利地解决相关的问题。当然,除了上述学生自主提出的问题之外,我还引导学生对下面的问题进行了思考、讨论,如:(1)三角函数y=asin(ωx+ψ)的图象除了有平移变换之外,还有什么变换?(2)函数y=sin(2x+π/3)的图象可由y=sinx怎样变换而得?(3)请用多种变换方式来实现函数y=sinx向y=2sin(2x+π/3)进行转化?„„组织学生对上述的问题进行思考、探究,目的就是要帮助学生更好地理解本节课的重点教学内容,而且,这样的问题探究对高效数学课堂的实现,对学生探究能力的提高也有着密切的联系,所以,在素质教育思想的影响下,教师要相信学生,要鼓励学生在独立思考和自主探究中轻松地掌握基本的数学知识,锻炼学习的能力。
三、进入精讲环节
精讲环节是完成本节课教学目标的保障,也是高效课堂顺利实现的保障。所以,在结束了上述两个环节之后,我组织了师生“讲”的环节,在这个环节除了教师“讲”之外,还要组织学生“讲”。也就是说,在精讲环节,我首先引导学生对上述的问题进行精讲,比如:“请用多种变换方式来实现函数y=sinx向y=2sin(2x+π/3)进行转化?”引导学生将自己小组得出的变换方式展示给其他学生,之后,有补充的也可以进行补充,等等。接着,进入的是教师精讲环节,在这个环节,作为教师的我们要针对学生在上述环节中未能解答的问题以及存在模糊的问题进行交流,同时,结合教材中的难点问题进行有针对性的讲解,以确保本节课的教学目标顺利实现。
四、组织学生进入演练环节
该环节是检验学生的自主学习能力,提高学生知识应用能力的重要环节。所以,在该环节,我们要精心选择相关的练习题,以提高学生的解题能力,确保高效课堂顺利实现。因此,本节课我设计了下面几道练习题来帮助学生进行演讲,如:(1)用多种方法在同一直角坐标系中,画出函数:y=sinx(x∈[0,2π]),y=cosx(x∈[-π/2,3π/2])的图形,通过观察两条曲线,说出它们之间的异同。
(2)想一想,函数y=sin(x-3π/2)和y=cosx的图形,并在同一直角坐标系中,画出它们的草图。
(3)若函数y=cos(ωx+π/3)(ω>0)的图象相邻两条对称轴间距离为π/2,则ω等于_____
„„
组织学生对上述的问题进行自主思考,并在自主应用所学知识的过程中找到自主学习的乐趣。
总之,在上述的几个环节中我们可以看出,学导式教学法的应用不仅能够锻炼学生的自主学习能力,而且,对强化学生对相关知识的理解,对教学目标的最大化实现都是一种有效的方法,也是提高学生综合数学能力水平的重要方面。
第五篇:抛锚式教学法在高中数学教学中的应用
抛锚式教学法在高中数学教学中的应用
抛描式教学法是指教师给学生一个真实的情境案例,引导学生逐渐探索出这个情境背后的数学问题的教学方法,这是一种能让学生自主学习数学知识的教学方法,它能提高数学教学效率.现用高中数学教学的《函数模型及其应用》的教学说用这种教学的应用方法.一、应用真实的情境抛出数学问题
高中数学知识具有抽象性强的特点,很多学生接触到高中数学知识时,不能理解抽象的数学知识背后代表什么意义,不能寻找到学习的要点,从而不愿意主动地学习数学知识.抛描教学法的第一个要点,就是数学教师要给出一个直观的情境,让学生迅速理解这一节课他们要探索什么知识.例如,在讲“函数模型及其应用”时,教师可提出问题:图1中描述一辆汽车的行驶速度和时间的关系.请计算出每个长方形的面积,并说明这个面积代表的数学问题;如果现在这辆汽车的读数为2010km,请按照图1说明在这之前,汽车的里程数与读数之间的关系,应用函数表达式说明两者的关系.如果教师用过于抽象的问题令学生思考函数模型的概念,学生可能难以理解这一概念知识,从而不愿意思考数学问题.现在教师给出直观的图形,学生参看图形便能了解到“矩形面积=长×宽=速率×时间=路程”,即领悟到数学模型的意思就是要给出解决数学模型的规律.这张图片,就是教师抛出的“锚”,而第二个问题,就是教师抛出的第二个锚,即在学生领悟第一个问题的基础上,教师要引导学生思考“路程=速率×时间”这一模型应如何建立.二、应用综合的问题引导学生探讨
教师要求学生思考的数学问题有时会比较复杂,学生遇到较为复杂的数学知识时,有时会有学习挫折感,从而不愿意积极地学习数学知识.数学教师可用小组讨论,共同解决数学问题的方法,让学生合作克服学习障碍.同上例,教师提出的第二个问题就是需要学生合作学习、共同讨论的问题.通过教师的引导,学生了解到图1的阴影部分面积为50×1+80×1+90×1+75×1+65×1=360.“路程=速率×时间”是建立数学模型的依据.如何将这一公式转化为需要的数学模型是教学难点,也是教学重点,教师要引导学生了解数学建模的原理.教师提出问题:汽车里程表的读数与汽车里程之间存在怎样的关系?经过教师的提醒,学生了解到两者的关系为“汽车里程表读数s=2010+汽车行驶路程”,突破了这一学习难点.学生经过讨论,认为可用二段函数的方法建立数学模型.即第一段函数有第一段函数的计算规律,第二段函数有第二段函数的计算规律.如果以二段函数的方法思考这一数学问题,便可以图1为基础,设汽车行驶的路程为s、行车时间为t、v为t的分段函数,那么可将“路程=速率×时间”的函数表达式描述如下:
得到函数表达式后,有个学生认为可将该函数表达式应用图象的方法描述出来,找出两幅图象之间的规律.这个提议,让学生找到新的数学知识探索点.三、抛出经典的案例,拓展学生的知识结构
学生学习了知识以后,这些数学知识有什么用?这是学生需要了解的问题,为了让学生把理论知识转化为实践知识,教师可以一道经典习题为例,引导学生了解到新知识的实用性,从而愿意积极拓展相关知识.在数学教学中,教师要引导学生把理论转化为实践,这是引导学生深入研究数学问题、完善知识结构的重要环节.为了帮助学生完成这一转化过程,教师要提出一个具有实践意义的经典例题,引导学生思考.总之,抛锚教学法,实际上是教师提出一个问题,引导学生自主探索相关知识的教学方法.这一教学方法实施的关键为:抛出什么问题?怎样引导学生解决问题?怎样让学生拓展问题?教师做好这三个方面的教学设计,就能优化抛锚教学法的效果,从而提高数学教学效率.