第一篇:比例应用题类型总结
比例应用题类型总结
一、农药、盐水配制问题
元素:药粉(液)、水、农药;盐、水、盐水。根据公式:农药的浓度=药粉(液)/农药
农药的分量=药粉(液)+水
在解题时,应注意看清题目已知的配制的比值是
1、药粉(液)/农药
2、药粉(液)/水
根据配制浓度,进行解题。
例1:一种农药,用药液和水按1:100配制而成。要配制这种农药505千克,需要药液多少千克?
例2:把一种农药和水混合配制成药水,农药和水的比试1:150。现有3千克农药,要和多少千克水混合?要配制755千克药水,要加农药和水各多少千克?
二、归一问题
归一问题的题目结构是题目的前部分是已知条件,是一组关联的数量,题目的后半部分是问题,也是一组关联的量,其中有一个量是未知的。解题规律是,先求出单一的量,然后再根据问题,或求单一量的几倍是多少,或求有几个单一量。
例1:6台拖拉机4小时耕地300亩,照这样计数,8台拖拉机7小时可耕地多少亩?
(思路分析:先求出单一量,即一台拖拉机1小时耕地的亩数,在求出8台拖拉机7小时耕地的亩数)
例2:3台磨面机8小时磨面粉57.6吨,5台同样的磨面机,要磨面粉240吨,需要几小时?
(思路分析:先求出1台1小时磨面粉的吨数,最后看240吨里有几个5台1小时磨面粉的吨数,就是需要几小时)
第二篇:比例应用题
WOBANGNI EDUCATION 我帮你辅导中心
一对一个性化辅导教案
学生: 科目: 数学 年级 年级 教师: 刘兴宇 时间:2016 年
月
日
(一)求一个数是另一个数的几分之几(百分之几)的应用题
在分数、百分数三类基本应用题和较复杂的应用题中是以“求一个数是另一个数的几分之几(百分之几)”应用题为基础的。这是因为这类应用题,在实际工作和生活中应用广泛,另一方面通过这类应用题的学习,搞清百分数的基本数量关系,也就有利于其他两类百分数应用题的理解。
“求一个数是另一个数的几分之几(百分之几)”应用题的结构特征是:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。这里,“一个数”是比较量,“另一个数”是标准量。因此,这一类问题的实质是已知比较量和标准量,求分率或百分率,也就是求它们的倍数关系。其解法是:分率(百分率)=比较量÷标准量
按其形式来分,可以有以下三种:
1.基本句式:
“甲是乙的几分之几(百分之几)”
甲是比较量,乙是标准量,几分之几(百分之几)”是分率(百分率)。即甲与乙比,甲是比较量,乙是标准量。句式为:“„„是„„的„„”。类似的提法有:“„„占„„的„„”、“„„相当于„„的„„”、“„„完成了„„的„„”等。其规律一般是:用“是”、“占”、“相当于”、“完成了”等词连接的两个量,前面那个量是比较量,后面那个量是标准量。
2.引伸句式:
“甲比乙多(或少)几分之几(百分之几)”。这种用“比„„多(或少)„„”的句式连接的两个量中的比较量发生了变化。必须弄清这种句式的实际意义,即:“甲-乙比乙多(或少几分之几)或(百分之几)”。与“„„比„„(标准量)多„„”类似,而涉及实际意义的有:“„„比„„增加、提高、超额、超过、上升„„”等。与“„„比„„少„„ ”相类似而涉及实际意义的有:“„„比„„减少、降低、下降、缩小、慢、节省、节约„„”等。其规律一般是:“„„比„„多(或少)„„”的句式中,比字后面那个量是标准量,而比较量则是两个相关联的量之差。
3.省略句式:
在分数、百分数应用题中,大部分叙述句中省略了某些成份,这一类应用题更多体现在问句中。在分析问题时,必须把省略简化了的成份补述出来,以便正确地确定比较量和标准量。一般来说,“„„占„„的„„”句中的“占”一类的关键词不写出来。如“完成了几分之几(百分之几)”“增产几分之几(百分之几)”“降低„„”等。以“价格降低了百分之几?”为例,原意是:“降低的部分占原价的百分之几”又如“实际超产百分之几”原意则是:“实际产量比原计划超过百分之几。”标准量分别是原价格和原计划,而比较量则是降低和超过的部分。除此之外在审题时还应注意类似“增加到”“增加了”“减少到”“减少了”等概念的区别。
在解法方面,与基本应用题相应的较复杂应用题大致有:
1.已知甲乙两数,求甲数比乙数多几分之几(百分之几)。这种类型题的解法是:
甲数÷乙数
一 步 领 先
步 步 领 先 WOBANGNI EDUCATION 我帮你辅导中心
一对一个性化辅导教案
2.已知甲乙两数,求乙数比甲数少几分之几(百分之几)。这种类型题的解法是:
(甲数-乙数)÷甲数×100%
如果按应用题涉及的实际意义来分类,常见的有:
A、求实际完成任务量的百分数。解法是:实际生产数÷计划数×100%
B、求超额完成量的百分数。解法是:(实际生产数-计划数)÷计划数×100%
C、求降低价格的百分数。解法是:(原价格-后来价格)÷原价格100%
D、求增长率。解法是:(后来生产量-原产量)÷原产量100% 根据这一类应用题涉及的实际意义、范围及其解法可概括为四个部分。1.基本型。已知两个具体数,求它们之间的或它们各自与总量之间倍数关系的应用题(包括求发芽率、浓度、误差、复种指数等),即:
(1)已知甲数与乙数,求甲数是乙数的几分之几(百分之几),乙数是甲数的几分之几(百分之几)。
(2)已知甲数和乙数,求甲数占甲乙总数的几分之几(百分之几),乙数占甲乙总数的几分之几(百分之几)。
例1.三年级一班有42名同学。参加游泳比赛的有18名。参加游泳比赛的占全班人数的几分之几?
分析:“求参加游泳比赛的人数占全班人数的几分之几”,是参加比赛的人数与全班人数比,应以全班人数做标准量。
解:18÷42=18/42=3/7 答:参加游泳比赛的占全班人数的3/7
例2.机修车间有男工25人,女工20人,女工占车间总人数的百分之几?
分析:“求女工占车间总人数的几分之几”应以车间总人数为标准量。
解:总人数:25+20=45(人)20÷45≈44.4% 答:女工占车间总人数的44.4%。
例3.玩具厂第一季度计划制造电动玩具600件,实际多做了48件。完成计划的百分之几?
分析:“求完成计划百分之几”,要以计划数做标准量,实际数做比较量。
解法1:(600+48)÷600=648÷600=108%
解法2:把计划数看做整体“1”,则实际比计划多做48÷600=8%,共完成计划数的8%+1=108%。即:48÷600+1=8%+1=108% 答:完成计划的108%。
例4.试验组用500粒小麦种子做发芽试验,有490粒种子发了芽。求发芽率。
分析,“率”就是比率,就是百分比。求发芽率就是求发芽数占种子总数的百分之几。以种子总数做标准量。
解:发芽数÷种子总数×100% 即:490÷500×100%=98% 答:发芽率是98%。
同理:求出粉率。就是求出粉数占粮食总数的百分之几,以粮食总数为标准量。
求出油率。就是求出油数占原料总数的百分之几,以原料总数为标准量。
求出勤率。就是求出勤人数占总人数的百分之几,以总人数为标准量。
求成活率。就是求活了的数占总数的百分之几,以总数为标准量。
求合格率。就是求合格的数占产品总数的百分之几,以产品总数为标准量。
一 步 领 先
步 步 领 先 WOBANGNI EDUCATION 我帮你辅导中心
一对一个性化辅导教案
例5.把12.5千克食盐放入1000千克水中,溶成盐水。求盐水的浓度。
分析:把食盐放入水中后形成的食盐水,叫做溶液,食盐叫溶质。溶质与溶液的百分比,叫做浓度。求浓度就是求溶质占溶液的百分之几,以溶液为标准量。根据题意溶液是食盐与水重量的和。
解:12.5÷(12.5+1000)×100%≈1.23% 答:盐水的浓度约是1.23%。
例6.从甲城到乙城实际距离是75.18千米,测得结果是75.04千米。求误差对于测量值的百分比。
解:(75.18-75.04)÷75.04≈0.19% 答:误差对于测量值的百分数约是0.19%。2.引伸型。求一个数比另一个数多(或少)几分之几(百分之几)的应用题。这部分应用题是基本类型的引伸。一般有:
(1)已知甲(大数)、乙(小数)两数,求甲数比乙数多几分之几(百分之几);
(2)已知甲(大数)、乙(小数)两数,求乙数比甲数少几分之几(百分之几);
这类题的解法规律是先求出两个数的差,以差作为比较量。但不能误认为甲数比乙数多几分之几(百分之几),乙数就比甲数少几分之几(百分之几)。比多时应以乙数(小数)作为标准量;比少时应以甲数(大数)作为标准量。
例1.山岭村早稻去年平均公亩产400千克,今年平均公亩产600千克,今年公亩产比去年公亩产多百分之几?去年公亩产比今年公亩产少百分之几?
第二问,“去年公亩产比今年少百分之几”,是指去年公亩产比今年公亩产少的数是今年公亩产的百分之几。所以,要以今年公亩产做标准量(整体“1”)。
解法1.第一问:(600-400)÷400=200÷400=50%
第二问:(600-400)÷600=200÷600=33.3%
解法2.第一问,也可以先求出今年公亩产是去年公亩产的百分之几,然后再求多百分之几。(600÷400)-1=150%-1=50%
第二问,也可以先求出去年公亩产是今年公亩产的百分之几,然后再求少百分之几。1-400÷600≈0.333=33.3%
答:今年公亩产量比去年多50%,去年公亩产量比今年约少33.3%。
例2.某机械厂制造一种轴承,每套轴承成本由2.3元降低到0.73元。降低了百分之几?
解:(2.3-0.73)÷2.3=68.3% 答:约降低了68.3%。
例3.某拖拉机厂,1985年原计划生产拖拉机1200台,上半年生产了675台,下半年比上半年增产2/5,超过计划百分之几?
解:先求出全年实际产量:675+675×(1+2/5)=1620(台)
再求比原计划多百分之几:(1620-1200)÷1200=420/1200=35% 答:超过原计划35%。
3.较复杂的求一个数是另一个数的几分之几或百分之几的应用题。
这类应用题是简单(基本)应用题的组合或引伸,关键在于找准标准量,并揭示它的变化和其它隐蔽的条件,化繁为简。
例1.某班有学生50人,会游泳的有36人,占全班人数的百分之几?如果这个班有女同学25人,其中3/5会游泳,那么,男同学有百分之几会游泳?
一 步 领 先
步 步 领 先 WOBANGNI EDUCATION 我帮你辅导中心
一对一个性化辅导教案
解:(1)36÷50=72%
(2)“男同学中有百分之几会游泳”就是求男同学中会游泳的占男同学的百分之几。应以男同学总数作为标准量。其中会游泳人数作为比较量。但这两个数都要通过已知条件算出来。即:男生人数:50-25=25(人),男同学中会游泳的人数:36-25×3/5=21(人),男生有百分之几会游泳:21÷25=84%
答:会游泳的占全班人数的72%,男同学中有84%会游泳。
例2.某校去年有女生200人,男生比女生多80人。今年女生人数比去年增加20%,因此比男生多30人,今年男生比去年减少百分之几?
解:去年女生200人,今年增加了20%,那么今年女生人数是去年的(1+20%)。要求今年男生人数比去年减少了百分之几,应以去年男生人数(200+80)为标准量;以今年(女生人数-30)比去年减少的男生数为比较量。即:200×(1+20%)=240(人)今年女生数。
[(200+80)-(240-30)] ÷(200+80)=(280-210)÷280=70÷280=25% 答:今年男生比去年减少了25%。
例3.某工厂两个生产小组按计划每月共生产零件680个。结果第一组超额本小组计划的20%,第二组比本组计划多生产零件54个。这样,两个小组比原计划共多生产零件118个。问第二组比本组计划超额百分之几?
解:“求第二组比本组计划超额百分之几”实质上也属于求“甲(大数)数比乙(小数)多百分之几”的类型,标准量应是第二组计划生产的零件数。
由题意知“两组共多生产零件118个”。而其中又知“第二组多生产54个”。所以,第一组多生产的零件数是118-54=64(个),是第一组超额部分,相当于第一组计划的20%。所以第一组计划生产零件数是64÷20%=320(个)。那么第二组计划生产零件数则是680-320=360(个)。求出了标准量。再求54(个)占360(个)的百分之几,就是求比计划超额的百分数。即:54÷360=15%。
综合式:54÷[680-(118-54)÷20%]=54÷[680-64÷20%]=54÷[680-320]=54÷360=15%
答:第二组比本组计划超额15%。
4.较特殊的求一个数是另一个数的几分之几(百分之几)的应用题。
这类应用题一般数量关系抽象复杂,解法一般不符合基本题的关系式,要具体问题具体分析。
例1。某校五年级学生人数的2/3等于四年级学生人数的4/5,问五年级人数是四年级学生人数的几分之几?四年级学生人数是五年级学生人数的几分之几?
说明:一般来说,若甲数的a/b等于乙数的c/d,则甲数就是乙数的c/d÷a/b。乙数就是甲数的a/b÷c/d(a、b、c、d≠0)。如果甲数是乙数的m/n,则乙数就是甲数的n/m。但如果求的是百分数,其形式看上去不同,实际是一样的。一般的说,甲数的a%等于乙数的b%,则甲数就是乙数的b/a×100%;乙数就是甲数的a/b×100%。所以在运算时,只用百分数的分子进行运算就可以了。
例2.甲数比乙数少37.5%,乙数比甲数多百分之几?
甲数比乙数多15%,乙数比甲数少百分之几?
“甲数比乙数少37.5%”这句话是以乙为标准量,为了简便设乙为100,则甲数应该是100-37.5=62.5。所以第一问可以用(乙-甲)÷甲=37.5÷(100-37.5)=60%来表示得数。“甲比乙多15%”这句话,如以乙为标准量时则
一 步 领 先
步 步 领 先 WOBANGNI EDUCATION 我帮你辅导中心
一对一个性化辅导教案
甲=乙+ 15(设乙为100),则乙比甲少15。所以第二问可以用(甲-乙)÷甲=15÷(100+15)=13.04%来表示得数。
这个求法,是省略了分母100的简略写法。当甲是小数时,所求的百分比是差量÷(1-差量)×100%;当甲是大数时,所求的百分比是差量÷(1+差量)×100%。
例3.有一瓶纯酒精,倒出1/4后用水加满,再倒出1/5后,用水加满,最后倒出1/6后用水加满,这时瓶中含有的纯酒精比原来少了几分之几?
解:以原来的纯酒精为整体“1”,则倒出1/4后瓶中剩下的纯酒精是原来的1-1/4=3/4;再倒出1/5后,瓶中剩下的纯酒精是原来的3/4×(1-1/5)=3/5;再倒出1/6后,瓶中剩下的纯酒精是原来的3/5×(1-1/6)=1/2;这时瓶中含有的纯酒精比原来少了1-1/2=1/2。
例4.某化肥厂生产一批化肥,计划用14天完成,由于改进了操作方法,提前4天完成了任务,求每天工作效率提高了百分之几。
例5.某标准件厂制造一种螺丝,生产每个所需的时间由原来的6分钟减少了3.5分钟。过去每天生产80个,现在每天能超产百分之几?
例6。水结成冰时,冰的体积比水增加1/11,当冰化成水时,水的体积比冰减少了几分之几? 解:以水的体积为标准。冰的体积是水的:1+1/11=12/11,反过来以冰的体积为标准,水的体积是冰的:1÷12/11=11/12,所以当冰化成水时,水的体积比冰少了:1-11/12=1/12
综合算式:1-1÷(1+1/11)=1/12
例7甲、乙、丙三人储蓄。甲储的钱数是乙的11/6倍,丙储的钱数是甲的2/5。那么乙和丙所储的钱数是甲的几分之几?
一 步 领 先
步 步 领 先 WOBANGNI EDUCATION 我帮你辅导中心
一对一个性化辅导教案
课后作业
习题4·1
1.四年级二班有学生50人。缺席5人,缺席的人数占全班总人数的几分之几?
2.某工厂有工人258人。星期五缺勤8人。求缺勤率。
3.群力玻璃厂计划本月制造热水瓶胆4000个,实际造了4500个,实际完成了原计划的百分之几?
4.某中学学生种柳树330棵,杨树110棵,求两种树各占百分之几?
5.体育学校要招收120名新生,有320人报考,将有几分之几不能录取?
6.育英小学种向日葵,活了250棵,死了10棵,求成活率。
7.把4克碘溶解在酒精中配成碘酒,如果配成的碘酒是2千克,求这种碘酒的浓度。
8.红光糖厂上月生产白糖365吨,超额了47吨,超额了百分之几?
9.某机械厂五月用钢材68吨,比原计划节约了14吨,节约了百分之几?
10.一种电视机的价格由550元降到440元,这种电视机降价百分之几?
11.某村前年小麦平均公亩产360千克,去年平均公亩产增加30千克,前年平均公亩产是去年平均公亩产的几分之几?
12.某修路队,两周内修一条80米长的公路,第二周修了48米,第一周修了全长的百分之几?
13.第三生产小组上月原计划生产零件400个,实际生产了640个,增产了百分之几?
14.某服装厂一月份生产出口服装700件,二月份生产同样的服装813件,二月份比一月份多生产百分之几?(天津和平区80年试题)
15.某牧民养羊450只,其中60%是山羊。现在又买回山羊10只,现在山羊占百分之几?
16.一堆煤960吨,运了两次后,还剩680吨。已知第一次运走总数的1/8,第二次运走总数的几分之几?
17.张师傅过去生产150个机器零件需用3小时,现在减少到2小时,每小时工作效率提高了百分之几?
18.大华机械厂食堂多次修改炉灶,用煤量由原来的平均每人每天1.5千克,减少到平均每人每天0.6千克,减少了百分之几?(天津市红桥区入学试题)
19.某造纸厂去年每月生产纸张3500令。今年的计划产量是50000令。去年的产量比今年的计划产量少百分之几?
20.红柳村前年收获棉花750千克,去年收获棉花900千克,去年比前年增产百分之几?
21.湘江玩具厂,原计划每月生产电动玩具378件,实际10个月的产量就超过全年计划的5%,实际每个月平均超额了百分之几?
22.某煤矿上半年完成全年任务的66%,下半年又比上半年增产5%,这样全年可以超产百分之几?
23.某市政工程队修一条8500米长的公路,已修了11天,平均每天修300米,其余的要在16天修完,每天工作效率必须提高百分之几?
24.地球表面积的71%是海洋,剩下的是陆地。海洋面积比陆地面积多百分之几?
25.一列客车每小时行40千米,一列货车每小时行50千米,货车速度比客车速度快百分之几?客车速度比货车速度慢百分之几?
26.振华工厂计划25天生产轴承1750套,实际4天就生产了360套,照这样计算。到期可超产百分之几
一 步 领 先
步 步 领 先
第三篇:六年级解比例应用题
解比例应用题
(1)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?
(2)甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?
(3在一幅地图上,用3厘米的线段表示实际距离600千米。量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?
(4)运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?
(5)在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?
(6)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?
(7)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?
(8)在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?
(9)一辆汽车2小时行驶130千米。照这样的速度,从甲地到乙地共行驶5小时。甲、乙两地相距多少千米?(用比例解)
(10)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。如果要4小时到达,每小时需行驶多少千米?(用比例解)
(11)修一条公路,原计划每天修360米,30天可以修完。如果要提前5天修完,每天要修多少米?(用比例解)
(12)修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(用比例方法解)
(13)修一条公路,总长12千米,开工3天修了1.5千米。照这样计算,修完这条路还要多少天?(用比例解答)
(14)修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?(用比例方法解)
(15)小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?(用比例解答)
(16)工厂有一批煤,计划每天烧2.4吨,42天可以烧完。实际每天节约1/8,实际可以烧多少天?(比例解)
用比例解
1、解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?
2、一对互相啮合的齿轮,主动轮有60个齿,每分转80转。从动轮有20个齿,每分转多少转?
3、6台榨油机每天榨油48.6吨,现在增加了13台同样的榨油机,每天共榨油多少吨?
4、一某工厂要生产一批机器零件,5天生产410个,照这样计算,要生产1066个机器零件需要多少天?
5、某工地要运一堆土,每天运150车,需要24天运完,如果要提前4天完成,每天要多运多少车?
6、用一边长为30厘米的方砖铺地,需200块,如果改用边长为20厘米的方砖铺地需多少块?
7、一种农药,药液与水重量的比是1:1000。(1)、20克药液要加水多少克?
(2)、在6000克水中,要加多少克药液?
(3)、现在要配制这种农药500.5千克,需要药液和水各多少千克?
8、一种稻谷每1000千克能碾出大米720千克。照这样计算,要得到180吨大米,需要稻谷多少吨?
9、某工程队修一条公路,已修了1200米,这时已修的和未修的比是3:2,这条公路全长是多少米?
10、一辆汽车三天共行720千米,第一天行驶5小时,第二天行驶6小时,第三天行驶7小时,如果每小时行驶的路程都相同,这三天各行多少千米?
11、用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块?
12、甲、乙两堆煤原来吨数比是5:3,如果从甲堆运90吨放入乙堆,这时两堆吨数相等,甲、乙原来各有多少吨?
13、园林绿化队要栽一批树苗,第一天栽了总数的15%,第二天栽了136棵,这时剩下的与已栽的棵数的比是3:5。这批树苗一共有多少棵?
14、生产一批零件,计划每天生产160个,27天可以完成,实际每天超产20个,可以提前几天完成?
第四篇:解比例应用题练习
二、解比例应用题。
1、一台拖拉机2小时耕地1.25公顷。照这样计算,8小时可以耕地多少公顷?
2、工厂运来一批原料,原计划每天用15吨,可用60天。实际每天少用3吨,这批原料能用多少天?
3、食堂买3桶油用780元,照这样计算,买8桶油要用多少钱?
4、小明读一本书,每天读12页,8天可以读完,如果每天多读4页,几天可以读完?
5、把3米长的竹竿直立在地上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高度是多少?
6、农场收割275公顷小麦,前3天收割了165公顷。照这样计算,其余的还需要多少天才能收割完? 7.农场收割小麦,前3天收割了165公顷。照这样计算,8天可以收割多少公顷? 8.同学们做广播操,每行站20人,正好站18行。如果每行站24人,可以站多少行? 9.一种农药,用药液和水按1:1500配制而成,现有3千克药液,能配制这种农药多少千克?
10、一间房子要用方砖铺地,用边长3分米的方砖,需要96块。如果改用边长是2分米的方砖要多少块? 11.建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨? 12.一个县共有拖拉机550台,其中大型拖拉机台数和手扶拖拉机台数的比是 3:8,这两种拖拉机各有多少台? 13.用84厘米长的铜丝围成一个三角形,这个三角形三条边长度的比是3:4:5。这个三角形的三条边各是多少厘米?
14.一种药水是用药物和水按3:400配制成的。
(1)要配制这种药水1612千克,需要药粉多少千克?(2)用水60千克,需要药粉多少千克?(3)用48千克药粉,可配制成多少千克的药水?
15.商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求运来电冰箱多少台? 16.一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?
17.一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?
第五篇:按比例分配应用题
《按比例分配应用题》教学设计
【教学目标】
1.使学生理解按比例分配的意义,掌握按比例分配应用题的特征和基本解题方法。
2.培养学生探究知识的能力和良好的思维品质,以及解决简单实际问题的能力。
3.培养初步的合作意识,学会评价他人,欣赏他人。
【教学重点】掌握按比例分配应用题的基本解题方法
【教学流程】
一、创设情境,激趣引入
1.谈话引入:星期天,小明和小华相约来到一家儿童文具店,他们先来到铅笔专柜,小华拿出4元,小明也拿出4元,合买了1盒(20支)铅笔。想一想,他们各自可分得多少支铅笔?
2、小结:刚才两位同学由于拿的钱相同,所以他们分得的铅笔支数相同,我们把这种分配方式叫做平均分。
3、PPT出示:他们又来到笔记本专柜,小华拿出9元钱,小明拿了3元钱,一共买了24本同样的笔记本。
师:他们应该怎么分这些笔记本?是平均分吗?如果不平均分,那又该如何分?(同桌讨论,并阐明理由。)
师:这里的笔记本要按拿出钱数的比进行分配比较合理。下面就请同学们帮他俩算一算,他们各应分得多少个笔记本?
二、探索交流
1.活动组织:先自己独立尝试着解答,然后把你的想法告诉你们小组内的伙伴,说说你是怎么想的,比比谁的方法更好。
2.学生活动:
(1)独立探索解题方法。
(2)小组合作讨论,教师参与并适当指导,同时收集各种方案的解法,以备展示。
3.集体交流。
师:发言人先介绍一下你们组的解法。其他的同学来当一回“小记者”:如果有不同的解法可以补充交流;当然也可以向发言人提问
(1)学生发言
方法一:先算出每个笔记本的价钱,用(9+3)÷24=0.5(元),再算出小华和小明各应分得的笔记本个数.9÷0.5=18(本)
3÷0.5=6(本)
方法二: 24÷(9+3)=2(本)
小华:9×2=18(本)小明:3×2=6(本)
方法三(分数乘法):你是怎么想的?用乘法做的依据是什么?(小华和小明拿出的钱的比是9:3,化简后是3:1,小华出的钱占总钱数的3÷3+1 ,分得的本数也应该是总本数的3÷3+1。把总本数看作单位“1”,求小华分得的本数,就是求总本数的3÷3+1,用乘法做。)
方法四:3+1=4
24÷4=6(本)
小华:6×3=18(本)小明:6×1=6(本)
(2)你们觉得哪种方法更好?为什么?
4.分析归纳
像刚才这样,把 一个数量按照一定的比例来进行分配,我们把这种分配方法叫做按比例分配。(揭示课题:按比例分配)
5、你见到过、听说过类似的情况吗?学生举例。(如学生无法举例,则出示图片介绍在生活、生产中的应用:混凝土、农药配比等。)
三、知识应用
1.只要你做个有心人,一定会发现很多按比例分配的例子。下面,我们来做个实验,看看你对自己有多了解。说说你的身高,猜猜自己头部的高度大约是多少?
老师曾经看到这样一条信息:12周岁的儿童头部与头以下的高度的比一般是2:13。
结合这条信息,请你算一算自己的头部的长度,看看你估计得准不准?注意,结果保留整数。
2.你们见过野生丹顶鹤吗?它可是国家一级保护动物,我国和其他国家拥有丹顶鹤的数量约是1:3。2001年全世界也大约只有2000只。我国和其他国家各有多少只丹顶鹤?(你有什么感想?)(进行思想教育,并发出倡议)
四、情境延续
1.师:买完了笔记本之后,小华和小明又在文具店蹓跶了一圈,恰好碰到了小强,于是他们三人商量决定一起凑钱去买一套故事书(一共18本)。小华拿出5元,小明拿出10元,小明拿出15元钱,聪明的小朋友,请你再帮他们算一算,他们各自可分得多少本故事书?
2.尝试解答,同桌互相讨论。
3.展示交流各种方法,你打算如何检验?
4.这题与刚才做的题有什么相同点和不同点?
五、综合运用
1.像这种连比,在我们生活中还有很多。
例如:在学生的营养餐的食物中,除了主食(米饭)外,还包括瓜果蔬菜类、豆制品类、鱼肉禽蛋类,它们的比为13:2:5较为适宜。像你们这种年龄所需要的营养中除了主食外,还需100克这样的食物。现在请你算算,你们的营养餐中所需的瓜果蔬菜类、豆制品类、鱼肉禽蛋类各占多少克?
师:同学们,你们平时的餐点是否这样合理搭配了呢?
(出示课件)师:有这样一首诗是来称赞营养餐的“少年儿童成长快,合理营养体质强。鱼肉蛋奶豆制品,五谷杂粮有营养。瓜果蔬菜不可少,科学搭配保健康。不偏食、不挑食,饮食习惯要养好!”
师:所以我们平时更要注意合理饮食,这样才能有一个健康的身体,为以后的学习、工作打下扎实的基础!
2、(利润的分配)
张叔叔和李叔叔、王大伯三家合资办厂,由于他们齐心合力,经营有道,一年下来,除去缴纳税款、发工资和其他费用,获得利润14万元。该怎么分配这些利润。
三家投资者的情况如下表:
姓名
在厂工作人数
投资金额 张叔叔
李叔叔王大伯
现在同学们四人一组,也像他们一样围在一起,商量商量如何分配这14万元的利润。生1:我们小组认为按照人数来分配,14×2/7=4(万元)14×3/7=6(万元)14×2/7=4(万元)生2:我们小组有不同意见:我们认为应该按照投资金额来分。
14×20/40=7(万元)14×12/40=4.2(万元)14×8/40=2.8(万元)生3:我们小组认为一半按照人数来分,另一半按照投资金额来分
张叔叔:7×2/7=2(万元)7×20/40=3.5(万元)2+3.5=5.5(万元)李叔叔:7×3/7=3(万元)7×12/40=2.1(万元)3+2.1=5.1(万元)王大伯:7×2/7=2(万元)7×8/40=1.4(万元)2+1.4=3.4(万元)生4:我们小组认为先留下4万元,作为发展再生产用,再按照投资金额来分配。
(14-4)×20/40=5(万元)(14-4)×12/40=3(万元)(14-4)×8/40=2(万元)
生5:我们认为先留下一半,再按人数的多少来分。
生6:老师,我认为应该按协议来分配。因为现在合资办厂的,事先都签订了协议,所以按协议上规定的来分配是最合理合法。
师:同学们,真是既能干,又有个性,想到了这么多的分配方案,了不起!
四、小结