第一篇:8.2幂的乘方与积的乘方(第一课时)
8.2幂的乘方与积的乘方(一般地有,于是得(a)= a(m,n都是正整数)这就是说,幂的乘方,底数不变,指数相乘.(引导学生自己归纳此法则)法则说明:
1.公式中的底数a可以是具体的数,也可以是代数式. 2.注意幂的乘方中指数相乘,而同底数幂的乘法中是指数相加.
三、例题教学: 例 1: 计算:
(1)(10);(2)(a)(m为正整数);(3)-(y);(4)(-x). 解:(1)(10)= 10(2)(a)= a32m4m×4626×262m
3233mnmn
= 10;
12= a;)=-y;4m(3)-(y)=-(y333×2(4)(-x)=-(x)=-(x333×3)=-x.
练习:P54 练一练 3(学生板演)
四、思维拓展:
1、填空:
(1)10=();(2)b=(b)();(3)(y)=();(4)p2、请你比较3与4的大小。
五、小结: 40
308
227
3m
3m
2nn+2
=().21、说说幂的乘方的运算性质;
2、通过探索幂的乘方运算性质的活动,你有什么感受?
3、举例说明幂的乘方运算性质与同底数幂的乘法性质的联系与区别。
六、布置作业:P56习题9.2
1(1)(2)(3)
七、教后反思
第二篇:幂的乘方与积的乘方练习题
幂的乘方与积的乘方 班级 姓名
一、填空题: 1(ab2c)22n3(a)a31.=________, =_________.毛
37(pq)(pq) =_________,(2.52)n4na2nb3n.3((a3.))a2a14.23222(3a)(a)a4.=__________.2n2n15.(xy)(xy)=__________.1()100(3)100220042003{[(1)]}=_____.36.=_________,nnn23nx2,y3(xy)(x7.若,则=_______,y)=________.8.若(a3)x·a=a19,则x=________.
二、选择题: 9.下列各式中,填入a能使式子成立的是()
A.a=()B.a=()C.a=()D.a=()10.下列各式计算正确的()A.x·x=(x)B.xa44aa33aa626343052·x=(x)
a3a3C.(x)=(x)D.xn28· x
a· x
a=x
3a
11.如果(9)=3,则n的值是()
A.4 B.2 C.3 D.无法确定 12.已知P=(-ab),那么-P的正确结果是()
A.ab B.-ab C.-ab D.-a b 13.计算(-4×10)×(-2×10)的正确结果是()
A.1.08×10 B.-1.28×10 C.4.8×10 D.-1.4×10 14.下列各式中计算正确的是()
A.(x)=x B.[(-a)]=-a
C.(a)=(a)=am22m2m4372510***34122648412322 D.(-a)=(-a)=-a
2332615.计算(-a)·(-a)的结果是()
A.a B.-a C.-a D.-a 16.下列各式错误的是()
A.[(a+b)]=(a+b)B.[(x+y)C.[(x+y)]=(x+y)mnmn2362n121210362332]=(x+y)
n52n5
nm1 D.[(x+y)
m1]=[(x+y)]
17.若m为正整数,且a=-1,则 的值是().
A.1 B.-1 C.0 D.1或-1
18.若把(m-2n)看作一个整体,则下列计算中正确的是(). A.B.C.D.19.(-a5)2+(-a2)5的结果是().
A.B.0 D.20.8a3x3·(-2ax)3的计算结果是().
A.0 B.-16a6x6 C.-64a6x6 D.-48x4a6
21.计算(-p)8·(-p2)3·[(-p)3]2的结果是(). A.B.C.D.22.下列命题中,正确的有(). ①
②m为正奇数时,一定有等式(-4)m=-4m成立; ③等式(-2)m=2m,无论m为何值时都不成立;
④三个等式:(-a2)3=a6,(-a3)2=a6,[-(-a2)]3=a6都不成立. A.1个 B.2个
C.3个
D.4个 23.有一道计算题(-a4)2,李老师发现全班有以下四种解法: ①(-a4)2=(-a4)(-a4)=a4·a4=a8; ②(-a4)2=-a4×2=-a8;
③(-a4)2=(-a)4×2=(-a)8=a8;
④(-a4)2=(-1×a4)2=(-1)2·(a4)2=a8. 你认为其中完全正确的是(). A.①②③④
三、解答题: 24.计算
4224223322(x)(x)x(x)x(x)(x)(x);(1)B.①②④ C.②③④ D.①③④
(2)(-2ab)+8(a)·(-a)·(-b);
(3)(-3a)·a+(-4a)·a-(5a).1(a3nbm1)2(4a3nb1)2(4)4
2332733232223(5)8
1999×(0.125)2000;
2m1m1mm2168(4)8(5)(m为正整数).25.化简求值:(-3a2b)-8(a32)·(-b)
22·(-a
2b),其中a=1,b=-1.10a5,10b6102a103b的值;(2)102a3b的值(7分)26.已知 ,求(1)
3m3n2m3n32mn4m2na3,b2(a)(b)abab27.已知,求的值(7分)
第三篇:《幂的乘方与积的乘方》教案
幂的乘方与积的乘方
教学目标:
一、知识与技能目标:
1、经历探索幂的乘方的运算性质的过程,进一步体会幂的意义;
2、了解幂的乘方的运算性质,并能解决一些实际问题。
二、过程与方法目标:
1、在探索幂的乘方的运算性质的过程中,发展推理能力和有条理的表达能力。
2、学心幂的乘方的运算性质,提高解决问题的能力。
三、情感态度与价值目标:
在发展推理能力和有条理的表达能力的同时,进一步体会学习教学的兴趣,培养学习教学的信心,感受数学的内在美。教学难点:
幂的乘方的运算性质及其应用。教学方法:
引导——探索相结合。
教师由实际情景引导学生探索幂的乘方的运算性质,并能灵活运用。教具准备: 多媒体课件:
教学过程:
1、①、电脑显示书P14引例; ②、引导学生列出算式; ③、问题:(102)3=?怎样计算?
④、引导学生围绕提问思考,并寻求解决问题的方法。
2、①、电脑显示书P15“做一做”内容; 计算下列各式,并说明理由:
②、指导学生独立完成4道小题;
③、与学生适当交流,关注学生获取答案的思路和方法;
④、引导学生讨论与交流的基础上总结结论,引出关于幂的乘方的法则。⑤、板书法则
3、电脑显示书P16例1,例1:计算
注意引导学生分析及书写步骤和格式,引导学习归纳解题注意事项,明确法则使用的条件。
4、课堂练习:
电脑显示:①、基础练习书P16随堂练习
1、计算:
②、提高练习,可采取竞赛形式。
5、小结:
由学生归纳本节所学内容,总结记忆法则的使用条件和注意事项。
6、课外练习:
书P16,习题15第1、2、3题
第四篇:幂的乘方与积的乘方教案
学习周报
专业辅导学生学习
《幂的乘方与积的乘方
(一)》说课教案
一、教材分析
(一)本节内容在教材中的地位与作用。
幂的运算,是把前面学过的数的运算抽象为式的运算,幂的乘方与积的乘方是本章的第二节,是在学生已有的同底数幂的乘法运算性质的基础上,通过做幂的乘方后,再明晰的幂的乘方运算性质,是进一步学习幂的运算的基础,是今后学习整式乘法的重要基础,也是今后学习方程、不等式、函数等知识的储备内容,同时也是学习物理、化学、生物等学科必不可少的解题工具。因此,本节课的知识承上启下,具有重要作用。
(二)教学目标
在本课的教学中,不仅要让学生学会如何进行幂的乘方的运算,更主要地是要让学生掌握研究问题的方法,初步领悟化归的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:
知识与技能:理解幂的乘方的运算性质,能熟练的运用性质进行计算,并
能说出每一步计算的依据。
过程与方法:经历探索幂的乘方性质的过程,结合探究活动,掌握幂的乘方的运算性质的运用方法和技巧。
情感态度和价值观:进一步体会幂的意义,发展归纳、概括、推理能力和有条理的数学表达能力,增强学数学的信心。
(三)教材重难点
由于本节课是探索并运用幂的运算的性质的第二个基本性质,故我确定
“以理解并掌握运算性质”作为教学的重点,而将其灵活的运用作为教学的难点。同时,我将采用让学生通过先“做”,然后思考、猜想、合作探究、媒体演示的方式以及渗透从一般到特殊、从具体到抽象的数学思想方法教学来突出重点、突破难点。
(四)教具准备:相关多媒体课件。
二、教法选择与学法指导
本节课主要是理解、掌握性质并运用运算性质计算,故我在课堂教学中将尽量为学生提供“做”中“学”的时空,让学生进行小组合作学习,在“做”的www.xiexiebang.com
学习周报
专业辅导学生学习
过程中潜移默化地渗透一些数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自觅规律、自悟原理。
三、教学流程
(一)创设情景,激发求知欲望
首先,我提出一个趣味性问题:谁能在黑板上写下100个104的乘积?根据经验,同学们发现写不下。
我再提出一个问题:谁能用比较简单的式子表示100个104的乘积? 经过大家的讨论,和同学们共同明确根据乘方的意义,100个104相乘,可以写成(104)100,再问,你会算(104)100吗?同学们愿意和老师一起来研究这个问题吗?
这样设计的目的是既交代了本节课要研究和学习的主要问题,又让学生体会了这种计算的必要性,能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。
(二)探索活动,发现概括规律
数学教学的本质就是数学活动的教学,为此,本节课我设计了如下的系列活动,旨在让学生通过先“做”,然后思考、猜想、合作探究来归纳幂的乘方的运算性质。
1、活动一:媒体展示课本43页的“做一做”,及以下问题
2、问题一:你能说出(23)
2、(a4)3表示什么意义吗?
3、问题二:请你计算(23)
2、(a4)
3、(am)5,并和同桌一起交流每一步计算的依据
请一个同学回答(am)5的计算过程,并说出依据,说的不全面的其他同学补充。
4、问题三:从上面的计算你发现了什么规律?
请同学回答后师生共同总结,上面各式的括号里都是幂的形式,然后再乘方,我们把这种运算叫做幂的乘方。
再请同学用自己的语言描述所发现的规律。
5、问题四:能说明你的猜想是正确的吗?请计算(am)n,小组交流用符号和文字两种不同的方式来表示发现的规律。
在这个过程中,我让学生充分的交流各自的计算依据,用自己的语言描述发现的规律。这样的设计目的是让学生经历从特殊到一般的过程,归纳出幂的乘方
www.xiexiebang.com
学习周报
专业辅导学生学习的运算性质,发展归纳能力和有条理的表达能力。
(三)例题教学,发挥示范功能
例题教学是课堂教学的一个重要环节,因此,如何充分地发挥好例题的教学功能是十分重要的。为此,我将充分利用好这几道例题,培养学生有条理的表达能力。
首先,我将出示例1计算,例一由四道题组成,第(1)题(10m)2是法则的直接运用,所以我让由学生直接口答,我板演,第(2)题(x3)3有个负号,对于中等学生不太容易直接回答,所以我让学生先思考,同时提醒学生不要因“小符号”而误“大结果”。然后请同学再回答,我板演。第(3)题x2x4(x3)2,第(4)题(a3)3(a4)3对于这两小题是几种运算结合起来的综合题,我让学生在说明算理的基础上充分交流各自的做法,要求学生自己辨析,何时运用同底数幂的乘法运算性质,何时运用幂的乘方运算性质,何时是合并同类项,做到计算过程步步有据。这样设计的目的是通过写出计算过程,以引导学生逐步熟悉“幂的乘方运算性质”。力争让所有学生都能达到目标中的熟练的运用运算性质进行计算。
在例题教学的基础上,为了及时的反馈教学效果,也为提高学生知识应用的水平,达到及时巩固的目的,我设计了如下练习:、请四个学生板演教材P44练一练第一题的(3)、(4)两小题、第三大题。
板演结束后再请四个学生到黑板上给他们的同学批改,错误的要订正在旁边,同时给他们的同学就解题格式、书写、正确率方面综合打分。最后请一个学生就板演,批改做点评。这样的设计目的是为了尝试实现让不同的人在数学上有不同的发展,活跃课堂的气忿,拉近与学生的距离。让他们在学习知识,改正错误的同时感受到自己是课堂的小主人,增强他们学数学的信心,激发他们学习的兴趣和热情。
(四)思维拓展,勇攀知识高峰
为了体现“数学教学不仅仅是数学知识的教学,更重要的发展学生数学思维的教学”,为逐步培养学生逆向思维的习惯、培养学生善于思考、善于归纳、善于交流、敢于创造的习惯。我设置了如下两个小问题来让学生来挑战: 1、a12(a3)()(a)2()()(3)
42、比较330,420与510的大小
www.xiexiebang.com
学习周报
专业辅导学生学习
这两道题都是采取逆向运用的方法解答的,通过前一课时同底数幂的乘法,同学们已对逆向运用有了初步的认识,所以我采取让学生小组讨论、小组代表发言的模式,采取自主探索、合作交流相结合的方法。这样的设计目的让学生自得知识、自觅规律、自悟原理。
为了让学生感受“数学来源于生活,又服务于生活的基本事实”,感受本节知识在实际生活的应用,我设计了利用幂的乘方在解决校园建设中的绿化问题。
1、某学校有一个半径为R=103cm的圆形空地,计划在圆形空地的中央建一个半径 为r=102cm的圆形水池,剩余面积种植花草,求种植花草的面积是多少?
(五)课堂小结,建立知识体系。
1、引导学生从所学知识、所学知识是如何得到的、所学数学方法等方面总结有哪些收获?
2、引导学生思考对于本节所学知识还有哪些疑问?
(六)作业布置
1、课本P48习题第二题
2、思考题:32003的个位数字是几? 附板书设计:
幂的乘方
对于任意的底数a,当m、n是正整数时,例1 计算
(a)amnm
amamammmamn 1、2、3、4、幂的乘方,底数不变,指数相乘。
学生练习
www.xiexiebang.com
第五篇:《幂的乘方与积的乘方》教案(推荐)
《幂的乘方与积的乘方》教案
一、知识结构
二、重点、难点分析
本节教学的重点是幂的乘方与积的乘方法则的理解与掌握,难点是法则的灵活运用.
1.幂的乘方
幂的乘方,底数不变,指数相乘,即
(都是正整数)
幂的乘方 的推导是根据乘方的意义和同底数幂的乘法性质.
幂的乘方不能和同底数幂的乘法相混淆,例如不能把,也不能把
的计算结果写成 .
的结果错误地写成幂的乘方是变乘方为(底数不变,指数相乘的)乘法,如同底数幂的乘法是变(同底数的幂)乘为(幂指数)加,如
;而 .
2.积和乘方
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即
(为正整数).
三个或三个以上的积的乘方,也具有这一性质.例如:
3.不要把幂的乘方性质与同底数幂的乘法性质混淆.幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变).
4.同底数幂的乘法、幂的乘方、积的乘方的三个运算性质是整式乘法的基础,也是整式乘法的主要依据.对三个性质的数学表达式和语言表述,不仅要记住,更重要的是理解.在这三个幂的运算中,要防止符号错误:例如,还要防止运算性质发生混淆:
三、教法建议
1.幂的乘方导出的根据是乘方的意义和同底数幂的乘法性质.教学时,也要注意导出这一性质的过程.可先以具体指数为例,明确幕的乘方的意义,导出性质,如
等等.
;
对于从指数连加得到指数相乘,要根据学生情况多作一些说明.以再一次说明
为例,可以写成 .这一点是导出幂的乘方性质的关键,务必使学生真正理解.在此基础上再导出性质.
2.使学生要严格区分同底数幂乘法性质与幂的乘方性质的不同,不能混淆.具体讲解可从下面两点来说明:
(1)牢记不同的运算要使用不同的性质,运算的意义决定了运算的性质.
(2)记清幂的运算与指数运算的关系:
(同底)幂相乘→指数相加(“乘”变“加”,降一级运算);
幂乘方→指数相乘(“乘方”变“乘法”,降一级运算).
了解到有关幂的两个重要性质都有“使原运算仅降一级运算”的规律,可使自己更好掌握有关性质.3.在教学的各个环节中,注意启发学生,不仅掌握法则,还要明确为什么.三种运算法则全讲完之后,学生最易产生法则间的混淆,为了解决这个问题除叫学生熟记法则之外,在学生回答问题和写作业时,注意解题步骤,或及时发现问题,说明出现问题的原因;要注意防止两个错误:
(1)(-2xy)=-2xy. 444
4(2)(x+y)=x+y. 333
幂的乘方与积的乘方(一)
一、教学目标
1.理解幂的乘方性质并能应用它进行有关计算.
2.通过推导性质培养学生的抽象思维能力.
3.通过运用性质,培养学生综合运用知识的能力.
4.培养学生严谨的学习态度以及勇于创新的精神.
5.渗透数学公式的结构美、和谐美.
二、学法引导
1.教学方法:引导发现法、尝试指导法.
2.学生学法:关键是准确理解幂的乘方公式的意义,只有准确地判别出其适用的条件,才可以较容易地应用公式解题.
三、重点·难点及解决办法
(-)重点
准确掌握幂的乘方法则及其应用.
(二)难点
同底数幂的乘法和幂的乘方的综合应用.
(三)解决办法
在解题的过程中,运用对比的方法让学生感受、理解公式的联系与区别.
四、课时安排
一课时.
五、教具学具准备
投影仪、胶片.
六、师生互动活动设计