人教版六年级数学圆柱圆锥测试卷附答案

时间:2019-05-13 05:05:30下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版六年级数学圆柱圆锥测试卷附答案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版六年级数学圆柱圆锥测试卷附答案》。

第一篇:人教版六年级数学圆柱圆锥测试卷附答案

人教版六年级数学第三单元测试卷

(内容:圆柱、圆锥表面积和体积

时间80分钟

分值100分)

一、填一填。(每空2分,共26分)

1、一个长方形长4cm,宽3cm,以这个长方形的长边为轴旋转一周,得到的立体图形是(),这个立体图形的表面积是()cm2,体积是()cm3.2、一个圆锥的底面周长是12.56cm,高6cm,它的体积是()cm3。

3、一个圆柱的侧面积是50.24cm2,高2cm,它的底面积是(),体积是()。

4、一个圆柱形油桶,从里面量底面半径4dm,高1.5m,这个油桶能盛()

升油。

5、如下图,圆柱形烧杯与圆锥形杯子的底面积相等,将圆柱形烧杯装满水后倒

入圆锥形杯子,能装()杯。

6、把一个棱长6cm的正方体木块加工成一个最大的圆锥,这个圆锥的体积是

()cm3。

7、一种圆柱形的罐头盒,它的底面半径为6cm,高15cm,侧面有一圈商标纸,商标纸的面积大约是()cm。

8、把一个圆柱形的木块沿底面半径竖直切成两部分,表面积比原来增加了600cm2,已知圆柱形木料的底面直径为10cm,这根木料的体积是()cm3。

9、一个圆柱与一个圆锥的底面积相等,体积的比是2:3,已知圆柱高12cm,圆锥高()cm。

10、把一个圆柱的底面平均分成若干个扇形,然后沿高切口,拼成一个长31.4cm、宽10cm、高20cm的近似长方体,原来圆柱体的体积是()cm3。

二、判一判。(每小题1分,共6分)

1、把一个圆柱形钢材截成同样的两段,体积与表面积都不变。

()

12、圆锥的体积是圆柱体积的。()

33、一个圆柱的侧面展开图是一个正方形,这个圆柱的高是底面直径的π倍。

()

14、圆柱的底面半径扩大到原来的2倍,高缩小到原来的,圆柱的体积不变。()

5、求长方体、正方体和圆柱的体积时都可以利用公式V=Sh进行计算。()

6、一个圆柱体与一个圆锥的体积和高分别相等,那么圆锥的底面积与圆柱的底面积比是3:1。

()

三、选一选。(每小题2分,共16分)

1、一个圆柱形水桶能装30L水,说明这个水桶的()是30L。

A、表面积

B、体积

C、容积

2、以下图三角形的短边为轴旋转一周得到的几何体的体积是()cm3。

A、150.72

B、28.26

C、50.24

3、甲、乙二人分别用两张完全一样的长方形纸片围一个尽可能大的圆柱形纸筒,甲以纸片的长作为纸筒的高,乙以纸片的宽作为纸筒的高,二人围成的圆柱形纸筒侧面积比较,()

A、甲围成的大

B、一样大

C、乙围成的大

4、一个圆柱的侧面沿高展开是一个边长12.56cm的正方形,这个圆柱体的体积是()cm3。

A、12.56

B、157.7536

C、8π

5、一个圆柱与一个圆锥的底面积相等,圆柱的高是圆锥高的2倍,圆锥的体积是圆柱体积的()。

A、111 B、C、6236、一个圆柱与一个圆锥等底等高,它们的体积之差为6.28cm3,那么它们的体

积之和是()cm3。

A、9.42

B、12.56

C、15.7

7、下面的圆柱与圆锥,体积相比()。

A、圆柱>圆锥

B、圆柱=圆锥

C、圆柱<圆锥

8、把一段圆钢削成一个最大的圆锥,削去的部分重24千克,整段圆钢重()千克。

A、36

B、24

C、12

四、想一想、连一连。(5分)

五、按要求计算。(16分)

1、计算下列图形的表面积。(8分)

2、计算下列图形的体积。(8分)

六、解决问题。(每题5分,最后一题6分,共31分)

1、压路机的前轮是一个圆柱,轮宽1.5m,直径1.2m,前轮每分钟可转动12周,每分钟压出路面的面积是多少平方米?

2、一个人一天的正常饮水量是2L,小华用的事一个底面半径3cm、高8cm的圆柱形水杯,他每天用这个水杯喝几杯水才能满足身体的需要?

3、运动会三级跳远场地的沙坑是长方体,长8m,宽2.8m,深0.5m,工人运来的沙子堆成4个相同的圆锥,每个沙堆的底面周长为9.42m,高1.5m,这些沙子能填满沙坑吗?

4、有一个圆柱形玻璃缸,底面直径2dm,未盛满水,放入一个铁球,当铁球完全沉入水中

之后,水面升高3cm,求铁球的体积。

5、一个酸奶瓶(如图),它的瓶身呈圆柱形(不包括瓶颈),容积是32.4cm3。当瓶子正放 时,瓶内酸奶高为8cm,瓶子倒放时,空余部分高为2cm。请你算一算,瓶内酸奶体 积是多少立方厘米?

6、把一个圆柱沿底面直径竖直切成四块(如图一),表面积增加了48cm2;平行于底面切成三块(如图二),表面积增加了50.24cm2;削成一个最大的圆锥(如图三),体积减少了多少立方厘米?

参考答案:

一、1、圆柱

131.88

113.04 2、25.12 3、50.24cm100.48cm3 4、753.6 5、9 6、56.52 7、565.2 8、2355 9、54 10、6280

二、××√×√√

三、C

C

B

B

A

B

C

A

四、略

五、1、182.12cm6123cm2

2、(1)2198m(2)1130.4cm3

六、1、67.824m2 2、9杯

3、沙坑容积=8×2.8×0.5=11.2(m3)

沙子体积=3.14×(9.42÷3.14÷2)2×1.5×1/3×4=14.13(m3)

14.13m3>11.2m3,能填满。4、2dm=20cm

3.14×(20÷2)2×3=942(cm3)5、25.92cm3

6、分析:先根据图二求出圆柱的底面积和底面直径;再根据图一的切法求出圆柱的高。求把圆柱削成一个最大的圆锥后体积减小了多少立方厘米,就是求圆柱体积的2/3是多少,先求出圆柱的体积,再乘2/3即可。解答:圆柱的底面积:50.24÷[(3-1)×2]=12.56(cm2)

圆柱的直径:12.56÷3.14=4(cm2),即r2=4cm2,推得d=4cm。

圆柱的高:48÷4÷4=3(cm)

减少的体积:3.14×4×3×2/3=25.12(cm3)

第二篇:六年级数学圆柱、圆锥和球

第二单元:圆柱、圆锥和球

教学内容:圆柱的认识。教学目标:

1.使学生认识圆柱,掌握圆柱的特征。

2.使学生认识圆柱的底面、侧面和高。教学过程:

1.复习引新。

我们以前学过的正方体、长方体都是由平面围成的立体图形。今天,我们再来研究一种新的立体图形——圆柱。

2.学习新知。

教师可以出示一些圆柱的实物,也可以让学生把自己准备的圆柱实物拿出来一起来研究。

教师可以提出以下的问题:

你还能举出生活中圆柱的例子吗?

[订正:饭店门前的柱子、灯管、药瓶、易拉罐、铅笔等。]

同学们说的这些物体的形状都是圆柱体,简称圆柱(本书所讲的圆柱都是直圆柱)。

教师拿出一个形状是圆柱的物体,请学生观察。

请同学们思考下面的问题:

(1)圆柱的上、下两个面是什么图形?

(2)用手摸一摸圆柱周围的面,你发现了什么?

(3)圆柱两个底面之间的距离叫什么?

[订正:(1)圆柱的上、下两个面叫做底面。它们是完全相同的两个圆。

(2)圆柱有一个曲面,叫做侧面。

(3)圆柱两个底面之间的距离叫做高。]

教学圆柱的认识时,要让学生拿着圆柱形物体观察和摆弄,可以通过看一看,摸一摸等直观方法,同长方体的表面进行比较,使学生认识到两者之间的差别,从而认识圆柱的侧面是曲面。

这时,教师可以让学生拿出剪子,和教师一起来把罐头盒的商标纸像下图所示那样,沿着它的一条高剪开,再打开,看看商标纸是什么形状。

并提问:你发现了什么?

[订正:让学生发现到展开的商标纸是一个长方形。圆柱的侧面是一个曲面,可以展开成一个长方形或是一个正方形平面。]

让学生观察:将这张长方形的纸包在圆柱的侧面上。

并提问:

(1)长方形的长与圆柱底面的周长有什么关系?

(2)长方形的宽与圆柱的高有什么关系?

让学生分析、比较,概括出:长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高。

3.巩固练习。

(1)说一说,你见到过哪些物体是圆柱形的。

[订正:药盒、纸筒、铁棍、水管、烟囱等。]

(2)指出下图中哪个是圆柱体。

[订正:①不是 ②是 ③不是 ④是]

4.综合提高性练习。(供学有余力的学生完成)

按照课本第147页的图样,做一个圆柱体,再量出它的底面直径和高各是多少厘米。

5.质疑。

今天我们学习了什么?圆柱侧面展开是什么图形?

6.布置作业。(略)

课后反思:本节课中的练习有利于培养学生的创新精神和实践能力。

圆柱的表面积

教学内容

教材33页、34页例

1、例

2、例3及做一做,练习七第2-5题。素质教育目标

(一)知识教学点

1.理解圆柱的侧面积和表面积的含义。

2.掌握圆柱侧面积和表面积的计算方法。

3.会正确计算圆柱的侧面积和表面积。

(二)能力训练点

能灵活运用求表面积、侧面积的有关知识解决一些实际问题。教学重点

理解求表面积、侧面积的计算方法,并能正确进行计算。教学难点

能灵活运用表面积、侧面积的有关知识解决实际问题。教具学具准备

1.教师、学生每人用硬纸做一个圆柱体模型。

2.投影片。教学步骤

一、铺垫孕伏

1.口答下列各题(只列式不计算)。

(1)圆的半径是5厘米,周长是多少?面积是多少?

(2)圆的直径是3分米,周长是多少?面积是多少?

2.长方形的面积计算公式是什么?

3.教师出示圆柱体模型,指同学说出它有什么特征?

二、探究新知

1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。

(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。

(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。

2.教学例1

(1)出示例1,指同学读题,找出已知条件和所求问题。

学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。

板书:3.14×0.5×1.8

=1.75×1.8

≈2.83(平方米)

答:它的侧面积约是2.83平方米。

(2)反馈练习:完成做一做41页第1题。

学生独立解答,然后订正。

3.教学圆柱的表面积

(1)教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。

(2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。

4.教学例2

(1)投影片出示例题

2、圆柱的几何图形和表面积的展图。

(2)指同学读题,找出已知条件和所求问题。

(3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。

(4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。

教师巡视指导,注意检查学生的计算结果和计量单位是否正确。

做完后订正,订正时让学生说出有关的计算公式。

(5)反馈练习:完成做一做第2题。

指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。

5.教学例3

(1)出示例3,指名读题,找出已知条件和所求问题。

(2)教师提示:解答这道题应注意什么?

启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。

(3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。

(4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。

(5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。

(6)“四舍五入”法与“进一法”有什么不同。

通过比较,使学生明白:“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去。而进一法也是看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一。

6.阅读课本33页、34页。

三、巩固发展

1.完成练习七第2题。

指两名学生板演,教师巡视指导,然后订正。

2.完成练习七第3题的前两题。

学生在练习本上做,教师巡视指导,然后订正。

3.完成练习七第5题。

(1)每组一个茶叶筒,学生分组进行测量。

(2)教师巡视,指导学生测量的方法。

(3)学生独立解答。(让学生分别计算出有盖的和无盖的茶叶筒的表面积)然后订正。

四、全课小结

教师:这节课我们所研究的例

1、例

2、例3都是有关圆柱表面积的计算问题。(教师板书课题:圆柱的表面积)圆柱的表面积在实际应用时要注意什么呢?

教师引导学生归纳出:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求一个侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。

五、布置作业练习七第3题的第3小题、第4题。

课后反思:本课时的教学通过师生的共同参与,让学生体验了数学的探索性和挑战性。

圆柱的体积

教学内容

教材36、37页例

4、例5及做一做,练习八第1、2题。素质教育目标

(一)知识教学点

1.理解圆柱体体积公式的推导过程,掌握计算公式。

2.会运用公式计算圆柱的体积。

(二)能力训练点

1.能运用圆柱体的体积公式解决一些实际问题。

2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

(三)德育渗透点

通过把圆柱体切割后,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。教学重点

圆柱体体积的计算。教学难点

理解圆柱体体积公式的推导过程。教具学具准备

1.推导圆柱体体积的圆柱体教具一套,学生学具每人一套。

2.投影片、电脑软件。教学步骤

一、铺垫孕伏

1.提问:

(1)什么叫体积?怎样求长方体的体积?

(2)圆的面积公式是什么?

(3)圆的面积公式是怎样推导的?

2.导入:

同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的知识长方形来解决的。那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题。(板书:圆柱的体积)

二、探究新知

1.教学圆柱体的体积公式

(1)教师演示:

同学们看老师手中的这个圆柱,我先把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体。

下面请同学们拿出自己的学具动手拼一拼,看拼起来是什么形体。

(2)学生操作(教师要注意巡视指导)

(3)启发学生观察、思考、讨论:

①圆柱体切开后可以拼成一个什么形体?(近似的长方体)

②通过刚才的实验你发现了什么?(教师要注意启发、引导)

a.拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了。

b.拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化。

c.近似长方体的高就是圆柱的高,没有变化。

(4)教师演示,学生观察。

同学们,刚才我们把圆柱的底面平均分成了16份,切割后再拼起来,拼成了一个近似的长方体,下面请同学们仔细观察:(教师边利用电脑出示图形边提问)

①如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?

②如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?

③如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?

(利用电脑使学生直观地认识到,分的份数越多,拼起来就越近似于长方体)

(5)启发学生说出通过以上的观察,发现了什么?

①平均分的份数越多,拼起来的形体越近似于长方体。

②平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

(学生回答时,教师要注意启发、点拨。如果学生回答有困难,可把演示的三个近似的长方体,放在同一画面,让学生观察比较)

(6)启发学生思考回答:

为什么要把圆柱体拼成近似的长方体?你从中发现了什么?

①圆柱体与近似的长方体,形状不同,体积相同。

②我们学过长方体的体积公式,如果把圆柱体转化成近似的长方体,圆柱体的体积就可以计算了。

(7)推导圆柱的体积公式:

①学生分组讨论:圆柱体的体积怎样计算?

②学生汇报讨论结果,并说明理由。

因为长方体的体积等于底面积乘以高。(板书:长方体的体积=底

面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积

↓),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘以高。(板书:=、×)

③用字母表示圆柱的体积公式。(板书:V=sh)

④启发学生回答:求圆柱的体积必须具备哪两个条件?

(8)反馈练习:

口答,只列式不计算:

①底面积是10,高是2,体积是()

②底面积是3,高是4,体积是()

2.教学例4。

(1)出示例4。

(2)学生独立进行计算。(教师巡视,注意发现学生计算中存在的问题)

(3)订正。(如发现有50×2.1的,让学生板演讲解,使学生自己明白错误的原因,从而加深印象。如果发现计算没有出现错误,也可让学生板演,并正确地表述)

(4)反馈练习:完成38页做一做第1题。

一名学生在小黑板上做,其余学生在练习本上做,然后订正。

3.启发学生思考回答:计算圆柱的体积,还可能有哪些情况?(学生回答时,要让学生说出计算思路)

(1)已知圆柱的底面半径和高,求体积。

(2)已知圆柱的底面直径和高,求体积。

(3)已知圆柱的底面周长和高,求体积。

反馈练习:完成38页做一做第2题,学生口述解题思路,不计算。

4.教学例5

(1)出示例5。

(2)引导学生分析题意:

①这道题已知什么?求什么?

②要求水桶的容积,应先求什么?再求什么?

(3)求水桶的底面积:(学生在练习本上解答,然后订正)

板书:(1)水桶的底面积:

(4)求水桶的容积:(让学生填在书上的空白处,然后订正)

板书:(2)水桶的容积:

3.14×25

=7850(立方厘米)

≈7.9(立方分米)

答:这个水桶的容积大约是7.9立方分米。

5.阅读课本36页、37页。

三、巩固发展

1.完成练习八第1题。

投影出示题目内容,学生口答。

2.完成练习八第2题的第1小题。

学生独立解答,集体订正,并说解题思路。

3.一个圆柱形水池,半径是10米,深1.5米。这个水池占地面积是多少?水池的容积是多少立方米?

学生独立解答,然后订正。

四、全课总结

通过本节课的学习,你有什么收获?(启发学生从两个方面谈:圆柱体体积公式的推导方法和公式的应用)

五、布置作业 练习八第二题的后两个小题。

课后反思:本节课进一步发展了学生的空间观念,而且还进一步提高了学生学习数学的兴趣。

圆 锥

教学内容:认识圆锥 圆锥的体积。教学目标:

1.使学生认识圆锥,掌握它的特征;认识圆锥的底面和高。

2.使学生理解并掌握圆锥体体积的计算公式,并能正确计算圆锥体体积。

3.通过操作、观察,发展学生的空间思维能力,培养学生的观察能力,学会解决一些与计算圆锥形物体的体积有关的实际问题。教学过程:

1.复习旧知识,引出新问题。

(1)出示圆柱体。

这是什么物体?它的体积怎样计算?

(2)投影出示圆锥体。(先将第一组和第二组图重合在一起,然后再抽拉出第一组成为透视图。)

上面这些物体的形状都是圆锥体,简称圆锥。

(3)出示圆锥模型。

请同学们观察圆锥有哪些特点。

圆锥的底面是个圆,圆锥的侧面是个圆曲面。从圆锥的顶点到底面圆心的距离是圆锥的高(用h表示)。

请同学们阅读课本,自学测量圆锥高的方法。再按照书上介绍的步骤将圆锥模型的侧面展开,就能得到一个扇形(如下图)。

2.指导探索圆锥体积计算公式。

刚才同学们认识了圆锥体,圆锥体的体积是多少?下面我们就共同研究一下圆锥体体积的计算方法。

引导学生把圆锥体同与它等底等高圆柱体联系起来,教给操作方法。

让学生拿出已经准备好的圆柱体、圆锥体、沙土,请同学们利用手中的学具探讨圆锥体积计算方法,看圆柱和圆锥有什么关系。

圆柱和圆锥同底等高,将空圆锥体装满沙子,向空圆柱体倒了三次正好装满。圆柱体体积是和它同底等高圆锥体体积的3倍。也可以说,圆锥体积

引导学生观察、比较、讨论。

(1)圆锥体和圆柱体的高相等、底相同,它们的体积有什么关系?

学生经过认真观察、讨论,师生归纳:

圆柱的体积=底面积×高 V=Sh

通过学具的操作、演示,注意渗透联系的思维方法和同底等高的思想,并通过观察、比较,找到圆锥和圆柱之间的联系,从而使学生在参与中获得知识。

3.巩固知识,运用公式。

(1)教师出示刚才演示过的学具圆锥体,提问:要求这个圆锥体的体积,必须知道什么条件?

[订正:圆锥的底面积和高,或圆锥底面的半径和高。]

请学生到前面量出圆锥教具的底面半径和高,然后让全班学生在练习本上求出该圆锥体的体积。

(2)一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

=76(立方厘米)

答:这个零件的体积是76立方厘米。]

(3)一个圆锥的底面面积是 25平方分米,高是 9分米,它的体积是多少?

答:它的体积是75立方分米。]

(4)一个圆锥的底面直径是20厘米,高是9厘米,体积是多少?

答:它的体积是942立方厘米。]

4.综合提高性练习。(供学有余力的学生完成)

自己动手做一个圆锥,你能想办法算出它的体积吗?说说侧量和计算的方法。

[订正:通常先用软尺量出底面圆的周长,再求出底面半径和面积,然后用学过的方法测量高(或其他可行的方法)。这样就可以求出圆锥的体积。]

5.质疑。

今天我们学习了什么?说一说,如何计算出圆锥的体积?

6.布置作业。(略)

课后反思:学生解决实际问题的能力有所提高。

圆锥的体积

教学内容

教材42-43页 例2及做一做,练习九3-5题。素质教育目标

(一)知识教学点

1.使学生理解求圆锥体积的计算公式。

2.会运用公式计算圆锥的体积。

(二)能力训练点

1.能运用圆锥体积公式解决一些实际问题。

2.通过圆锥体积公式的推导实验,增强学生的操作能力和观察能力。

(三)德育渗透点

通过圆锥体积公式推导的教学,引导学生探索知识的内在联系,渗透转化思想。教学重点

圆锥体体积计算公式的推导过程。教学难点

正确理解圆锥体积计算公式。教具学具准备

1.每组学生准备两个大小不等的圆柱体容器和两个大小不等的圆锥体容器(其中有一个圆柱体容器和圆锥体容器等底等高)。

2.投影仪、投影片 教学步骤

一、铺垫孕伏

1.提问:

(1)圆柱的体积公式是什么?

(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。

2.导入:

同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)

二、探究新知

1.指导探究圆锥体积的计算公式。

(1)教师谈话:

下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒入圆锥体(或圆柱体)容器里。倒的时候要注意,把两个容器比一比、量一量、看它们之间有什么关系,并想一想,通过实验你发现了什么?

(2)学生分组实验:(教师要注意指导学生实验操作中的技巧问题)

(3)学生汇报实验结果:(边演示边说明)

①圆柱和圆锥的底相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。

②圆柱和圆锥的底不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。

③圆柱和圆锥的底相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。

„„

(4)最后引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍,或圆锥的体积是和它等底等高圆柱体积的1/3。

(5)引导学生推导圆锥的体积公式:

板书:

(6)启发学生思考:要求圆锥的体积,必须知道哪两个条件?

(7)反馈练习:

口答,只列式不计算:

圆锥的底面积是5,高是3,体积是()

圆锥的底面积是10,高是9,体积是()

2.教学例1

(1)投影出示例1。

(2)学生独立计算,并把计算结果填在课本上,然后订正。

板书:例1

答:这个零件的体积是76立方厘米。

(3)反馈练习:完成课本44页做一做第1题。

学生在练习本上做,集体订正。

3.启发学生思考讨论:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)(学生回答时,要让学生说出计算思路)

(1)已知圆锥的底面半径和高,求体积。

(2)已知圆锥的底面直径和高,求体积。

(3)已知圆锥的底面周长和高,求体积。

4.反馈练习:完成课本44页做一做第2题。

一名学生板演,其他学生在练习本上做,订正时让学生说明解题思路。

5.教学例2

(1)投影出示例2,引导学生分析题意:

①这道题已知什么?求什么?

②要求小麦的重量,必须先求什么?

③要求小麦的体积应怎么办?

④这道题应先求什么?再求什么?最后求什么?

(2)学生独立解答,然后把计算的步骤填写在课本50页例2的空白处,最后集体订正。

板书:(1)麦堆底面积:

=3.14×4

=12.56(平方米)

(2)麦堆的体积:

12.56×1.=15.072(立方米)

(3)小麦的重量:

735×15.072

=11077.92

≈11078(千克)

答:这堆小麦大约重11078千克。

(3)教师说明:小麦每立方米的重量随着含水量的大小而不同,要经过测量才能确定,735千克并不是一个固定的常数。

(4)教学如何测量麦堆的底面直径和高。

①启发学生根据自己的生活经验来讨论、谈想法。

②教师补充介绍。

a.测量麦堆的底面直径可以用绳子在麦堆底部圆周围圈一圈,量得麦堆的周长,再算直径。也可用两根竹竿平行地放在麦堆的两侧,量得两根竹竿的距离,就是麦堆的直径。

b.测量麦堆的高,可用两根竹竿在麦堆旁边组成两个直角后量得。(投影出示示意图)

6.阅读课本44-45页。

三、巩固发展

1.完成练习九第3题。

指定3名同学做在小黑板上,其他同学在练习本上做,做完后订正。

2.完成练习九第5题。

投影出示题目,学生独立填完,然后订正。订正时让学生讲出相对应的计算公式。

3.判断对错,并说明理由。

(1)圆柱的体积相当于圆锥体积的3倍。()

(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2∶1。()

(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米。()

四、全课小结

通过本节的学习,你学到了什么知识?(引导学生从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

五、布置作业练习九第4题。

课后小记:在本节课的课堂教学中让学生合作探究,发现规律,激发了学生的学习兴趣。不足之处是学生在计算中马虎现象太严重。

球(选学内容)

教学内容:教科书第46~47页的内容。

教具准备:教师演示用的球模型一个,最好是空心的,打开后将一个半球的平面用纸粘牢,并用两条线段表示球的两条直径相交于一点上(如右图)。也可以用其他可以切开的球形物体代替,如把一个近似球形的萝卜削成球状。地球仪一个,米尺一把,切刀一把,夹板两块;每个学生准备一个球形物体,及一个可以切开的球形物体,切刀一把。

教学过程:

一、复习

1.复习圆的特征。

出示圆的几何图形。然后向学生提问:

(1)圆的中心叫什么?

(2)指名画出圆的半径,用字母表示。

(3)指名画出圆的直径,用字母表示。

(4)圆的直径与半径有什么关系?

学生回答后教师板书:

直径=半径的2倍

d=2r

2.指名说出下列各立体图形的名称以及它们的特征。(着重说出每个立体图形是由几个什么样的图形围成的。)

二、新课

1.导入课题。

教师说明:我们已经认识了长方体、正方体、圆柱和圆锥这几种立体图形,了解了它们的特征。今天我们再来认识一种立体图形——球。

板书课题:球。

2.研究球的特征。

教师逐个出示乒乓球、皮球、排球、足球、滚珠等实物,让学生观察它们的形状有什么共同点。然后,指出它们都是球。现在我们来研究球的特点。

(1)认识球面。

请学生把自己搜集的球拿出来,放在手心上,用另一只手摸一摸。教师提问:你有什么感觉吗?它与长方体、正方体、圆柱、圆锥的区别在什么地方?

在学生讨论的基础上,教师说明:球的表面不像长方体和正方体那样有几个平面,也不像圆柱和圆锥那样有平面也有曲面,而是只有一个曲面,这个曲面叫做球面(板书:球面)。

(2)通过实验认识球的重要特征。

教师说明:除去球面不同于我们学过的其他立体图形以外,球还有什么更重要的特征吗?下面我们一起来做个实验,看谁能有所发现。

①在两块互相平行的木板中间夹一个大球。(见教科书第53页图)请一名学生将米尺的零刻度对准一块夹板的内边缘,看另一块夹板的内边缘对准的是哪一个刻度,将这个刻度报告给大家。

②教师一边轻轻转动夹板中间的球(注意不要碰撞夹板),一边请学生注意观察米尺的刻度,让刚才看刻度的学生再次向大家报告米尺的刻度。

③提问:你发现两块木板间的距离有什么变化吗?学生回答后,教师继续提问:“你知道这是什么原因吗?”(引导学生回答,球面和两块木板相交的两个点之间的距离总是相等的。)

(3)认识球心、球的半径和直径。

①教师仿照教科书在黑板上画出球的直观图。指出:“球和圆类似,也有一个中心。”然后在直观图的中心画一个点,说明它叫做球心。(板书:球心)并用字母“O”表示。教师把球的模型平均分成两半(或把削成球状的萝卜平均切成两半,指出球心的位置)。

②两次出示半球模型,指出球的半径,然后指名学生用米尺量一量半径的长度,提问:“想一想,球有多少条半径?”

③教师边在直观图上描画,边口述:“通过球心,并且两端都在球面上的线段,叫做球的直径。”让学生在半球模型上指出哪些是直径。

提问:球的直径有多少条?

指名测量球的直径的长度,然后提问:

“球的直径长度都相等吗?”

“球的直径长度和半径长度有什么关系?”

引导学生回答球的直径长度等于半径长度的2倍。教师将复习圆的知识时板书的“直径=半径的2倍”及“d=2r”下面各画一条红线,强调球的直径与半径的关系和圆的直径与半径的关系相同。

提问学生:你能说明刚才转动木板中间的球,两块木板间的距离没有变化的原因吗?引导学生回答:因为两块互相平行的木板间夹的球和木板相交的两点之间的长度都是通过球心的直径的长度,这些直径的长度都相等,所以在夹板中转动球时,不会改变两块夹板中间的距离。

④研究把球切开的截面形状和大小。

教师举起一个削成球状的萝卜,用切刀随便切一刀,将截面展示给学生。提问:把一个球形物体切开,切开的面是什么形状?

在学生回答后,教师再任意切一刀(但是不与先切的截面相交),又出现了圆形截面,再给学生看,提问:

想一想:怎样切得到的圆的面积最大?用你自己的球形物体试试看。

学生操作,教师注意巡视,了解情况,请一名操作正确的学生汇报自己的实验结果,阐述观点,教师同时进行演示。得出:通过球心切开时,得到的圆的面积最大。

3.介绍地球仪。

(1)教师说明我们居住的地球,它的形状就是一个近似的球。

(2)观察地球仪。

教师出示大地球仪,学生如果有地球仪也可以拿出。指出地球仪上哪一条线是赤道(可以把地球仪的赤道用红纸条围出)。赤道绕地球一周是一个近似的圆。

(3)计算赤道周长。

教师说明赤道是绕地球一周所围成的圆,半径大约是6400千米。让学生独立在练习本上计算出赤道一周大约长多少千米,然后集体订正。

三、小结和练习

1.提问:

“今天我们学习了什么新知识?”

“球有什么特点?什么是球的半径?什么是球的直径?”

“说说你见到过的球形物体的名称。”

2.做第47页“做一做”第2题。

先让学生思考如何解答,再进行实物操作,看看自己想出的答案是否正确。

课后反思:本课体现了让学生在现实情境中体验和理解数学的教学理念,使学生在生动活泼的情境中掌握了必要的基础知识和基本技能。

第三篇:六年级数学圆柱圆锥练习题

“圆柱圆锥”练习题

姓名成绩

一、填充题:

(1)一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的(),圆柱的体积是圆锥体积的().

(2)一个直圆柱底面半径是1厘米,高是2.5厘米。它的侧面积是()平方厘米。

(3)一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是()厘米。

(4)一个圆柱体高4分米,体积是40立方分米,比与它等底的圆锥体的体积多10立方分米。这个圆锥体的高是()分米。

(5)一个圆柱底面周长是6.28分米,高是1.5分米,它的表面积是()平方分米,体积是

()立方分米。

(6)一个圆锥体的底面周长是12.56分米,高是6分米,它的体积是()立方分米。

(7)一个圆锥体底面直径和高都是6厘米,它的体积是()立方厘米。

(8)一根长2米的圆木,截成两段后,表面积增加48平方厘米,这根圆木原来的体积是()立方厘米。

(9)一个体积为60立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的体积是()立方厘米。

(10)一个圆锥的底面直径是圆柱底面直径的,如果它们的高相等,那么圆锥体积是圆柱体的()。

(11)圆锥的底面半径是6厘米,高是20厘米,它的体积是()立方厘米。

(12)等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是()立方米,圆锥的体积是()立方米.

(13)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆柱的体积是()立方分米,圆锥的体积是()立方分米.

(14)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米。

(15)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。

(16)一个棱长是4分米正方体容器装满水后,倒入一个底面积是12平方分米的圆锥体容器里正好装满,这个圆锥体的高是()分米。

第四篇:六年级数学圆柱和圆锥[小编推荐]

亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

二、圆柱和圆锥

单元教学要求:

1.使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。

2.使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。

3.使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。

单元教学重点:圆柱体积计算公式的推导和应用。单元教学难点:灵活运用知识,解决实际问题。

(一)圆柱的认识

教学内容:圆柱和圆柱的侧面积。学要求:

1.使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。2.使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。

教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。

教学重点:认识圆柱的特征,掌握圆柱侧面积的计算方法。教学难点:认识圆柱的侧面。教学过程:

一、复习旧知

1.提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征? 2.引入新课。

出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)

二、教学新课

1.认识圆柱的特征。

请同学们拿出自己准备的圆柱形物体,仔细观察一下,再和讲台上的圆柱比一比,看看它有哪些特征。提问:谁来说一说圆柱有哪些特征? 2.认识圆柱各部分名称。(1)认识底面。

亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:——底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)(2)认识侧面。

请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?(接前第二行板书:侧面是一个曲面)(3)认识圆柱图形。

请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。

说明:圆柱是由两个底面和侧面围成的。底面是完全相同的两个圆,侧面是一个曲面。

在说明的基础上画出下面的立体图形:

(4)认识高。

长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)

3.巩固特征的认识。

(1)提问:你见过哪些物体是圆柱形的?(2)做练习一第1题。

指名学生口答,不是圆柱的要求说明理由。

(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓„„ 4.教学侧面积计算。

(1)认识侧面的形状。

教师出示圆柱模型说明:请同学们先想一想,如果把圆柱侧面沿高剪开再展开,它会是什么形状。现在请大家拿出贴有商标纸的饮料罐(教师同时出示),沿着它的一条高剪开,(教师示范)然后展开,看看是什么形状。学生操作后提问:你发现圆柱体的侧面是什么形状?(2)侧面积计算方法。

①提问:得到的长方形的长和宽跟圆柱体有什么关系呢?请同学们看从第3页最后两行到4页的“想一想”,并在横线上填空。提问“想一想”所填的结果。

②得出计算方法。

提问:根据它们之间的这种关系,圆柱的侧面积应该怎样算?为什么?(板书:圆柱的侧面积=底面周长×高)(3)教学例1 出示例1,学生读题。指名板演,其余学生做在练习本上。集体订正。

三、巩固练习

1.提问:这节课学习了什么内容? 2.做圆柱体。

让学生按剪下的第127页的图纸做一个圆柱体。指名学生看着做的圆柱体说一说圆柱的亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

特征,边说边指出圆柱的各个部分。让学生说一说圆柱的侧面积怎样计算。

3.做“练一练”第3题。

指名两人板演,让学生在练习本上列出算式。集体订正,要求说一说每一步求的是什么。4.思考:

如果圆柱的底面周长和高相等,侧面展开是什么形状,四、布置作业

课堂作业:练习七第1题。

家庭作业:略

教学随笔:学生对这节课较感兴趣,也掌握得较好。

(二)圆柱表面积的计算

教学内容:教材第33——34页例

2、例3和“练一练”,练习七第4—8题。教学要求:

1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。教具学具准备:教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。教学重点:掌握圆柱侧面积的计算方法。

教学难点:能根据实际情况正确地进行计算。教学过程:

一、复习铺垫

1.复习圆柱的特征。提问:圆柱有什么特征? 2.计算下面圆柱的侧面积(口头列式):(1)底面周长4.2厘米,高2厘米。(2)底面直径3厘米,高4厘米。(3)底面半径1厘米,高3.5厘米。3.提问:圆柱的一个底面面积怎样计算? 4.引入新课。

我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)

二、教学新课

1.认识表面积计算方法。

(1)请同学们拿出圆柱来看一看,想一想圆柱的表而包括哪几个部分,然后告诉大家。指名学生拿出圆柞,边指边说明它的表面包括哪几个部分。(2)教师演示。

出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。(3)得出公式。

请同学们看着表面展开的图形说一说,圆柱的表面积应该怎样计算?(板书:圆柱的表面积:侧面积+两个底面积)追问:圆柱的侧面积怎样算?圆柱的一个底面积怎样算? 2.教学例2。

亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。3.组织练习。

做“练一练”第1题。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。4.教学例3。

出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。强调不用四舍五入法及其理由,说明用进一法,并让学生说明结果的近似值,板书订正。5.组织练习。

(1)下面的数用进一法保留整数,各是多少?(口答)162.3 29.4 3.8 42.6(2)做“练一练”第2题。让学生做在练习本上。指名口答前两步各求什么,怎样算的。(老师板书算式)提问:第三步要怎样算,为什么只加一个底面积。

三、课堂小结

这节课学习子什么内容?你学到了些什么?指出:求圆柱表面积在实际应用中,要注意题里的实际情况,弄清什么时候要侧面积加两个底面积,什么时候要侧面积加一个底面积,什么时候只要求侧面积,然后计算结果。另外,在求需要材料取近似数时,一般要用进一法。

四、布置作业

课堂作业:练习七第5~7题。

家庭作业:练习七第4、8题。

(三)圆柱的体积

教学内容: 教材第36页圆柱的体积公式、例4和“练一练”,练习八第1~4题。教学要求:

1. 使学生理解和掌握圆柱的体积计算公式,并能根据题里的条件正确地求出圆柱的体积。2. 培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。教具准备:圆柱体积演示教具。

教学重点:理解和掌握圆柱的体积计算公式。教学难点:圆柱体积计算公式的推导。教学过程:

一、复习引新

1.求下面各圆的面积(回答)。

(1)r=1厘米;(2)d=4分米;(3)C=6.28米。

要求说出解题思路。

2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。

亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

3.提问:什么叫体积?常用的体积单位有哪些? 4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

二、教学新课

1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。

3.公式推导。(有条件的可分小组进行)(1)请同学指出圆柱体的底面积和高。(2)回顾圆面积公式的推导。(切拼转化)(3)探索求圆柱体积的公式。

根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。

(4)讨论并得出结果。

你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积,这个长方体的高与圆柱体的高。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:。(板书:圆柱的体积=底面积×高)用字母表示:。(板书:V=Sh)(5)小结。

圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

4.教学例4。

出示例4,审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位)5.做练习二第1题。

让学生做在课本上。指名口答,集体订正。追问:圆柱的体积是怎样算的? 6.教学“试一试”一个圆柱的底面半径是2分米,高是8米,求它的体积。指名一人板演,其余学生做在练习本上。评讲“试一试”小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。

三、巩固练习

做“练一练”第1、2题。让学生做在练习本上。指名口答算式,老师板书。让学生说一说这两题列式有什么不同,为什么不一样。

四、课堂小结

这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式V=Sh。

亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

五、布置作业

课堂作业:练习八第1、2,题。

家庭作业:略

(四)圆柱容积计算

教学内容:教材第37页例

5、“练一练”,练习八第5~9题。

教学要求:使学生进一步认识体积的计算方法,能根据不同的条件求圆柱的体积,学会计算圆柱形容器的容积,井能应用于实际求出所容物体的重量。教学重点:计算圆柱形容器的容积。教学难点:根据不同的条件求圆柱的体积。教学过程:

一、复习旧知

1.求下列圆柱的体积(口答列式)。

(1)底面积3平方分米,高4分米;(2)底面半径2厘米,高2厘米;

(3)底面直径2分米,高3分米。

追问:圆柱的体积是怎样计算的?(板书:V=Sh)2.复习容积。

提问:什么是容积?它与物体的体积有什么区别?我们是按什么方法计算容积的? 3.引入新课。

我们已经学习过圆柱的体积计算,知道了容积和容积的计算方法。这节课,就在计算圆柱体积的基础上,学习圆柱的容积计算。(板书课题)

二、教学新课

1.教学例5。

出示例5,读题。提问:这道题求什么?你能计算它的容积吗?请大家仔细看一下题目,解答这道题还要注意些什么?(统一单位或改写体积单位,取近似数)指名学生板演,其余学生做在练习本上。集体订正,说明每一步求的什么,怎样求的。同时注意是怎样统一单位和取近似值的。2.新课小结。

提问:求圆柱形容器的容积要怎样计算?如果知道圆柱底面的半径或直径,怎样求圆柱的体积?

三、巩固练习

1.做“练一练”第1题。

指名两人板演,其余学生分两组,每组—题做在练习本上。集体订正。2.做“练一练”第2题。

让学生在练习本上完成。指名学生口答算式,老师板书。结合让学生说一说是怎样想的。

3.口答练习八第6题。

让学生默读题目。提问:第(1)题怎样想?求出了容积怎样求第(2)题?为什么? 4.做练习八第9题。

让学生做在练习本上:指名口答算式或方程,并让学生说既怎样想的。

四、布置作业

课堂练习::练习八第7、8题。

亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

家庭作业:略

(五)几何知识综合练习

教学内容:教材第11~12页练习七第10~l8题,练习二后的思考题。

教学要求:

1.使学生进一步巩固已经学过的一些几何形体的面积或表面积的计算方法,进一步掌握学过的立体图形的体积计算。

2.使学生进一步发展空间观念,提高综合运用知识的能力。教学重点:进一步掌握学过的立体图形的面积、表面积、体积计算。教学难点:提高综合运用知识的能力。教学过程: —、揭示课题 1.口算。

出示练习二第10题,指名学生口算。2.揭示课题。

我们已经学过几种平面图形和立体图形、今天我们来练习这方面的知识。(板书课题)通过练习,进一步掌握好有关面积、表面积和体积的计算,提高应用知识解决问题的能力。

二、基本题练习

1.练习圆柱的体积计算。

(1)提问:圆柱的体积怎样计算?(板书:圆柱 v=Sh)求圆柱的体积要知道什么条件?(2)做练习二第1l题。指名三人板演,其余学生分三组,每组一题做在练习本上。集体订正,检查学生是怎样想的。

2.练习近平面图形面积计算,(1)做练习二第12题。要求学生在练习本上列出每个图形面积计算的算式。指名学生口答算式,老师板书。让学生说说按怎样的公式列式的。

(2)提问:平行四边形面积计算公式怎样得到的?三角形和梯形面积计算公式怎样得到的?圆的面积计算公式呢?追问:正方形面积是怎样计算的?为什么?指出:我们在得到长方形面积计算公式后,通过剪、拼的方法,经过图形的转化,得出了相应图形的面积计算公式。所以,这些计算公式之间是有联系的。

3.练习表面积和体积计算。

(1)求第13题前两个图形的表面积。指名两人板演,其余学生做在练习本上。集体订正,结合提问:求表面积就是求立体图形的什么?(所有面的面积总和)长方体表面积是怎样算的?这道题还有什么简便的方法?圆柱体表面积是怎样算的?指出:立体图形的表面积是所有面的面积的总和,所以要先求各部分的面积,然后相加。这里长方体和圆柱体的表面积都可以用侧面积加两个底面积。

(2)求第13题前两个图形的体积。让学生在练习本上列出求体积的算式。指名口答算式,老师板书。要求说一说每一步求的什么,注意突出第一步求的底面积。追问:求长方体和圆柱的体积有什么相同的地方?指出:长方体其实也是一个柱体,长方体和圆柱体的体积,其实都是用底面积乘以高。

4.练习容积计算。

(1)提问:容积指什么?容积的计算方法是怎样的?

(2)做练习二第14题。集体订正。

亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

三、综合练习

1. 讨论第15题。提问:第15题的问题要求压路的面积,其实这是求的什么?为什么?(转动一周的压路面积就是圆柱的侧面积。必要时可以通过演示让学生理解)

2. 讨论第16题。提问:水面高是水杯高的多少?这道题可以怎样想?(指名2~3人口答:根据容积和底面积求出水杯高,再根据水杯高和水面高的关系求出水画的高度)

3.做练习二第17题。

(1)让学生读题,提问条件和问题。

(2)提问:要求体积,先要求什么?你能求出另一个圆柱的底面积吗?指名学生口答算式,老师板书。

(3)提问:这两个圆柱中哪个量是相等的?(板书:底面积=底面积)你认为还可以用什么方法解答?指名板演,其余学生做在练习本上。集体订正。追问:这是按照什么列方程的?指出:题里告诉我们两个圆柱底面积相等,所以根据底面积相等可以列出方程来解。

四、讲解思考题

让学生读题。提问:圆钢全部浸入水中,水为什么上升?圆钢的体积和哪部分水的体积相等?求这部分水的体积缺少什么条件?圆钢路露出水面8厘米,为什么水下降4厘米?下降部分水的体积等于圆钢哪部分的体积,你能通过下降部分水的体积求出储水桶里面的底面积吗?这道题究竟要怎样做呢,请大家课后想一想,试一试。

五、布置作业

课堂作业:练习二第15、16、18题。

家庭作业:练习二第11题两小题,第13题一小题。

(六)圆锥和圆锥的体积

教学内容:教材第13~14页圆锥的认识和体积计算、例1和“练一练”,练习三第1—5题。教学要求:

l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

3.培养学生初步的空间观念和发展学生的思维能力。

教具准备:长方体、正方体、圆柱体等,根据教材第14页“练一练”第1题自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的教学重点:掌握圆锥的特征。

教学难点:理解和掌握圆锥体积的计算公式。教学过程:

一、复习引新

1. 说出圆柱的体积计算公式。

2. 我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第13页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)

二、教学新课

1.认识圆锥。

我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

2.根据教材第13页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

13的教具。亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。

(2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系? 4.学生练习。

口答练习八第1题。

5.教学圆锥高的测量方法。(见课本第13页有关内容)6.让学生根据上述方法测量自制圆锥的高。7.实验操作、推导圆锥体积计算公式。

(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第14页上面的图)(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?(3)实验操作,发现规律。

在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的13。

老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的(5)启发引导推导出计算公式并用字母表示。

圆锥的体积=等底等高的圆柱的体积×=底面积×高× 用字母表示:V=

13131313。

Sh(6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以 8.教学例l(1)出示例1(2)审题后可让学生根据圆锥体积计算公式自己试做。(3)批改讲评。注意些什么问题。

三、巩固练习

1.做“练一练”第2题。

指名一人板演,其余学生做在练习本上。集体订正,强调要乘以 2.做练习三第2题。

学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。3.做练习三第3题。

让学生做在课本上。小黑板出示、指名口答,老师板书。第(3)、(4)题让学生说说是怎亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载 13?

13。亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

样想的。

四、课堂小结

这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

五、课堂作业

练习三第4、5题。

(七)圆锥体积计算和应用

教学内容:教材第15页例

2、“练一练”,练习三第6一11题。

教学要求:使学生进—步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积解决—些简单的实际问题:

教学重点:进—步掌握圆锥的体积计算方法。教学难点:根据不同的条件计算圆锥的体积。教学过程:

一、复习旧知

1.口算。

出示练习三第6题,指名学生口算。2.复习体积计算。

(1)提问:圆锥的体积怎样计算?(2)口答下列各圆锥的体积。

①底面积3平方分米,高2分米。

②底面积4平方厘米,高4.5厘米。3.引入新课。

今天这节课,我们练习圆锥体积的计算,通过练习,还要能应用圆锥体积计算的方法解决一些简单的实际问题。

二、教学新课

l.教学例2。

出示例题,让学生读题。提问:你们认为这道题要先求什么,再求这堆沙的重量?指名板演,其他学生做在练习本上。集体订正,让学生说说为什么要先求体积,才能求这堆沙的重量;这里已知直径和高怎样求体积的。2.组织练习。

(1)做“练一练”第l题。

指名三人板演,其余学生思考第(1)、(2)题怎样做,把第(3)题做在练习本上,集体订正,重点让学生说明第(3)题是怎样做的,突出要先求半径算出底面积,再应用公式求体积。

(2)做“练一练”第2题。

指名一人板演,其余学生做在练习本上。集体订正。提问:这道题已知什么条件?怎样求出体积的?再怎样求重量?(1)讨论练习三第11题。

出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。请同学们回去测量你用第129页图制作的圆锥,求出它的体积来。

三、课堂小结

这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。如果没有告诉底亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

面积,我们要先求半径算出底面积,再计算体积。应用圆锥体积计算.布时候还?可以计算出圆锥形物休的重量。

四、布置作业

课堂作业:练习三第7~9题。

家庭作业:练习三第10、11题。

(八)圆柱、圆锥的复习

教学内容:教材第21页复习第1~5题。

教学要求:

1.使学生进一步认识圆柱、圆锥的特点.能判断一个物体或立体图形是不是圆柱或圆锥。

2.使学生进一步掌握圆柱的表面积、圆柱和圆锥的体积(容积)计算方法,并提高灵活应用计算方法解决一些实际问题的能力。教学重点:进一步认识圆柱、圆锥的特点。

教学难点:进一步掌握圆柱的表面积、圆柱和圆锥的体积(容积)计算方法。

教学过程: —、揭示课题

我们已经学完了“圆柱和圆锥”这一单元,今天开始复习圆柱和圆锥。(板书课题)通过复习,一方面,要进一步认识圆柱和圆锥的特征,熟悉圆柱和圆锥各部分的名称;另一方面,要进一步掌握圆柱表面积、圆柱和圆锥体积(包括容积)的汁算方法,提高解决实际问题的能力。

二、复习特征

1.说出物体名称。

出示一些圆柱和圆锥的物体和模型,让学生说一说各是什么形体。

2.复习特征。

做复习第1题。

(1)同时出示圆柱和圆锥的图形。

指名学生说出各图的名称。(板书:圆柱、圆锥)(2)提问:谁能拿出圆柱和圆锥,说出各部分的名称?(在图中板书)圆锥的高怎样测量,试着量一量你手里圆锥的高。(3)提问:哪位同学来说说圆柱有什么特征?哪位同学来说说圆锥有什么特征?

三、复习计算

做复习第2题。

1、出示表格,说明要求,让学生计算,填在表格里。学生口答结果,老师板书填表。

2、提问:圆柱的表面积怎样计算的?(板书:圆柱表面积=侧面积+两个底面积)圆柱的侧面积怎样计算?为什么用底面周长乘以高? 这三道题计算时有什么不同的地方?圆柱的体积怎样计算的,圆柱的体积汁算公式是怎样得到的?(强调把—个新知识亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

转化成旧知识,得出新的结论)这里哪两题计算过程是相同的,哪一题不同?为什么?圆锥的体积怎样计算的?圆锥的体积计算公式又是怎样得到的?这两题计算过程完全一样吗?为什么不一样?

四、课堂小结

通过这节课的复习,你有哪些收获?

五、课堂作业

复习第3—5题。

(九)表面积、体积计算实际应用复习

教学内容:教材第22页复习第6~11题,复习后面的思考题。教学要求:

1.使学生进—步掌握圆柱、圆锥体积计算方法,沟通已经学过的一些形体体积计算之间的联系。2.培养学生综合运用知识和解决简单实际问题的能力。教学重点:沟通已经学过的一些形体体积计算之间的联系。教学难点:综合运用知识和解决简单实际问题。教学过程:

一、揭示课题

我们已经复习了圆柱的表面积、圆柱和圆锥体积的计算。这节课继续复习这方面的知识,特别是表面积、体积计算知识的实际应用。(板书课题)通过复习,使学生进一步掌握表面积、体积的汁算方法,提高应用知识的能力。

二、复习体积计算

1.复习公式。

提问:长方体、正方体的体积怎样计算?(板书时出示相应图形)为什么正方体体积等于边长a的立方?圆柱体积计算公式是怎样的?这个公式怎样得到的?圆锥的体积公式是怎样的?为什么要乘以

13? 2.做复习第6题。

让学生在练习本上列出算式。指名学生口答每题算式,老师板书出来。

三、知识应用复习

我们掌握了这些基础知识,可以解决生产、生活中的一些实际问题。

1.做复习第7题。

指名一人板演,其余学生做在练习本上。集体订正,结合提问学生为什么先要求柱子的侧面积。

2.讨论复习第l0题:

提问:这堆沙铺成路面是什么形状的?这段路面的体积就是哪个体积?为什么?你认为用什么方法比较方便?根据什么等量关系来列出方程? 3.做复习第11题。

让学生自己做在练习本上。

四、讲解思考题

让学生读题。提问:刚才一题是求等底等高圆柱和圆锥的体积一共是多少,根据刚才一题的解答,你能找出数量关系解答这道题吗?(让学生说说数量关系)请大家课后试一试。

五、课堂小结

亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

通过这节课复习,你进一步明确了哪些知识?

六、课堂作业

复习第8—10题。

亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

第五篇:六年级圆柱和圆锥复习提纲

复习提纲(圆柱、圆锥)

1、面的旋转

(1)基本图形以它其中一条边为轴,旋转一周所形成什么图形。

如:一个长方形以它的一条边为轴,旋转一周所形成的图形是圆柱体。

一个三角形以它的一条直角边为轴,旋转一周所形成的图形是圆锥。

一个半圆以它的直径为轴,旋转一周所形成的图形是球。

如果是一个组合图形,旋转后所形成的图形也是组合形体。

(2)掌握圆柱和圆锥的特点以及各自的各部分名称。

圆柱:圆柱的上下两个面叫做圆柱的底面,它们是完全相同的两个圆。圆柱的侧面是一个曲面,把它展开后得到一个长方形。长方形的长等于圆柱的底面周长,宽等于圆柱的高。当圆柱的底面周长和高相等时,它的侧面展开得到一个正方形。

圆柱两底面之间的距离是圆柱的高,圆柱有无数条高。每条高的长度都相等

圆锥:圆锥的底面是一个圆,侧面是一个曲面,从圆锥的顶点到底面圆心的距离 是圆锥的高,圆锥只有一条高。圆锥的侧面展开是一个扇形。

2、圆柱的表面积

(1)圆柱的侧面积等于底面周长乘高,圆柱的表面积等于侧面积加上两个底面积。

(2)会正确计算圆柱的表面积。计算中,注意:无盖、通风管等实际问题。

3、圆柱的体积

(1)明白圆柱体积公式的推到过程。

(2)会根据圆柱的体积公式(V=sh)求圆柱的体积。并能已知体积和高,求底面积(s=v/h)。和已知体积和底面积求高(h=v/s).(3)审题时,注意看清单位是否统一。正确判断是求体积还是求表面积

(4)同一张纸围成圆柱,那种情况围成的体积大?长边作底面周长时体积比短边作底面周长时体积大。

(5)计算时,认真计算,正确检验。

4、圆锥的体积

(1)知道圆锥体积公式的推导过程。

(2)知道等底等高的圆柱和圆锥之间的关系:圆柱的体积是它等底等高的圆锥体积的3倍;圆锥的体积是它等底等高圆柱体积的1/3。

(3)会根据圆柱和它等底等高的圆锥之间的关系,正确进行判断,选择和计算。

例如:圆锥的体积等于圆柱体积的1/3.(错),等底等高时,圆锥的体积是圆柱的1/3。

把一个圆柱削成一个最大的圆锥,圆锥的体积是12立方米。求圆柱的体积,还是求削去的体积。其实削成的圆锥和原来的圆柱是等底等高时才最大。所以,这时的圆柱的体积是等底等高圆锥体积的3倍,削去的体积是圆锥体积的2倍。

一个圆柱和一个圆锥等底等高,它们的体积之和是12立方米,圆柱的体积是多少,圆锥的体积是多少。针对这样的问题,弄清等底等高的圆柱的体积是圆锥体积的3倍,也就是说等底等高圆柱的体积和圆锥的体积和是圆锥体积的4倍。那圆锥的体积就是12/4=3立方米,圆柱的体积就是9立方米。从上面可以看出,弄清等底等高的圆柱和圆锥的关系,分析题意是解题的关键。

(4)会根据圆锥的体积和高,求圆锥的底面积或是知道圆锥的体积和底面积,求圆锥的高。做这类题最好的方法就是方程,也可以用体积乘3得到和它等底等高的圆柱的体积再除以底面积(高)得圆锥的高(底面积)。

(5)注意圆锥和圆柱体积相等,高也相等时,圆柱的底面积是圆锥的1/3。

(6)在解答这部分应用题时,一定要看清是圆柱还是圆锥。圆锥的体积计算时一定不要忘了乘1/3。5.特别注意:

计算每一步都要认真,保证每一步计算正确。可牢记3.14乘1到3.14乘9的的数。还要记住3.14乘1的平方到3.14乘8的平方的结果以及3.14乘15、3.14乘15的平方、3.14乘25的平方。牢记这些结果,对做题速度和正确率都有很大的提高。

还应该注意单位之间的化聚。弄清长度单位,面积单位,体积单位相邻的单位间的进率分别是多少,由低到高,由高到低化算的方法以及小数点的移动,还有单名数和复名数之间的互化。

基础知识掌握,还要会根据基础知识灵活解决实际问题。解决问题时一定要认真审题,细致计算,严格检查。

下载人教版六年级数学圆柱圆锥测试卷附答案word格式文档
下载人教版六年级数学圆柱圆锥测试卷附答案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    六年级圆柱圆锥练习题

    六年级圆柱圆锥练习题 1、圆柱形队鼓的侧面由铝皮围成,上、下底面蒙的是羊皮。队鼓的底面直径是6分米,高是2.6分米。做一个这样的队鼓,至少需要铝皮多少平方分米?羊皮呢? 2、一......

    小学数学圆柱圆锥

    【导学】一圆柱的侧面积 【知识点】 (一)圆柱的特征(如右图). 1、圆柱的认识. 2、圆柱各部分的名称. 圆柱的上、下两个面叫做底面,它们是面积相等的两个圆.两底面之间的距离叫做高.......

    人教版六年级下册数学测试卷 第3单元 圆柱与圆锥

    第3单元圆柱与圆锥一、仔细审题,填一填。(第1小题4分,其余每小题2分,共22分)1.6.56m2=(  )dm23m2220dm2=(  )m28L50mL=(  )L5m325dm3=(  )m32.一个圆锥的体积是18.84dm3,底......

    人教版六年级下册数学测试卷 5.圆锥和圆柱的综合应用

    5.圆锥和圆柱的综合应用一、仔细审题,填一填。(每小题4分,共20分)1.把一个圆柱削成一个最大的圆锥后体积是48立方厘米,圆柱的体积是(    ),如果把圆柱削成一个最大的圆锥后削......

    苏教版小学数学六年级下册第二单元圆柱和圆锥单元测试卷[5篇]

    苏教版小学数学六年级下册 第二单元 圆柱和圆锥 单元测试卷 姓名:________ 班级:________ 成绩:________ 小朋友,带上你一段时间的学习成果,一起来做个自我检测......

    六年级数学圆柱、圆锥的认识教案

    北师大版小学六年级下册数学教案 圆柱的认识 课型:新授课 时间:12年2月6日 第一课时 教学目标:使学生认识圆柱的特征,认识圆柱侧面的展开图。 教学准备:教师与学生每人带一个圆......

    六年级数学(圆柱、圆锥、比例)举一反三练习

    六年级数学(圆锥与圆柱、比例)举一反三练习题 圆柱与圆锥 例1妈妈把一些土豆放在底面直径是20厘米的圆柱形容器里清洗,这时容器里的水深30厘米;拿出土豆后,水面下降了3厘米。这......

    小学六年级下册数学圆柱圆锥教案

    公式 例题 题型一:展开圆柱的情况 1、 展开侧面 (1)圆柱的底面周长和高相等时,展开后的侧面一定是个( )。 (2)一个圆柱体,两底面之间的距离是10厘米,底面周长是31.4厘米,把这个圆柱体......