第一篇:数学日记之鸡兔同笼
数学日记之《鸡兔同笼》
你以前听说过“鸡兔同笼”问题吗?就在今天,我学习了这个问题。这个问题出自我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样记叙的:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?
通过学习,我学会了四种方法解这道题。
一:列表法,从有一只鸡一只兔开始依次往下试,按照试出的结果计算,看哪一个正好是35个头,94只脚。
二:假设法,假设全部都是鸡或兔,算出脚数,减去实际的脚数,再除以鸡兔两脚的差,算出的结果就是另一种动物。
三:方程法,设兔为x只,则鸡为35-x只。再根据鸡的脚数加兔的脚数等于鸡兔共脚数列出方程,再解方程。
四:抬腿法,假如让鸡抬起一只脚,兔子抬起2只脚,还有94÷2=47(只)脚。兔就比鸡的脚数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。
以后,我要把这几种解题方法用到其他鸡兔同笼的应用题中。
第二篇:数学广角-鸡兔同笼
数学广角--鸡兔同笼教案修改版(课件)
教学目标:
1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。
3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
教学重点:
用假设法解决“鸡兔同笼”问题。
教学具准备:
课件。教学过程:
一、揭示课题
1、师:同学们今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”(PPT投影展示原题)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94只脚。鸡和兔各有几只?(PPT展示
今意))
2、有谁知道这类题我们把它叫做什么问题吗?(鸡兔同笼)板书。鸡兔同笼问题是我国古代三大趣题之一,记载于《孙子算经》一书中,距今已有1500多年,3、会做“鸡兔同笼”这类题吗?会做的我们今天进一步来学习,不会的也没关系,通过这节课的学习你老师相信今后你一定会做了。那同学们有没有信心把这节课的内容学好呢?
二、展示情境,尝试探究
(一)出示情景,获取信息
1.“鸡兔同笼”这四个字什么意思呀?(鸡和兔关在同一个笼子里)
为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”课件
出示)
2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了什么信息?
学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。③鸡有2条腿。④兔有4条腿。(课
件出示)
(二)猜想验证,1、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?
学生猜测,老师板书
2、怎样才能确定同学们猜的对不对?(把鸡的腿和兔的腿加起来看等不等于26。)
3、和学生一起验证,找出正确的答案。(只有这一个正确答案吗?)
4、我们把这种方法叫做列举法。(板书:列表法)
5、你们觉得用猜想列表法解决鸡兔同笼问题怎么样?(生:麻烦,而且当头和脚的只数越多时,越
不容易找出答案。)
6、那我们还有研究新方法的必要。
(三)尝试假设法
1、、为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)(课件出示:把一只兔当成一只鸡算,就少了两条腿。)
2、假设全是鸡一共就有16条腿。实际有26条腿,这样笼子里就少了10条腿,为什么会少了10条腿呢?(把兔当了鸡在算。一只兔当成一只鸡算少两条腿,那把几只兔当成了鸡算就会少算10条腿呢?即10里面有几个2。就把几兔当成了鸡算,5个2,用五只兔当成了鸡算,这个五就表示应该有5只兔)
3、上面的过程能用算式表示出来吗?请同学们试试看。(学生试着列算式,请一个学生到黑板上去板演。)
4、假设全是鸡:(板书)
8×2=16(条)(如果把兔全当成鸡一共就有8*2=16条腿)
26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿
是少算了兔的腿)
4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少
算2条腿。)
10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当
成了鸡来算,所以10÷2=5就是兔的只数。)
8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)
5、算出来后,我们还要检验算的对不对,谁愿意口头检验。
生:3×2+5×4=26(只),5+3=8(只)。
师:看来做对了,最后写上答语。
6、假设全是兔
7、、我们再回到表格中,看看右起第一列中的8和0是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(课件出示:把一只
鸡当成一只兔算,就多了两条腿)
8、先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。
(学生讨论写算式,然后指名板演。)
8×4=32(条)(如果把鸡全看成兔一共就有8*4=32条腿)
32-26=6(条)(把鸡当成兔来算,两条腿的鸡当成4条腿兔算,每只鸡就多了两条腿,6条腿是多
算了鸡的腿)
4-2=2(假设全是兔,是把两条腿的鸡当成有4条腿的兔。所以4-2表示是一只鸡当成一只兔多算了
2条腿。)
6÷2=3(只)鸡(那要把多少只鸡当成兔来算就会多算6条腿呢?就看6里面有几个2就是把几只鸡
当成了兔算,所以6÷2=3就是现在鸡的只数。)
8-3=5(只)兔
小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这是解答鸡兔同笼问题的一种
基本方法。(板书:假设法)
(四)列方程解
在解决鸡兔同笼问题时,除了假设法外,还有别的方法吗?(方程的方法)
要用列方程的方法就必须找到等量关系式。通过得到到信息能写出哪些等量关系式呢?
(兔的只数+鸡的只数=8;兔的腿+鸡的腿=26条腿)(课件出示)
这里我们需要求兔的只数和鸡的只数,共有两个未知数。那我们可以设一个未知数为X,再把另一个表示出来。这道题我们可以设兔的知数为X只,根据兔和鸡共有8只。那鸡的只数就可以表示成:(8-X)只),因为一只鸡有2条腿,所以X只鸡就共有2X条腿。一只兔有4只脚,(8-X)只兔就有4(8-X)只脚。又因为鸡和兔共有26只脚,所以2X+4(8-X)=26
① 解:设鸡有X只,兔有(8-X)只。
2X+4(8-X)=26 在解的时候可以根据等式的性质将减变成加,分别加上4X,再来解。
② 解:设有兔X只,鸡有(8-X)只。
4X+2(8-X)=26 同样抽生说出自己想法。那种方程好解一点,(设兔的只数为X好解点)所以我们可以设脚数多的兔为X,在解的时候容易一点。
列方程的重点是找出等量关系:设头数,以脚数相等来列出方程;
小结:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(列表法,假设法和列方程)
三、练习
1、现在我们就用刚才学到的这些方法来解决《孙子算经》中原题,你会做吗?用你喜欢的一种方法
做
课件出示《孙子算经》中原题学生解答并集体讲评
四、延伸、应用 1.课件出示“做一做1”
鸡兔同笼问题传到日本时就变成了“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”有什么相似之处?课件出示(龟相当于兔,鹤相当于鸡)展示学生作业,并抽生说说思路。
2.看来鸡兔问题这类问题我们不只局限算鸡和兔的只数问题上,只要能用“鸡兔同笼”问题来解答的问题都可以统一叫做“鸡兔同笼”问题。下面我们就用刚才学到的“鸡兔同笼”方法,来帮我们解决生活中遇到的一些实际问题。
3、课件出示“做一做”第二题。问这道题与“鸡兔同笼”问题有相似的地方吗?有哪些地方相似?(大船相当于“兔”,小船相当于“鸡”)学生独立完成,集体讲评。
五、课后总结:
本节课你有什么收获?那你知道早在一千五百年前的古人又是怎么解决鸡兔同笼问题的?请同学们自学P114页下面内容。这个内容我们留到下节课进行讲解。
第三篇:数学日记之逛商场
数学是一个重要的基础课程,下面是为大家分享的数学日记之逛商场,希望对大家有帮助!
周六,妈妈带着我去逛商场,给我买了好多美味的零食和一套最时尚的运动服,我们才高高兴兴地回到了家。
“老爸,我们回来了。”我一边喊,一边把运动服往沙发上一扔,躺了下来,“真是累死我了!”
“今天买运动服用了多少钱呢?”爸爸笑着问。
“那就考考你吧!”我自信地说。
“对,答不出来今天晚上就请我们吃自助餐。”妈妈说。
“太好了,我最爱吃自助餐了,我出的题一定能难倒你的。”我开心的说。
“好,请听题。今天,我买的运动服,裤子128元,上衣比裤子的2倍少78元,一双运动鞋的价钱比一件运动上衣价钱的3倍还多53元,请老爸算一算,我今天买运动服和运动鞋一共花了多少元?”
爸爸听了以后,想了一会,头都大了,有点不好意思地说:“什么2倍、3倍,绕来绕去的,还是你来算吧,算对了请你们吃自助餐。”
“好,裤子价钱已知为128元,上衣比裤子的2倍少78元。设上衣价钱x元,x+78=2×128,x=256-78,x=178,所以上衣就是178元。鞋的价钱比上衣的3倍还多53元,上衣已求出为178元,就再设鞋的价钱为y元,y-53=3×178,y=534+53,y=587,鞋的价钱就是587元。128+178+587=893〔元〕,所以我的运动服和运动鞋一共花了893元。”
“还是女儿聪明,请吃自助餐去吧!”妈妈高兴地对爸爸说。
今天是我最开心的日子,学好数学知识真好呀!
第四篇:小学生日记之数学日记
篇一:五年级数学日记300字
今天,我无聊的看着书。忽然,我眼睛一亮,发现了一个十分有趣的词语:孪生素数猜想。我十分好奇,也非常纳闷:什么是孪生素数猜想?于是,带着疑问,我来到了网上。
终于,在网上,我找到了答案。原来,孪生素数猜想是数论中的著名未解决问题。这个猜想正式由希尔伯特在1900年国际数学家大会的报告上第8个问题中提出,可以被描述为“存在无穷个孪生素数”。孪生素数即相差2的一对素数。例如3和5,5和7,11和13,10016957和10016959等等都是孪生素数。素数定理说明了素数在趋于无穷大时变得稀少的趋势。而孪生素数,与素数一样,也有相同的趋势,并且这种趋势比素数更为明显。因此,孪生素数猜想是反直觉的。由于孪生素数猜想的高知名度以及它与哥德巴赫猜想的联系,因此不断有学术共同体外的数学爱好者试图证明它。有些人声称已经证明了孪生素数猜想。然而,尚未出现能够通过专业数学工作者审视的证明。
原来,这就是孪生素数猜想呀!看来今天果然是“不虚此行”,终于又了解了一个新的知识点。希望我以后还能了解更多,同时,我也要努力,争取早早证明孪生素数猜想。
篇二:五年级上册数学日记300字
今天,我在《小学奥数解题方法大全》上看到这么一题,一个矩形分成4个不同的三角形,绿色的三角形面积占矩形面积的15%,黄色三角形的面积是21平方厘米,问:矩形的面积是多少平方厘米?
看到这个题目,我犯迷糊了,想:只告诉一个占的面积和另一个三角形的面积,这怎么求吗?坐在椅子上的妈妈看了一眼,嘲笑我说:“哼,还说高水平,连这道题都不会做,呵呵。”
我知道妈妈用的是激将法,目的是激怒我的好胜心,让我把这题做完。为了让妈妈认为她的激将法成功了,我就硬着头皮做了下去,可是怎么想也理不出头绪来。但是我并没灰心,继续做了下去,我做了出来。
根据图可以发现,两个红三角形占了矩形的一半,一个黄三角形和一个绿三角形又占矩形的一半,而绿色的三角形面积占矩形面积的15%那么黄色三角形占矩形面积的50%-15%=35%,我们拿量除以率就是21÷35%=60(平方厘米)。原来这么简单,多亏了妈妈的激将法啊!
篇三:数学作文300字
我的妈妈一点也不胖,却整天喊着要减肥。这不,吃饭吧,只吃一点“猫饭”;上楼吧,好端端的电梯不乘,偏要爬楼梯,要知道我家可住在14层啊。
今天,妈妈又要爬楼梯了。“你妈妈从1层爬到2层用了10秒,那么,她从1层到14层需要多少时间呢?”爸爸考我。我一听,便脱口而出:“14x10=140(秒),太简单了。”
“你上当了!你妈妈每爬一层,即一个间隔是10秒没错,从1层到14层到底有多少个间隔呢?你再好好想想。”爸爸轻轻拍着我的脑袋。
我是丈二和尚摸不着头脑,便扳起了手指头:1层到2层,1个间隔;再从2层爬到3层,又一个间隔;再从3层到4层,又一个间隔??原来从1层到14层只有13个间隔。应该是13x10=130(秒)。
“噢!是130秒,不是140秒。因为1层不用爬,所以从1层到14层只有13个间隔。”我尖叫起来。
“对了,层数-1=间隔数,你可要记住了。”爸爸哈哈大笑。
原来,上楼梯也有学问。
第五篇:六年级数学《鸡兔同笼》教案
《鸡兔同笼》教案
教学目标:
1、知识与技能
1)了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2)尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。
2、过程与方法
解决“鸡兔同笼”问题可用猜测、列表、假设或方程解等方法。
3、情感、态度与价值观
1)在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
2)让学生体会到数学问题在日常生活当中的应用。教学重点:
用假设法解决“鸡兔同笼”问题。教学过程:
一、谜语激趣,导入新课。
1、用数学语言描述一下鸡和兔各有什么特征。
(预设:鸡和兔各有一个头,鸡有两只脚,两只翅膀,兔子有四只脚。)
2、揭示课题
师:本节课我们就一起来研究《鸡兔同笼》问题。
二、合作讨论、探究新知
(一)出示情景,获取信息
师:“鸡兔同笼”这四个字什么意思呀?(鸡和兔关在同一个笼子里)
出示例题1:笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26只脚。鸡和兔各有几只?
师:我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了什么信息?
学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。③鸡有2条腿。④兔有4条腿。
(二)介绍列表法
师:我们先来猜猜,笼子中可能会有几只鸡几只兔呢? 学生猜测。师:在猜测时都抓住了哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?(不是)
师:那怎样才能确定同学们猜的对不对?(把鸡的腿和兔的腿加起来看等不等于26。)师:请同学们把你们猜测的数据放在表格当中去,验证一下,看正确答案是多少? 学生动手操作,并找出正确答案。师:只有一个答案正确吗?(是)师:我们把这种方法叫做列表法。(板书:列表法)
师:你们觉得用猜想列表法解决鸡兔同笼问题怎么样?(生:麻烦,而且当头和脚的只数越多时,越不容易找出答案。)
师:那我们还有研究新方法的必要。
(三)列方程解
在解决鸡兔同笼问题时,除了列表法外,还有别的方法吗?(方程的方法)要用列方程的方法就必须找到等量关系式。通过得到的信息能写出哪些等量关系式呢?
(兔的只数+鸡的只数=8;兔的腿+鸡的腿=26条腿)(课件出示)
师:这里我们需要求兔的只数和鸡的只数,共有两个未知数。那我们可以设一个未知数为X,再把另一个表示出来。这道题我们可以设兔的知数为X只,根据兔和鸡共有8只。那鸡的只数就可以表示成:(8-X)只),因为一只鸡有2条腿,所以X只鸡就共有2X条腿。一只兔有4只脚,(8-X)只兔就有4(8-X)只脚。又因为鸡和兔共有26只脚,所以2X+4(8-X)=26 ① 解:设鸡有X只,兔有(8-X)只。2X+4(8-X)=26 在解的时候可以根据等式的性质将减变成加,分别加上4X,再来解。② 解:设有兔X只,鸡有(8-X)只。4X+2(8-X)=26 同样抽生说出自己想法。那种方程好解一点,(设兔的只数为X好解点)所以我们可以设脚数多的兔为X,在解的时候容易一点。
列方程的重点是找出等量关系:设头数,以脚数相等来列出方程;
(四)尝试假设法
师:刚才我们把所有的可能按顺序列出来了,在表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)
师:假设全是鸡一共就有16条腿。实际有26条腿,这样笼子里就少了10条腿,为什么会少了10条腿呢?(把兔当了鸡在算。一只兔当成一只鸡算少两条腿,那把几只兔当成了鸡算就会少算10条腿呢?即10里面有几个2。就把几兔当成了鸡算,5个2,用五只兔当成了鸡算,这个五就表示应该有5只兔)
师:上面的过程能用算式表示出来吗?请同学们试试看。(学生试着列算式,请一个学生到黑板上去板演。)假设全是鸡:
8×2=16(条)(如果把兔全当成鸡一共就有8*2=16条腿)
26-16=10(条)(把兔看成鸡来算,4条腿的兔当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)
4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)
10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)
8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)师:算出来后,我们还要检验算的对不对,谁愿意口头检验。生:3×2+5×4=26(只),5+3=8(只)。师:看来做对了,最后写上答语。
师:我们再回到表格中,看看右起第一列中的8和0是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(课件出示:把一只鸡当成一只兔算,就多了两条腿)
师:先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。
(学生讨论写算式,然后指名板演。)
8×4=32(条)(如果把鸡全看成兔一共就有8*4=32条腿)
32-26=6(条)(把鸡当成兔来算,两条腿的鸡当成4条腿兔算,每只鸡就多了两条腿,6条腿是多算了鸡的腿)4-2=2(假设全是兔,是把两条腿的鸡当成有4条腿的兔。所以4-2表示是一只鸡当成一只兔多算了2条腿。)
6÷2=3(只)鸡(那要把多少只鸡当成兔来算就会多算6条腿呢?就看6里面有几个2就是把几只鸡当成了兔算,所以6÷2=3就是现在鸡的只数。)
8-3=5(只)兔
小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这是解答鸡兔同笼问题的一种基本方法。(板书:假设法)
小结:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(列表法,假设法和列方程)
三、练习
师:一个小小的问题,我们探究出了这么多的方法,真是太有才了。现在我们就用刚才学到的这些方法来解决《孙子算经》中原题,你会做吗?用你喜欢的一种方法做《孙子算经》中原题。
学生解答并集体讲评
四、延伸、应用 1.课件出示“做一做1”
师:鸡兔同笼问题传到日本时就变成了“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”有什么相似之处?课件出示(龟相当于兔,鹤相当于鸡)展示学生作业,并抽生说说思路。
师:看来鸡兔问题这类问题我们不只局限算鸡和兔的只数问题上,只要能用“鸡兔同笼”问题来解答的问题都可以统一叫做“鸡兔同笼”问题。下面我们就用刚才学到的“鸡兔同笼”方法,来帮我们解决生活中遇到的一些实际问题。
2、课件出示“做一做”第二题。问这道题与“鸡兔同笼”问题有相似的地方吗?有哪些地方相似?(大船相当于“兔”,小船相当于“鸡”)学生独立完成,集体讲评。
3、课件出示“做一做”第三题。学生独立完成,集体讲评。
五、课后总结:
本节课你有什么收获?那你知道早在一千五百年前的古人又是怎么解决鸡兔同笼问题的?请同学们自学P114页下面内容。这个内容我们留到下节课进行讲解。