第一篇:数学建模思想在小学数学教学中实现的方法初探
数学建模思想在小学数学教学中实现的方法初探
【摘 要】本文初步探索了数学建模思想在小学数学教学中实现的方法,并以一个实际问题的解决为例,阐述了如何运用较合理教学法培养小学生的数学建模能力,并给出了“五步教学法”的概念。
【关键词】小学数学;数学建模;方法;五步教学法
自新的课程改革实施以来,小学数学新课程标准在第二学段(4~6年级)“数与代数”部分,逐渐用“解决问题”取代了“解应用题”,并叙述为:教学时,应通过解决实际问题进一步培养学生的数感,应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。然而,在教学实践中,提升学生的解决问题的能力却是困扰教师的一个难题,具体表现在:一方面,学生对运用文字表述出来的问题,理解较困难。另一方面,学生思维的系统性没有建立起来,不知从何处入手。因此,在引导学生解决实际问题时,对学生渗透数学建模思想,分步指导,使学生自主实践探索、团结合作研究、“课标”的目的才会实现。
下面主要介绍如何运用“五步教学法”培养小学生的数学建模能力。
所谓“五步教学法”是指:
一、读懂实际问题;
二、建起数学模型;
三、解出数学模型;
四、返回实际问题。
五、自己总结收获。
下面通过解决一道五年级数学题,简要介绍运用“五步教学法”培养小学生的数学建模能力的教学实践过程。
问题:有一块平行四边形的麦田。底是250m,高是84 m,共收小麦14.7吨。这块麦田有多少公顷?平均每公顷收小麦多少吨?
一、读懂实际问题,提高学生数学阅读的能力
对于一个五年级的小学生而言,看到这个题目,虽然仅有四十个汉字和三个数字,但在阅读过程中,读到最后,很可能把前面刚读过的词语全部忘记了,因此,要引导学生进行“数学地阅读”,使其快速、准确掌握实际问题。那么如何进行数学阅读呢?就是引导学生凭借已有的知识经验和生活积累,调动潜在的思维灵性,通过阅读数学题目中的文字信息,用数学的方法和观点来认知、理解、汲取知识并从中提练出已知的数量关系。
在阅读例题时,抓住重要的数字间关系,忽略次要的文字叙述:
1、平行四边形:底是250m,高是84 m;
2、共收小麦:14.7吨。
如此,实际问题的叙述就被提练成三个数字关系,既读懂了题目,又抽象出了数量关系。反复练习后,学生的数学阅读能力会明显提高。
二、建起数学模型,提高学生解决问题的能力
建起数学模型的过程,就是用恰当的数学语言表达已知的数量关系和待解决问题中的数与量,经过合理的分析,按题中所提供的逻辑关系和数量关系,列出正确的数学表达式。
第一问:平行四边形的面积S=h,其中a=250m,h=84m,如图2。
第二问:平均每公顷收小麦多少吨数=14.7吨÷公顷数
通过提练、分析,并尽量用数学语言表达数量关系,使学生逐步提高解决问题的能力。
三、解出数学模型,提高学生数学计算的能力
解数学模型就是解纯数学问题,即“解题”。通过简单地运算,得到:
(1)平行四边形的面积:。
利用1公顷=10000m2,可将21000(m2)化为公顷,公顷数为:21000÷10000=2.1(公顷)。
图2
(2)平均每公顷收获小麦的吨数=14.7÷2.1=7(吨/公顷)。
在解题过程中,用到“代入变量的值”,“乘法”、“除法”运算,进一步熟练了平行四边形面积的计算公式及公顷与平方米的换算关系,提高了学生的计算能力。
四、返回实际问题,提高学生数学应用的能力
对小学生进行数学建模教学的主要目的,虽然不是要他们解决生产、生活中的实际问题,但培养他们的数学应用意识和数学建模思想,才能为中学的学习和未来的工作奠定坚实的基础。因此,将纯数学计算的结果返回到实际问题中,会有效提升小学生数学应用能力。如(1)中的结果21000(m2)是麦田的面积;2.1公顷也是麦田的面积,只是用公顷做单位进行的另一种表示方法;(2)中的结果7(吨/公顷)是指每公顷收获小麦的吨数。
由此建议学生协助家长计算种植玉米、大豆等作物的土地面积,到秋收后,再计算出每公顷或每亩收获粮食的吨数。激发小学生对数学学习兴趣的同时,更有利于提高学生的数学应用能力。
五、自己总结收获,提高学生主动学习的能力
通过学生个体总结,多数学生都会总结出:
1、当提到麦田时,会联想到田野里的麦田,增强了学生的想象力;
2、更加熟悉了“米(m)、吨、公顷”等概念;
3、进一步熟练了平行四边形的面积公式及应用;
4、加强了对整数、小数和数的运算的感知;
5、会联想到,可用类似方法大致计算出自家地块的面积,到秋收后还可以计算出亩产量。
反复应用“五步教学法”,学生的数学阅读的能力、解决问题的能力、数学计算的能力、数学应用的能力、自主学习能力会得到有效培养,创新意识会显著提高。
参考文献:
[1]赵冬玲,王福胜,唐雪冰.培养初中学生的数学建模能力.读写算,2013(2):111.[2]卢江,杨刚.数学,(五年级,上册).北京:人民教育出版社,2009(3).作者简介:
王化晶:1967年11月,黑龙江省海林市三道河子镇,兴家小学校,小学一级教师。
王福胜:1966年12月,黑龙江职业学院第二校区(双城市),教授。
第二篇:数学建模思想在小学数学教学中如何渗透
数学建模思想在小学数学教学中如何渗透
一、数学模型的概念
数学模型是对某种事物系统的特征或数量依存关系概括或近似表述的数学结构。数学中的各种概念、公式和理论都是由现实世界的原型抽象出来的,从这个意义上讲,所有的数学知识都是刻画现实世界的模型。狭义地理解,数学模型指那些反映了特定问题或特定具体事物系统的数学关系结构,是相应系统中各变量及其相互关系的数学表达。
二、小学数学教学渗透数学建模思想的可行性 数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在小学数学教学活动中,教师应采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。
三、小学生如何形成自己的数学建模
一、创设情境,感知数学建模思想。
数学来源于生活,又服务于生活,因此,要将现实生活中发生的与数学学习有关的素材及时引入课堂,要将教材上的内容通过生活中熟悉的事例,以情境的方式在课堂上展示给学生,描述数学问题产生的背景。
二、参与探究,主动建构数学模型
数学家华罗庚通过多年的学习、研究经历总结出:对书
本中的某些原理、定律、公式,我们在学习的时候不仅应该记住它的结论、懂得它的道理,而且还应该设想一下人家是怎样想出来的,怎样一步一步提炼出来的。只有经历这样的探索过程,数学的思想、法才能沉积、凝聚,1、动手验证
教师给学生提供多个圆柱、长方体、正方体和圆锥空盒(其中圆柱和圆锥有等底等高关系的、有不等底不等高关系的,圆锥与其他形体没有等底或等高关系)、沙子等学具,学生分小组动手实验。
2、反馈交流
3、归纳总结。
教师提供丰富的实验材料,学生需要从中挑选出解决问题必须的材料进行研究。学生的问题不是一步到位的,通过不断地猜测、验证、修订实验方案,再猜测、再验证这样的过程,逐步过渡到复杂的.三、解决问题,拓展应用数学模型
综上所述,小学数学建模思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程。在数学教学过程中进行数学建模思想的渗透,不仅可以使学生体会到数学并非只是一门抽象的学科,而且可以使学生感觉到利用数学建模的思想结合数学方法解决实际问题的妙处,进而对数学产生更大的兴趣。
数学建模思想在小学数学教学中如何渗透
(2012年-2013年第二学期)
苏元俊
第三篇:建模思想在小学数学教学中的运用
建模思想在小学数学教学中的运用
从教十多年以来,深刻领悟到“授之以渔”的重要性。教师在教学过程中要采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。现结合自己的教学实践谈谈对小学生形成数学建模思想的思考。
一、积累表象,感知数学模型
感性材料是学生建立数学模型的基础,因此教师首先要给学生提供丰富的感性材料,多侧面、多维度、全方位感知某类事物的特征或数量间的相依关系,为数学模型的准确构建提供平台。如“表内乘法”模型构建的过程就是一个不断感知、积累的过程。首先学习“2-6的乘法口诀”的算法,初步了解乘法的意义,学会能用找规律的方法算出几个相同加数的和,感知乘法口诀的来源及编制的方法;接着采取半扶半放的方式学习“
7、8的乘法口诀”,进一步引导学生感知归纳法、演绎法更广的适用范围;最后学习“9的乘法口诀”,运用以前已有的思想和方法灵活解决相关的计算问题。在此过程中,学生经历了观察、操作、实践等活动,充分体验了“表内乘法”的内涵,为形成“表内乘法”的模型奠定了坚实的基础。
二、参与研究,构建数学模型
动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过
程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。学习过程中学生有时独立思考,有时小组合作学习,有时是独立探索和合作学习相结合,学生在新知探索中充分体验了数学模型的形成过程。
三、联系实际,应用数学模型
从具体的问题经历抽象提炼的过程,初步构建起相应的数学模型,还要组织学生将数学模型还原为具体的数学直观或可感的数学现实,使已经构建的数学模型不断得以扩充和提升。如“鸡兔同笼”的问题模型,是通过研究“鸡”、“兔”建立起来的,但建立模型的过程中不可能将所有的同类事物一一列举。因此,教师要带领学生继续扩展考察的范围,分析当情境、数据变化时模型的稳定性。可以出示如下问题让学生分析:“两车共有126人,如果从一辆车每8人中选一名代表,从乙车每6人中选一名代表,正好选出17名代表。甲、乙两车各有多少人?”这样,使模型的外延不断得以丰富和拓展。
建模思想在小学数学教学中的运用
桐木小学
杨同英
用数学建模的思想来指导着小学数学教学,不同的年级、内容、学习对象应该体现出一定的差异,但也存在着很大的关联性。就教学实施的一般程序来看,可以归结到三个字:“磨”“模”“魔”。
一、“磨”。
所谓“磨”,即“琢磨”。也就是教师首先要反复琢磨每一具体的教学内容中隐藏着怎样的“模”?需要帮助学生建立怎样的“模”?如何来建“模”?在多大的程度上来建“模”?所建的“模”和建模的过程对于儿童的数学学习具有怎样的影响?„„在基于建模思想的数学教学中,这些问题都是一些本原性的问题。一个老师如果从来不曾在这些方面作过思考的话,可以肯定,他的数学课堂上数学知识概念、命题、问题和方法等很难见到“数学模型”的影子,他的学生也可能从未感受过“数学模型”的力量。
众所周知,“鸡兔同笼”问题的数学模型是二元一次整数方程,然而,在小学里学生并不学习二元一次整数方程。可是,“鸡兔同笼”却被广泛地运用到小学教材中:北师大版五年级上册“尝试与猜测”中用它来让学生学会表格列举;苏教版六年级上册将之作为一道练习题来巩固“假设和替换”的策略;而人教版则是浓墨重彩,在六年级上册“数学广角”中详细介绍了“鸡兔同笼”问题的出处、多种解法及实际应用。教学这些内容时,如果仅是就题讲题,就课本讲课本,难免显得过于简单和浅薄。那么,对小学生的数学学习而言,“鸡兔同笼”是否还隐藏着其他的“模型”因素呢?我想至少有三方面是值得关注的:一是内容层面的,即“鸡兔同笼”这类题本身的题型结构特征(告知两个未知量的和以及两个未知量之间一定的量值关系,求未知量);二是方法层面的,即“假设法”的一般解题思路(画图、列举、替换等在某种意义上都是“假设”);三是思想层面的,即从一个具体的“鸡兔同笼”数学问题出发,在经历了对其解答的过程之后,能将解决它的方法和思路进行扩展运用(学习“鸡兔同笼”,最终的目标并不仅仅是会解答一道“鸡兔同笼”,更有其他)。有了这样的理解,在教学中,我们就会引导学生在关注教材中所编排内容的同时,注意把握题目的类型、结构和类比运用,用系统的眼光来看待它的教学价值。这些,恰恰是学生到了中学后真正建
立二元一次整数方程数学模型的基础。
二、“模”。
所谓“模”,即“建模”。也就是在教学中要帮助学生不断经历将现实问题抽象成数学模型并进行解释和运用。对小学数学而言,“建模”的过程,实际上就是“数学化”的过程,是学生在数学学习中获得某种带有“模型”意义的数学结构的过程。以下是两位老师利用同一素材教学“减法”的片段:
【教学片段1】 出示情境图。
师:请同学们认真观察这两幅图,说一说从图上你看到了什么? 生:有5个小朋友在浇花,走了2个,剩下3个。师:你真棒!谁再来说一说。
生:原来有5个小朋友在浇花,走了2个小朋友,还剩下3个小朋友。师:很好!你知道怎样列式吗? 生:5-2=3。
教师听了满意地点点头,板书5-2=3。接着教学减号及其读法。【教学片段2】 出示情境图。(同上)
师:谁来说一说第一幅图,你看到了什么? 生:从图中我看到了有5个小朋友在浇花。师:第二幅图呢?
生:第二幅图中有2个小朋友去提水了,剩下3个小朋友。师:你能把两幅图的意思连起来说吗?
生:有5个小朋友在浇花,走了2个,还剩下3个。
师:同学们观察得很仔细,也说得很好。你们能根据这两幅图的意思提一个数学问题吗?
生:有5个小朋友在浇花,走了2个,还剩几个? 生(齐):3个。
师:对,大家能不能用圆片代替小朋友,将这一过程摆一摆呢?
(教师在行间指导学生摆圆片,并请一生将圆片摆在情境图的下面。)师:(结合情境图和圆片说明)5个小朋友在浇花,走了2个,还剩3个;从5个圆片中拿走2个,还剩3个,都可以用同一个算式(学生齐接话:5-2=3)来表示。(在圆片下板书:5-2=3)
生齐读:5减2等于3。
师:谁来说一说这里的5表示什么?
2、3又表示什么呢? „„
师:同学们说得真好!在生活中存在着许许多多这样的数学问题,5-2=3还可以表示什么呢?请同桌互相说一说。
生1:有5瓶牛奶,喝掉2瓶,还剩3瓶。生2:树上有5只小鸟,飞走2只,还剩3只。„„
从上述可以看出,运用建模思想来指导小学数学教学,在很大程度上是要在学生的认知过程中建立起一种统摄性、符号化的具有数学结构特征的“模型”载体,通过这样的具有“模型”功能的载体,帮助学生实现数学抽象,为后续学习提供强有力的基础支持。当然,对学生“模型”意识的培养和“建模”方法的指导,要根据具体内容和具体年级而有层次不同的要求,低年级要恰到好处地结合日常实例和常规教学对学生进行“模型”及“模型意识”的渗透、点化,高年级则可以更明确地引导学生关注数学学习中“模型”的存在,培养初步的建模能力。
三、“魔”。
所谓“魔”,即“着魔”,也就是学生对“模型”在数学学习中的运用有着深切的体验和感悟,并对之产生好奇,从而在数学学习中能主动地构想模型、建立模型、运用模型。儿童数学教学的终极目标,应该是让学生都懂数学、爱数学,对数学怀有敬畏之心和热爱之情。要实现这样的目标,数学教学就不能只停留在知识和方法层面,而是要深入到数学的“腹地”,用数学自身的魅力来吸引学生。正如日本数学家米山国藏所说:“作为知识的数学出校门不到两年就忘了,唯有深深铭记在头脑中的数学的精神、数学的思想、研究的方法和着眼点等,这些随时随地地发生作用,使人终身受益”。
总的说来,在数学课堂上,我们教的是数学,面对的是儿童。“磨”,侧重于
教师对数学本身的理解;“魔”,则是要坚持儿童立场,读懂儿童,引领儿童,发展儿童;“模”指向教学过程,是在数学和儿童之间真正搭起一座有意义的数学学习之桥。三者有机统一,互动交融,缔造出小学数学建模教学的至高境界。
建模思想在小学数学教学中的运用
桐木小学
杨同英
“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。”这实际上就是要求把学生学习数学知识的过程当做建立数学模型的过程,并在建模过程中培养学生的数学应用意识,引导学生自觉地用数学的方法去分析、解决生活中的问题。明确要求教师在教学中引导学生建立数学模型,不但要重视其结果,更要关注学生自主建立数学模型的过程,让学生在进行探究性学习的过程中科学地、合理地、有效地建立数学模型。小学生如何形成自己的数学建模思想呢?
1、创设情境,感知数学建模思想。
数学来源于生活,又服务于生活,因此,要将现实生活中发生的与数学学习有关的素材及时引入课堂,要将教材上的内容通过生活中熟悉的事例,以情境的方式在课堂上展示给学生,描述数学问题产生的背景。情景的创设要与社会生活实际、时代热点问题、自然、社会文化等与数学问题有关的各种因素相结合,让学生感到真实、新奇、有趣、可操作,满足学生好奇好动的心理要求。这样很容易激发学生的兴趣,并在学生的头脑中激活已有的生活经验,也容易使学生用积累的经验来感受其中隐含的数学问题,从而促使学生将生活问题抽象成数学问题,感知数学模型的存在。
2、参与探究,主动建构数学模型
数学家华罗庚的经验告诉我们:对书本中的某些原理、定律、公式,我们在学习的时候不仅应该记住它的结论、懂得它的道理,而且还应该设想一下人家是怎样想出来的,怎样一步一步提炼出来的。只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
3、解决问题,拓展应用数学模型
用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学知识解决问题的能力,让学生体验实际应用带来的快乐。解决问题具体表现在两个方面:一是布置数学题作业,如基本题、变式题、拓展题等;二是生活题作业,让学生在实际生活中应用数学。通过应用真正让数学走入生活,让数学走近学生。用数学知识去解决实际问题的同时拓展数学问题,培养学生的数学意识,提高学生的数学认知水平,又可以促进学生的探索意识、发现问题意识、创新意识和实践意识的形成,使学生在实际应用过程中认识新问题,同化新知识,并构建自己的智力系统。
小学数学建模思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程。在数学教学过程中进行数学建模思
想的渗透,不仅可以使学生体会到数学并非只是一门抽象的学科,而且可以使学生感觉到利用数学建模的思想结合数学方法解决实际问题的妙处,进而对数学产生更大的兴趣。通过建模教学,可以加深学生对数学知识和方法的理解和掌握,调整学生的知识结构,深化知识层次。同时,培养学生应用数学的意识和自主、合作、探索、创新的精神,为学生的终身学习、可持续发展奠定基础。因此在数学课堂教学中,教师应逐步培养学生数学建模的思想、方法,形成学生良好的思维习惯和用数学的能力。
建模思想在小学数学教学中的运用
桐木小学
杨同英
在数学教学中应当引导学生感悟建模过程,发展“模型思想”。在小学,进行数学建模教学具有鲜明的阶段性、初始性特征,即要从学生熟悉的生活和已有的经验出发,引导他们经历将实际问题初步抽象成数学模型并进行解释与运用的过程,进而对数学和数学学习获得更加深刻的理解。数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在小学教学活动中,教师应采取有效措施,加强教学模型思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力,将模型思想渗透到教学中。
一、在创设情境时,感知数学建模思想。
情景的创设要与社会生活实际,时代热点问题,自然,社会文化等与数学有关系的各种因素相结合。激发学生的兴趣,使学生用积累的生活经验来感受其中隐含的数学问题,从而促进学生将生活问题抽象成数学问题,感知数感知数学模型的存在。学习数学的起点是培养学生以数学眼光发现数学问题,提出数学问题。在教学中教师就应根据学生的年龄及心理特征,为儿童提供有趣的、可探索的、与学生生活实际密切联系的现实情境,引导他们饶有兴趣地走进情境中,去发现数学问题,并提出数学问题。
二、在探究知识的过程中,体验模型思想。
善于引导学生自主探索、合作交流,对学习过程、学习材料、主
动归纳。力求建构出人人都能理解的数学模型。例如:在推导圆柱体积公式一节课中,教师要有目的让学生回顾平行四边形,三角形、梯形、圆几种平面图形面积的推导过程是怎样的?学生会想起通过割、补、平移、旋转等方法拼成学过的图形,那么今天我们要探究的是圆柱的体积,你们怎样来推导它的公式?这样学生很自然的想到一个新知识都是用旧知识来分解,从中找到新知识的内在模型。
三、新知识的结论,就是建立数学模型。
加法,减法,乘法、除法之间的内在联系。各类应用题的解题规律,各类图形的周长与面积、体积的公式都是各种数学模型,学生有了这种模型思想才能应用它解释生活中的现实问题。
在解决问题中,拓展应用数学模型。用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学解决问题的能力,让学生体验实际应用带来的快乐。
例如:我在教学“平行四边形面积的计算”时,采用了探究式的学习方法,使学生在获取数学知识的同时,数学思维和学习能力也得到了培养。
1.让学生充分参与与操作活动
数学知识具有抽象性,但来源于生活实际,加强教学中的实践活动,不仅有助于学生理解抽象的数学知识,而且可以通过让学生参与操作活动,促进学生的思维发展。如:在探究
平行四边形面积的计算方法时,我为学生设计了这样的操作活动:让他们通过剪一剪,拼一拼,想办法把平行四边形转化为已学过的图形,然后利用已有知识来推导它的面积计算方法,这就为学生创设一个“做数学”的机会,学生在操作前必须动脑思考,想好了才能动手剪拼,通过实际操作,多数学生都将平行四边形剪拼成了长方形,这样学生在积极参与操作活动的过程中,不仅促进了他们的思维发展,而且提高了他们的操作技能。2.让学生积极参与交流活动
四、解释与应用中体验模型思想的实用性。如在学生掌握了速度、时间、路程之间关系后,先进行单项练习,然后出示这样的变式题:
1.汽车3小时行驶了270千米,5小时可行驶多少千米? 2.飞机的速度是每小时900千米,飞机早上11:00起飞,14:00到站,两站之间的距离是多少千米?
学生在掌握了速度乘时间等于路程这一模型后,进行变式练习,学生基本能正确解答,说明学生对基本数学模型已经掌握,并能够从3小时行驶了270千米中找到需要的速度,从11:00至14:00中找到所需时间。虽然两题叙述不同,但都可以运用同一个数学模型进行解答。掌握了数学模型,学生解答起数学问题来得心应手。
综上所述,数学建模思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程。在数学教学过程中进行数学
建模思想的渗透,可以使学生感觉到利用数学建模的思想解决实际问题的妙处,进而对数学产生更大的兴趣。这也给我们一些启发:在对学生进行模型思想渗透时,要从现实生活出发,从实物出发,这样才可以让学生更快地接受,更快地理解;在渗透这些思想时,教师首先需站在更高的高度上去考虑;在教学过程中,通过引导学生处理问题,可以让学生更快、更有兴趣地跟踪教师的思路。在小学数学教材中,模型无处不在。小学生学习数学知识的过程,实际上就是对一系列数学模型的理解、把握的过程。在小学数学教学中,重视渗透模型化思想,帮助小学生建立并把握有关的数学模型,有利于学生握住数学的本质。通过建模教学,培养学生应用数学的意识和自主、合作、探索、创新的精神,为学生的终身学习、可持续发展奠定基础。因此在数学课堂教学中,逐步培养学生数学建模的思想,形成学生良好的思维习惯和应用数学的能力。
《建模思想在小学数学教学中的运用》
课题总结
桐木小学
杨同英
小学生数学建模活动的开展,不仅能够从小培养学生自觉应用数学的意识和解决问题的能力,同时还能将《标准》所倡导的“人人学有价值的数学;人人都能获得必要的数学;不同的人在数学上得到不同的发展。”等等这些新的数学教育理念落到实处。那么,什么是数学建模呢?
一、什么是数学建模
数学建模的概念有广义和狭义之分。从广义上说,数学中的各种概念、各种公式、各种方程式、各种理论体系,以及由公式系列构成的算法系统等等都是现实世界的数学模型。按照这种观点,整个数学也可以说是一门关于数学建模的科学。因此,本文所讨论的数学建模主要指的是狭义上的数学建模。
从狭义上看,什么是数学建模呢?目前在我国对数学建模还没有一个十分权威的定义,但比较一致的认识是:“数学模型是对现实世界中的原型,为了某一个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到一个数学结构。而数学建模它不但包含数学模型的建立,而且是对数学模型的求解和验证,并用该数学模型所提供的解答来解释实际问题。”
从数学建模的概念可以发现:数学建模实际上指的是一种用数学的知识、思想和方法来解决实际问题的过程和技术。实际问题的解决
往往在很大的程度上取决于我们所建立的数学模型的好坏。因此,数学建模的核心和灵魂就是舍去实际问题中的一些无关紧要的东西,将实际问题转化为数学问题。同时,数学建模也包括借助数学的知识、思想和方法,和计数器、计算机等工具解决数学问题后再回归到实际问题进行检验和应用的循环往复而不断深化的过程。可以说,数学建模的过程是一个“创造”的过程。
从“数学建模”这个概念的本质特征来看,在我们小学数学的日常教学中,常常进行着不同层次的数学建模活动。我们的小学生已经有了数学建模的意识,只不过没有从理论角度将其概括出来而已。“数学建模”思想在小学数学教学中的有效渗透,能够启迪学生的智慧、增强学生应用数学的意识,充分体现学习数学的价值。
二、小学生数学建模的可行性探究
小学生主要是学习间接知识,特别是小学低年级学生以形象思维为主,抽象思维能力十分微弱。因此,笔者认为将数学建模思想融入小学数学教学主要是针对小学高年级(4—6)的数学教学而言的。那么,将数学建模思想融入小学数学教学可行吗?
1、小学生数学建模可行的理论依据
面向21世纪的《义务教育阶段的数学课程标准》已经出版。新《标准》首次提到了数学建模的概念。同时,新《标准》还强调:“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。”
在新课程改革中,我们倡导建构主义的学习理论。建构主义提倡在教师指导下以学习者为中心,既强调学习者的认知主题作用,又不忽视教师的引导作用。教师是意义建构的帮助者、促进者,而不是知识的提供者和灌输者,教师的作用从传统的传递知识的权威转变为学生学习的辅导者,成为学生学习的高级伙伴和合作者。数学建模,渗透了建构主义的先进思想,作为一种学习活动的模式,是将建构主义理论运用到数学教学中的最佳手段。
在现代教育技术的理论与实践的背景下的探究型学习模式,注重学生在解决问题的过程中通过合作交流,自己去发现知识、获得知识和能力的发展。无疑,在数学学习中探究型学习的模式与数学建模的思想是相通的。
2、小学生也有数学建模的能力
小学生主要以学习间接的知识为主,抽象思维能力比较弱、学习和生活经验还不够丰富,因而我们不禁要问:小学生也具有数学建模的能力吗?小学生能够很好的解释和应用自己的数学模型吗?
当我们刚接触一个新的名词或一个新的概念或一种新的方法时总感到很陌生,也会觉得无从入手。但当我们理解了这些新事物的本质属性以后,我们往往又觉得我们曾似相识,数学建模也是如此。在小学数学的教育教学中,学生的探究性学习的过程不正是数学建模的过程吗?以上这个例子足以证明:小学生也有数学建模的能力,小学生也能够很好的解释和检验自己所建立的数学模型,“外人”很难改变学生已经建立好的数学模型。
3、教材内容的编写特点。
我们现在所使用的新教材和以往使用的教材有很大的不同,我们现在所使用的教材更注重数学与现实生活的联系,更能体现出学习数学的价值。
首先,新教材富有创造性的开辟了“数学广角”这样一个学习领域;开拓了学生的视野。通过对“数学广角”的学习探究活动,学生亲身经历合作、探究,和发现知识的过程,体会到数学学习的价值、增强应用数学的意识。其次,教材还为学生提供了许多富有趣味性的问题情境,如:装潢问题、合理存款问题、确定起跑线问题、节约用水问题、哥尼斯堡七桥问题等等。这些问题情境为数学建模活动的开展提供了丰富的素材。最后,在平常的教学内容的编排上也体现了数学建模的思想。如:在角的认识中,教材是这样编排的:教材创设了一个玩台球的情境,教材先出示一个打中台球后,台球运动留下痕迹的图片,之后要由此再抽象出“角”的几何模型„„新教材的编写特点,为开展小学生数学建模活动,提供了丰富的素材和广阔的发展空间。
总之,融“数学建模”的思想于小学数学教学是必要的、切实可行的,对小学数学教育具有十分重要的现实意义。作为数学教师,我们应该重视学生应用数学意识和解决问题能力的培养,自觉的将“数学建模”的思想融入到我们的教学实践中,努力提高小学数学教育的质量。
第四篇:数学建模思想在小学数学教学中如何渗透
数学建模思想在小学数学教学中如何渗透
一、数学教学渗透数学建模思想的可操作性
数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在数学教学活动中,教师应采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。数学在本质上就是在不断的抽象、概括、模式化的过程中发展和丰富起来的。数学学习只有深入到“模型”、“建模”的意义上,才是一种真正的数学学习。这种“深入”,就小学数学教学而言,更多地是指用数学建模的思想和精神来指导着数学教学,“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程,进而使学生获得对数学的理解的同时,在思维能力、情感态度与价值观等多方面得到进入和发展。”
二、数学建模的形成
1、创设相应情境,感受数学建模
数学来源于生活,又服务于生活,因此,要将现实生活中发生的与数学学习有关的素材及时引入课堂,要将教材上的内容通过生活中熟悉的事例,以情境的方式在课堂上展示给学生,描述数学问题产生的背景。情景的创设要与社会生活实际、时代热点问题、自然、社会文化等与数学问题有关的各种因素相结合,让学生感到真实、新奇、有趣、可操作,满足学生好奇好动的心理要求。这样很容易激发学生的兴趣,并在学生的头脑中激活已有的生活经验,也容易使学生用积累的经验来感受其中隐含的数学问题,从而促使学生将生活问题抽象成数学问题,感知数学模型的存在。
2、主动探索,建构数学模型
任何规律、知识的发现和形成,只有经历探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。教师提供丰富的实验材料,学生需要从中挑选出解决问题必须的材料进行研究。学生的问题不是一步到位的,通过不断地猜测、验证、修订实验方案,再猜测、再验证这样的过程,逐步过渡到复杂的、更一般的情景,学生在主动探索尝试过程中,进行了再创造学习,学习过程中学生有时独立思考,有时小组合作学习,有时是独立探索和合作学习相结合,学生在新知探索中充分体验了数学模型的形成过程。
3、解决问题,应用数学模型
用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学知识解决问题的能力,让学生体验实际应用带来的快乐。解决问题具体表现在两个方面:一是布置数学题作业,如基本题、变式题、拓展题等;二是生活题作业,让学生在实际生活中应用数学。通过应用真正让数学走入生活,让数学走近学生。用数学知识去解决实际问题的同时拓展数学问题,培养学生的数学意识,提高学生的数学认知水平,又可以促进学生的探索意识、发现问题意识、创新意识和实践意识的形成,使学生在实际应用过程中认识新问题,同化新知识,并构建自己的智力系统。
总之,通过建模教学,可以加深学生对数学知识和方法的理解和掌握,调整学生的知识结构,深化知识层次。同时,培养学生应用数学的意识和自主、合作、探索、创新的精神,为学生的终身学习、可持续发展奠定基础。因此在数学课堂教学中,教师应逐步培养学生数学建模的思想、方法,形成学生良好的思维习惯和用数学的能力。
第五篇:浅谈数学建模思想在初中教学中的应用
浅谈数学建模思想在初中教学中的应用
小勐统中学 李发娣
【摘要】在教学中渗透数学建模思想,适当开展数学建模的活动,对培养学生的能力发挥重要的作用,也是数学教学改革推进素质教育的一个切入口,本文是本人对教学中渗透数学建摸思想活动的方法及一些简单的体会.【关键词】数学建模 建模思想 能力培养
引言: 初中九年级义务教育数学课程标准强调指出:“在教学中,应注重让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型,估计,求解验证解的正确性和合理性的过程”【1】.从而体会数学与现实生活的紧密联系,增强应用知识的意识,培养运用代数知识与方法解决问题的能力.数学新课程改革的一个重要目标就是要加强综合性.应用性内容,重视联系学生生活实际和社会实践.而数学建模作为重要的数学思想初中学生应该了解,而数学模型作为解决应用问题的最有效手段之一,中学生更应该掌握.在数学课堂教学中及时渗透数学建模思想,不仅可以让学生感受数学建模思想,而且可以利用数学模型提高学生解决实际问题的能力.本文就创设情景教学体验数学建模.以教材为载体,向学生渗透建模思想.通过实际应用体会建模思想在数学中的应用,谈谈自己的感想.初中学生的数学知识有限,在初中阶段数学教学中渗透数学建模思想,应以教材为载体,以改革教学方法为突破口,通过对教学内容的科学加工.处理和再创造达到在学中用,在用中学,进一步培养学生用数学意识以及分析和解决实际问题的能力.下面结合两年来的教学体会粗略的谈谈数学建模在初中教学中的应用
一、创设情景教学 体验数学建模
数学教育学家弗赖登塔尔说“数学来源于现实,存在于现实,并且应用于现实,而且每个学生有各自不同的‘数学现实’” 【2】.数学只有在生活中存在才能生存于大脑.教育心理学研究表明,学习内容与学生已有的潜意识知识及生活经验相关性越大,学生对此的学习兴趣越浓.我们应重视数学与生产、生活的联系,激发学生的建模兴趣,而生活、生产与数学又密切相关,在数学的教学活
动中,我们若能挖掘出具有典型意义,能激发学生兴趣问题,创设问题情景,充分展现数学的应用价值,就能激发学生的求知欲.例题1 我市某商场为做好“家电下乡”的惠农服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147000元,已知甲、乙、丙三种型号的电视机的出厂价分别为1000元/台、1500元/台、2000元/台.(1)求该商场至少购买丙种电视机多少台?
(2)若要求甲种电视机的台数不超过乙种电视机的台数,问有哪些购买方案?[3] 解:
(1)设购买丙种电视机x台,则购买甲种电视机4x台,购买乙种电视机(108-5x)台,根据题意,得
1000×4x+1500×(108-5x)+2000x≤147000 解这个不等式得
x≥10
因此至少购买丙种电视机10台;(2)根据题意,得
4x≤108-5x 解得 x≤12
又∵x是正整数,由(1)得 10≤x≤12
∴x可以取10,11,12,因此有三种方案.
方案一:购进甲,乙,丙三种不同型号的电视机分别为40台,58台,10台; 方案二:购进甲,乙,丙三种不同型号的电视机分别为44台,53台,11台; 方案三:购进甲,乙,丙三种不同型号的电视机分别为48台,48台,12台.二.以教材为载体,把握策略,渗透建模思想
在现行的义务教育课程标准实验教科书教材中,时常能遇到一些创设有关知识情境的问题,这些问题大多数可以结合数学思想、数学方法进行教学,在这个教学过程中就可以进行数学建模思想的渗透,不仅可以使学生体会到数学并非只
是一门抽象的学科,而且可以使学生感觉到利用数学建模的思想结合数学方法解决实际问题的好处,进而对数学产生更大的浓厚兴趣.数学建模解决应用性实际问题的步骤是:审题,寻找内在数学关系,准确建立数学模型,求解数学模型.其中关键是建模,而建模的关键环节是审题,所以,首先要教学生掌握审题策略: 1.细读重点字、词、句、式,通过阅读材料,观察图表,找出题设中的关键性字、词、句、式,如不到、超过、增加到、增加了、变化、不变、至多、至少、大于、小于等,结合实际意义,深入挖掘题中隐藏着的数量关系与数学意义,捕捉题中的数学模型.2.借助表格或画图.在某些应用题中,数量关系比较复杂,审题时难以把复杂的数量关系清晰化,怎么办?可以根据事物类别、时间先后、问题的项目等列出表格或画出图形.3.关注问题的实际背景.从现实生产生活中提炼出的应用题,一般都有较浓厚的生活气息,且题设多以文字叙述的方式给出,显得比较抽象,理解难度较大,若我们能多联想问题的原始背景,往往可帮助理解题意,有时会有豁然开朗的感觉.例如:“有理数的加法”这一节的第一部分就是学习有理数的加法法则,课文是按提出问题——进行实验——探索——概括的步骤来得出法则的.在实际教学中我先给学生提出问题“一位同学在一条东西向的路上,先走了30米,又走了20米,能否确定他现在位于原来位置的哪个方向,与原来位置相距多少?”,然后让学生回答出这个问题的答案.(结果在实际教学中我发现学生所回答的答案中包括了全部可能的答案,这时我顺便提问回答出答案的同学是如何想出来的,并把他们的回答按顺序都写在黑板上.)在学生回答完之后,就可以结合这个问题顺便介绍数学建模的数学思想和分类讨论的数学方法,本题数学建模的一般步骤:首先,由问题的意思可以知道求两次运动的总结果,是用加法来解答;然后对这个问题进行适当的假设:①先向东走,再向东走;②先向东走,再向西走;③先向西走,再向东走;④先向西走,再向西走;接下来根据四种假设的条件规定向东为正,向西为负,列出算式分别进行计算,根据实际意思求出这个问题的结果.再引导学生观察上述四个算式,归纳出有理数的加法法则.这样一来,不仅可以使学生学习有理数的加法法则,理解有理数的加法法则,而且在这个过程中也使学生学习到了分类讨论的数学方法,并且对数学建模有了一个初步的印象,为今后进一步学习数学建模打下了良好的基础.利用课本知识的教学,在学生学习知识的过程中渗透数学建模的思想,能够使学生初步体会数学建模的思想,了解数学建模的一般步骤,进而培养学生用数学建模的思想来处理实际中的某些问题,提高解决这些问题的能力,促进数学素质的提高.例题3 某中学新建了一栋7层的教学大楼,每层楼有8间教室,进出这栋大楼共有8道门,其中4道正门大小相同,4道侧门也大小相同.安全检查中对8道门进行了测试:当同时开启一道正门和2道侧门时,2分钟可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟之内可以通过800名学生.【3】
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低30%.安全检查规定:在紧急情况下,全大楼的学生应在5分钟内通过这8道门安全撤离.假如这栋教学大楼每间教室最多有45名学生.问:建造的这8道们是否符合安全规定?请说明理由检查中发现.解:(1)设平均每分钟一道正门可以通过x名学生,一道侧门可以通过y名学生,由题意得:
2(x2y)560 4(xy)800 x120 解得:y80
答:平均每分钟一道正门可以通过120名学生,一道侧门可以通过80名学生.(2)这栋楼最多有学生4×8×45=1440(名)
拥挤时5分钟4道门能通过:52(12080)(120%)=1600(名)
∵1600>1440 ∴建造的4道门符合安全规定.以学生学习生活为背景题材编制应用题,使学生感觉到数学就在身边,必然会提高学生用数学的意识,以及增加学生对学习数学的兴趣.三.实践活动,综合应用,课内外相结合,向学生渗透建模思想
初中九年级义务教育数学课程标准强调指出:强调数学与生活经验的联系(实践性);强调学生主体化的活动;突出学生的主体性.强调了综合应用(综
【1】合应用的含义—不是围绕知识点来进行的,而是综合运用知识来解决问题的).如,某班要去三个景点游览,时间为8:00—16:00,请你设计一份游览计划,包括时间、费用、路线等.这是一个综合性的实践活动,要完成这一活动,学生需要做如下几方面的工作:①了解有关信息,包括景点之间的路线图及乘车所需时间.车型与租车费用、同学喜爱的食品和游览时需要的物品等;②借助数、图形、统计图表等表述有关信息;③计算乘车所需的总时间、每个景点的游览时间、所需的总费用、每个同学需要交纳的费用等.通过经历观察、操作、实验、调查、推理等实践活动,能运用所学的知识和方法解决简单问题,感受数学在日常生活中的作用等,渗透数学建模思想.传统的课堂教学模式,常是教师提供素材,学生被动地参与学习与讨论,学生真正碰到实际问题,往往仍感到无从下手.因此要培养学生建模能力,需要突破传统教学模式.教学形式实行开放,让学生走出课堂.可采用兴趣小组活动,通过社会实践或社会调查形式来实行.例如 一次水灾中,大约有20万人的生活受到影响,灾情将持续一个月.请推断:大约需要组织多少顶帐篷?多少吨粮食?
说明 假如平均一个家庭有4口人,那么20万人需要5万顶帐篷;假如一个人平均一天需要0.5千克的粮食,那么一天需要10万千克的粮食……
例如 用一张正方形的纸制作一个无盖的长方体,怎样制作使得体积较大?
说明 这是一个综合性的问题,学生可能会从以下几个方面进行思考:(1)无盖长方体展开后是什么样?(2)用一张正方形的纸怎样才能制作一个无盖长方体?基本的操作步骤是什么?(3)制成的无盖长方体的体积应当怎样去表达?(4)什么情况下无盖长方体的体积会较大?(5)如果是用一张正方形的纸制作一个有盖的长方体,怎样去制作?制作过程中的主要困难可能是什么?
通过这个主题的学习,学生进一步丰富自己的空间观念,体会函数思想以及符号表示在实际问题中的应用,进而体验从实际问题抽象出数学问题、建立数学模型、综合应用已有的知识解决问题的过程,并从中加深对相关知识的理解、发展自己的思维能力.综上所述,在数学教学过程中进行渗透数学建模思想,不仅可以让学生体会到感受数学知识与我们日常生活间的相互联系,还可以让学生感受到利用数学建模思想和结合数学方法解决实际问题的好处,进而对数学产生更大的兴趣.数学建模的思想与培养学生的能力关系密切.通过建模教学,可以加深学生对数学知识和方法的理解及掌握,调整学生的知识结构,深化知识层次.学生通过观察.收集.比较.分析.综合.归纳.转化.构建.解答等一系列认识活动来完成建模过程,认识和掌握数学与相关学科及现实生活的联系,感受到数学的广泛应用.同时,培养学生应用数学的意识和自主.合作.探索.创新的精神,使学生能成为学习数学的主体.因此在数学课堂教学中,教师应适当培养学生数学建模的思想.方法,形成学生良好的思维习惯和用数学的能力.参考文献
[1]全日制义务教育数学课程标准(实验稿).北京:北京师范大学出版社2001 [2]数学教育概论/张奠宙,宋乃庆主编.北京:高等教育出版社,2004.10 [3]初中数学基础知识手册,薛金星总主编.北京:北京教育出版社,2006.