第一篇:北师大版小学数学第十二册总复习 量的计算 教学设计(写写帮推荐)
八、课题:量的计量
学情分析
本班学生两极分化明显:优生与后进生,水平相差较大。百分之五十以上的学生成绩达到优秀,但小部分学困生却和优等生却相差好几十分,较为悬殊。通过复习使学生进一步理解采用法定计量单位的重要意义.
教学目标
1.进一步理解采用法定计量单位的重要意义.
2.复习长度、面积、体积、质量、时间单位.
3.复习各种计量单位间的进率.
教学重点
指导学生汇总整理学过的计量单位,牢固掌握各种计量单位及单位间的进率.
教学难点
掌握各种计量单位的实际大小及进率,正确使用计量单位. 教学步骤
一、直接导入.
提问导入:同学们,改革开放以来,我国采用了国际上通用的法定计量单位,你能说说这是为什么吗?(学生自由回答)
教师归纳:我国从1990年起废除原来的计量单位,采用国际上通用的法定计量单位,目的是为了便于国际交流,扩大开放,不断发展面向世界的外向型经济.因此,我们要认真学好有关计量的知识.这
节课我们整理和复习“量的计量”.(教师板书课题)
二、归纳整理.
(一)启发学生回忆:我们学过了哪些量的计量?
教师板书:
长度质量时间
面积
体积(容积)
(二)复习长度、面积、体积单位及进率.
1.启发学生回忆:已学过的长度单位有哪些?每个长度单位实际有多大?相邻单位间的进率是多少?
2.启发学生回忆:已学过的面积单位有哪些?每个面积单位实际有多大?相邻单位间的进率是多少?
学生讨论:相邻面积单位之间的进率为什么都是100?
师生归纳:面积单位是根据长度单位确定的,长度单位间的进率是10,面积单位间的进率就是100.
3.启发学生回忆:已学过的体积(容积)单位有哪些?相邻单位间的进率是多少?
学生思考:相邻体积单位之间的进率为什么是1000?
教师说明:面积单位体积(容积)单位都是依据长度单位确定的,长度单位间的进率是10,面积单位间的进率是100,体积(容积)单位间的进率是1000,要注意它们之间的联系与区别,在实际计量时做到准确无误.
4.练习.
(1)在()里填上适当的计量单位名称.
一枝铅笔长176()一个篮球场占地420()
一张课桌宽52()一个火柴盒的体积是21()
一间教师的面积是48()一种保温瓶的容量是2()
(2)一个正方体的体积是1立方米,它的棱长是多少?它的每个面的面积是多少?
(3)用棱长1厘米的小正方体木块堆成一个棱长1分米的正方体,需要多少块?把这些小正方体木块排成一行,有多长?
(三)复习质量单位.
1.启发学生回忆:学过的质量单位有哪些?它们之间的进率是多少?(并填写下表)
2.练习.
①10麻袋大米约1()
②l个鸡蛋约6.5()
③1棵白菜约2.5()
④1名六年级学生体重是40()
(四)复习时间单位.
1.启发学生回忆:学过的时间单位有哪些?它们之间的进率是多少?(并填写下表)
名称 世纪 年 月 日 时 分 秒
进率()年()月 31日(各月)
30日(各月)
29日(年二月)
28日(年二月)()时()分()秒
2.教师强调:
①时间单位间的进率不像前两种计量单位间的进率那么有规律,要记牢、用准.
②“小时”的单位名称按规定应记作“时”.
3.思考.
①怎样判断某一年是闰年还是平年?
②21世纪从什么时间开始?
4.练习.
(1)一年有()个月,分成()个季度.
(2)一个月分成()旬、()旬和()旬.一月的下旬是()天,平年二月的下旬是()天.
(3)采用24时计时法,下午1时就是()时,夜里12时就是()时,也就是第二天的()时.
(五)名数的改写.
1.出示5米.(引导学生,说出各部分名称)
2.单名数、复名数的复习,并举例.
3.填写例1.
(1)3时20分=()分
(2)=()吨()千克
(3)3080克=()千克()克
(4)5分40秒=()分
4.练习.
3千克50克=()克3千克50克=()千克
3050米=()千米()米3050米=()千米
2.4时=()时()分2.4时=()分
2时40分=()时 2元4分=()分
三、全课小结.
本节课整理和复习了哪些知识?在理解和运用这些知识时应注意什么?
四、课堂练习.
1.填空.
(1)1米=()厘米
(2)1公顷=()平方米
(3)1平方米=()平方分米=()平方厘米
(4)1升=()毫升
(5)1吨=()千克
(6)平年的第一季度天数是()天.
2.判断.
(1)2000年是21世纪的第一年.()
(2)1992年是闰年.()
(3)数学课本长18分米,宽13分米.()
(4)钟表上时针转动的速度是分针的.()
五、布置作业.
1.测量两件家具,记录各边的长度,算出表面积和体积.
2.称出两件炊具的质量并记录下来.
3.调查父母的出生年、月、日,算一算平年还是闰年?
4.记录自己从家到学校所用的时间.
六、板书设计
第二篇:北师大版小学数学第十二册总复习简单应用题 教学设计
四、课题:简单应用题
学情分析
少部分学生学习懒散、学习习惯差,如:粗心大意、书写不认真,不愿思考问题,上课开小差,依赖老师讲解,依赖同学的帮助,作业喜欢与同学对题。通过本课使学生进一步掌握简单应用题的结构,能够根据四则运算的意义和题目中的数量关系正确选择解答方法. 教学目的
1.使学生进一步掌握简单应用题的结构,能够根据四则运算的意义和题目中的数量关系正确选择解答方法.
2.通过教学,进一步提高学生分析和解答应用题的能力.
3.探索知识间的内在联系,激发学生的学习兴趣.
教学重点
掌握简单应用题的结构,正确解答简单应用题. 教学难点
掌握简单应用题的数量关系. 教学过程
一、基本训练.
1.口算.
2.下面各题只列式不计算.
(1)六年级学生为灾区捐款,六年级1班捐款105元,六年级2班捐款98元.两个班一共捐款多少元?
(2)学校图书馆买来150本故事书,借给五年级1班48本,还
剩多少本?
(3)农具厂每天能够生产56件农具,7天能够生产多少件农具?
(4)水果店有24筐苹果,要6天卖完,平均每天要卖多少筐苹果?
(5)成绩展览会上要展出48本大字本,每张桌子上放8本,需要几张桌子?
(6)五年级有学生136人,其中
是女生,女生有多少人?
二、归纳整理.
揭示课题:今天我们就来复习这样的简单应用题.(板书:简单应用题的整理和复习)
(一)教学例1:某工厂有男工人364人,女工91人.这个厂的男工和女工一共有多少人?
教师提问:这道题有哪几个已知条件?
问题是什么?
问题与已知条件有什么关系?
你为什么要这样回答?
教师总结:
这道题中,需要求的结果与两个已知条件直接相关.只要把两个已知数合并起来,就可以直接计算出结果.这是一道简单应用题.
(二)变式练习.
1.改变问题:根据例1中的两个已知条件,你还能够提出其他问题,编成简单应用题吗?
①男工比女工多多少人?
②男工人数是女工人数的几倍?
③女工人数是男工人数的几分之几?
2.改变条件:根据上面编出的应用题和列出的算式,你能够分别调换每一道题中的已知条件和问题,各编成两道不同的简单应用题吗?
①某工厂男工和女工一共有455人,男工有364人,女工有多少人?
②某工厂男工和女工一共有455人,女工有91人,男工有多少人?
③某工厂有女工91人,男工比女工多273人,男工有多少人?
④某工厂女工比男工少273人,女工有91人,男工有多少人?
⑤某工厂有女工91人,男工人数是女工人数的4倍,男工有多少人?
⑥某工厂有男工364人,女工人数是男工人数的,女工有多少人?
⑦某工厂男工人数是女工人数的4倍,男工有364人,女工有多少人?
⑧某工厂有女工91人,女工人数是男工人数的,男工有多少人?
教师提问:通过我们的编题,你发现了简单应用题的什么特点?你的收获是什么?
教师总结:从以上的编题可以看出,简单应用题都是由两个已知条件和一个问题组成的,而且问题与两个已知条件都是直接相关的.也就是说,都是可以由已知条件经过一步计算直接求出答案.
(三)复习已经学过的一些常见的数量关系.
通过例1我们已经研究了一些简单应用题的数量关系,下面我们再来复习一些常见的数量关系.(出示下表)数量关系 数量关系式
收入、支出、结余 收入-支出=结余 单价、数量、总价
单产量、数量、总产量
速度、路程、时间
工作效率、时间、工作总量 本金、时间、利率、利息
1.请你们以小组为单位,先举例说明数量关系的意义,在填出每组数量中最基本的数量关系式.
2.根据这些数量关系式你能够各编出三道不同的应用题吗?
三、巩固反馈.
1.解答下面的应用题.解答后,再利用原题中的数量关系,编出两道与原题相连的应用题.
(1)某电视机制造厂平均每天制造电视机800台,20天能够制造电视机多少台?
(2)学校用102元买来120个练习本,平均每个练习本多少元?
2.给下面各题补充上一个条件或者问题成为一步计算应用题,再解答.
(1)一批货物,运走10.5吨,_____________.这批货物原来有多少吨?
(2)修一条长3800米的水渠,_____________.平均每天修多少米?
(3)白羊只数的相当于黑羊的只数,_____________.黑羊有多少只?
(4)一列火车7小时行驶420千米,_____________?
3.解答下列应用题.
(1)一种毛线,每千克的价格是66.5元,买0.5千克应付多少元?
(2)肖师傅一天共生产250个零件,经检验有225个是一级品,求一级品率.
四、课堂总结.
通过今天的学习,你有什么收获吗?
五、家庭作业.
1.丰华农场种玉米120公顷,种小麦的面积是玉米的倍.种小麦的面积是多少公顷?
2.丰华农场种小麦165公顷,种玉米的面积是小麦
.种玉米多少公顷?
3.丰华农场种小麦165公顷,种小麦的面积是玉米的倍.种玉米多少公顷?
4.丰华农场种玉米120公顷,种玉米的面积是小麦的.种小麦多少公顷?
六、板书设计 简单应用题
根据数量关系解决问题
例1 某工厂有男工364人,女工91人.这个工厂的男工和女工一共有多少人?
364+91 = 455(人)
答:这个工厂的男工和女工一共有455人.
改编:
①男工比女工多多少人?
②男工人数是女工人数的几倍? ③女工人数是男工人数的几分之几?
第三篇:北师大版小学数学第十二册总复习分数应用题 教学设计(范文)
五、课题:分数应用题
学情分析
学生生审题不认真,惯性做题,熟而不思,思维缺乏灵活;另一方面反映出教师对教材中的知识点把握不准,理解不透,导致深度挖掘不够,广度扩展不宽,从而使教师的指导作用不到位,练习缺乏层次、练习面过窄,缺乏对比、变式练习,造成学生思维定势和解题的局限性,通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.
教学目的1.通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.
2.通过复习,培养学生的分析能力以及综合能力.
3.通过复习,培养学生认真、仔细的学习习惯.
教学重点
通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.
教学难点
通过复习,使学生能够掌握分数应用题的数量关系,并且能够数量、正确的解答.
教学过程
一、复习准备.
老师这里有两个数,一个是6,另一个是3.你能够用6与3提
问并且进行回答吗?
学生回答:
(1)3是6的几分之几?
(2)6是3的几倍?
(3)3比6少几分之几?
(4)6比3多几分之几?
(5)6占6与3总和的几分之几?
(6)3是6与3差的几倍?……
谈话导入:今天我们就来复习分数应用题.(板书:分数应用题的复习)
二、复习探讨.
(一)教学例4.
学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?
1.教师提问:根据已知条件,你都可以提出什么问题?并解答.
2.反馈:
(1)水彩画和蜡笔画共多少幅?
(2)水彩画比笔画少多少幅?
(3)蜡笔画比水彩画多几分之几?
(4)水彩画比蜡笔画少几分之几?
(5)水彩画是蜡笔画的几分之几?
(6)蜡笔画是水彩画的几分之几?
(7)……
3.教师质疑.
(1)5问和6问为什么解答方法不同?(单位1不同)
(2)3问和4问的问题有什么不同?(单位1不同)
(二)例题变式.
1.学校举办的美术展览中,有50幅水彩画,蜡笔画比水彩画多,蜡笔画有多少幅?
2.学校举办的美术展览中,有80幅蜡笔画,蜡笔画比水彩画多,水彩画和蜡笔画一共有多少幅?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:看来我们做分数应用题时,需要认真审题并且在找准单位1的同时注意找准对应关系.
(三)深化.
如果题目中的分数发生了变化,我们还会解答吗?
1.仓库里有15吨钢材,第一次用去总数的20%,第二次用去总数的,还剩下多少吨钢材?
2.仓库里有一些钢材,第一次用去总数的20%,第二次用去总数的,还剩下15吨,仓库里有多少吨钢材?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:虽然分数应用题与百分数应用题在表现形式上不同,但是数量关系相同.同样需要注意认真审题并且在找准单位1的同时注意找准对应关系.
三、巩固反馈.
1.分析下面每个题的含义,然后列出文字表达式.
(1)今年的产量比去年的产量增加了百分之几?
(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?
(4)1999年的电视机价格比1998年降低了百分之几?
(5)现在生产一个零件的时间比原来缩短了百分之几?
(6)十一月份比十二月份超额完成了百分之几?
2.列式不计算.
(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?
(2)油菜子的出油率是42%,一个榨油厂榨出菜子油2100千克,用油菜子多少千克?
(3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?
3.判断并且说明理由.
男生比女生多20%,女生就比男生少20%.()
4.一辆汽车从甲地开往乙地,第一小时行了全程的,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲、乙两地间的公路长多少千米?
四、课堂总结.
通过今天这堂课,你有什么收获吗?
五、课后作业.
某体操队有60名男队员,(1)女队员比男队员多,女队员有多少名?
(2)男队员比女队员多
(3)女队员比男队员少
(4)男队员比女队员少
六、板书设计,体操队员共有多少名?,女队员有多少名?,体操队员共有多少名?
第四篇:北师大版小学数学第十二册总复习用比例知识解决问题 教学设计
六、课题:用比例知识解答应用题
学情分析
本班学生只有小部分学生对应用题的基本结构及特征掌握不清晰,从而不能抓住关键确定数量关系,进而导致列式错误,也反映出学生缺乏运用知识解决生活中问题的意识和能力。通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.
教学目的1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.
2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.
3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.
教学重点
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.
教学难点
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.
教学过程
一、复习准备.
下面每题中的两种量成什么比例关系?
(1)速度一定,路程和时间.
(2)总价一定,每件物品的价格和所买的数量.
(3)小朋友的年龄与身高.
(4)正方体每一个面的面积和正方体的表面积.
(5)被减数一定,减数和差.
谈话引入:我们今天运用正反比例的知识来解决实际问题.(板书:用比例知识解应用题)
二、探讨新知.
(一)教学例5(用比例解答下题)
修一条公路,总长12千米,开工3天修了1.5千米.照这样计算,修完这条路还要多少天?
1.学生读题,独立解答.
2.学生反馈:
3.分析:
(1)为什么需要用正比例解答?
(2)12和要求的天数之间有什么关系?
4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的对应关系.
(二)反馈.
1.某车队运送一批救灾物品,原计划每小时行60千米,6.5小时到达灾区,实际每小时行了78千米.照这样计算,行完全程需要多少小时?
2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?
三、巩固反馈.
1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?
2.某车间有男工25人,女工20人.如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?
3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?
4.两个底面半径相等的圆柱体,第一个圆柱的高是第二个圆柱高的 .第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?
四、课堂总结.
通过这堂课的学习,你有什么收获?
五、课后作业.
1.生产小组加工一批零件,原计划用14天,平均每天加工1500个零件.实际每天加工2100个零件.实际用了多少天就完成了任务?
2.一个编织组,原来30人10天生产1500只花篮,现在增加到80人,按原来的工效,生产6000只花篮需要多少天?
六、板书设计
第五篇:北师大版小学数学第十二册总复习数与数的运算 教学设计
一、代数初步知识.学情分析
计算正确率较高,大部分学生掌握了一定的解题技巧,具有一定的分析问题、解决问题的能力。但也存在着以下缺失:①书写不认真,数字抄错。②数感较弱,对数的相对大小把握不够。复习内容:
人教版九年义务教育六年制小学数学第12册<<代数初步知识.>>的整理和复习。
复习目的:
1.通过系统的整理,帮助学生形成代数初步知识结构,提高学生对代数初步知识的掌握水平。
2.使学生加深理解用字母表示数的意义和作用,以及方程、方程的解、解方程的意义;使学生熟练掌握简易方程的解法。
3.使学生感受数学与实际生活的联系,让学生运用知识解决实际问题,从而培养学生的创新精神和实践能力。
4.进一步教会学生抓住联系整理知识的方法和针对重难点进行复习的方法,提高学生的学习能力。
复习重点:
代数初步知识的整理和复习。
教学过程:
一、谈话引入
1、师生谈话。
师:(对一个学生)你今年多大了?你们知道老师比他大多少岁吗?你们能用一个式字表示出老师比他大的岁数?
生:x表示老师的岁数,(x-12)就表示出老师比他大的岁数。
2.揭示课题。
师:像这样,用字母表示数的方法实际上是一种重要的代数方法。这节课,老师就和大家一块儿来整理复习代数初步知识。
二、整理知识
1.回忆整理。
提问:请同学们回想一下,在小学阶段我们学习过哪些代数初步知识?请大家打开课本98页边看边回忆。
教师根据学生的回忆在屏幕上逐一出示知识点:用字母表示数、数量关系、运算定律、计算公式、简易方程、方程、方程的解、解方程、比和比例。
师:这些都是过去学过的代数初步知识,它们之间有联系吗?要看出它们之间的联系,就需要对这些知识进行整理。下面,请同学们小组合作,根据这些知识要点和知识间的联系进行整理,并记录出整理的结果。我们来比一比,看哪个小组将知识间的联系整理得简洁、清晰,又有特色!学生分组整理,教师巡视指导。
2.汇报交流。
各小组选一名代表展示、交流整理的结果和过程。结合交流过程,师生共同评价各组的整理情况。
3.归纳概括。
提问:请大家比较一下刚才这些方案,你更喜欢哪一种?
小结:其实这些方案都很出色,虽然形式不同,但它们都是根据什么来进行整理的?它们都抓住了整理的关键,也就是根据知识要点和知识间的联系进行整理。这是一种很好的整理方法,咱们还可以用这种方法去整理其它知识。
师: 刚才大家都把代数初步知识分成了哪三个部分?(板书:用字母表示数、简易方程、)这节课,我们着重复习“用字母表示数”和“简易方程”。
三、复习提高
1、复习用字母表示数。
师: “用字母表示数”包括哪些?(板书:数量关系、定律、公式)
用字母表示数量关系、定律和公式,同学们有疑问吗?用字母表示数要注意些什么呢?我们一块儿来复习。
出示题目: 用含有字母的式子表示下面的数量关系,想一想:书写含有字母的式子应该注意什么?
(1)学校去年植树a棵,今年植树的棵数比去年的2倍还多6棵,今年植树()棵。
(2)同学们做操排成a行,每行a人,一共有()人。
(3)一本书有120页,小丹每天看x页,看了y天,还剩()页。
(4)一种足球每个原价a元,打折后现价b元,原来买100个足球的钱,现在可以买()个。
学生独立完成,集体订正答案。
提问:谁能总结一下,书写含有字母的式子应该注意什么?
小结:通过刚才的复习咱们知道,象这样,用含有字母的式子可以简明的表达出数量之间的关系。
2.复习简易方程。
师:简易方程包括哪些内容?(板书:方程、方程的解、解方程)
在你们的记忆中,什么是方程?方程的解和解方程有什么区别?请同桌的同学互相说一说。
师:下面我们就用这些概念来解决几个问题。
课件出示题目:
① 判断下面各式是不是方程?
② x+42=78÷3()2x-16()5x-2x=150()x<0.1()
学生用手势判断。提问:为什么第2和第4个式子不是方程?
② 解下面的方程。想一想:解方程的依据是什么?解方程时要注意什么?
x+42=78÷3 5x-2x=150 展示学生的解答过程。
提问:解方程的依据是什么?解方程时要注意什么?
师:可见咱们解方程时不仅要考虑每步的依据,而且要注意书写格式,养成检验的好习惯。
小结:刚才我们复习“用字母表示数”和“简易方程”是针对这两部分的
重点和难点进行的,这是一种重要的复习方法,我们还可以用这种方法去复习其它知识。
四、应用创新
出示题目:
一位朋友从济南乘火车到美丽的城市青岛,准备在那儿停留5天,最后乘火车按原路返回济南。请同学们用含有字母的式子表示出这位朋友青岛一行的全部开支。
板书:每天用餐a元,住宿b元。
在解决这个问题中应引导思考:哪些开支是固定不变的?哪些开支是可变的?请同学们根据自己的生活经验设计一下,这位朋友这次出差带多少钱比较合适。请同学们分小组讨论,看哪组设计得最合理。(根据学生回答教师板书不同的设计。)
提问:同学们设计出了这么多种方案,你们认为哪种设计最合适呢?
小结:通过这个问题可以看出,用字母表示一些不确定的量,能够帮助我们很好的解决一些实际问题。
五、全课小结
师:这节课,我们对代数初步知识进行了整理和复习,你最大的收获是什么,谁能谈一谈学习的体会?
数和数和运算
教学内容:数的意义、数的读法和写法(教材91-94页,96页的1-2题)教学要求:
使学生进一步理解自然数、整数、分数、小数等有关概念,理解掌握它们之间的关系,能运用这些概念来解决有关的问题。理解掌握整数、分数、小数的读写方法,能正确熟练地读写这些数。
第一课时
教学过程:
从今天开始,我们学习第四单元---(整理和复习)。本单元内容不仅是本册教材的一个重点,也是小学阶段数学知识的重要组成部分,这部分内容是对小学阶段数学知识的总结和概括,同时又是中学数学知识的重要基础。为此,必须认真地学好本单元,要积极主动地搞好整理和复习,使学过的知识条理化、系统化、形成比较完整的知识结构。复习数的意义
举例说说,小学阶段学习了哪些数? 教师板书:自然数、整数、分数、小数。
理解整数、自然数、0之间的关系。
自然数:用来表示物体个数的0、1、2、3„„。整数
自然数
0:一个物体也没有,用0表示
比0小的数(以后学习的内容)
练习73页“做一做”。理解小数与分数之间的关系。提出问题:
小数与分数之间有什么联系?
小数分几种情况,划分的根据是什么?当学生总结后,可归纳如下:
有限小数:小数部分的位数是有限的。
小数
无限小数(循环小数):小数部分的位数是无限的。整数和小数位顺序表,理解整数与小数之间的联系。让学生填写教材74页整数和小数数位顺序表。请学生观察数位顺序表,回答问题: 什么叫数位? 整数与小数之间有什么联系? 练习教材75页上的“做一做”。理解百分数的意义及有关术语。举例说说什么叫百分数。练习教材75页下的“做一做” 3.复习数的读法和写法 请同学们总结整数的写法。
请同学们想一想:小数和分数应怎样读?怎样写? 练习教材76页上的“做一做” 巩固练习
做78页练习十五中第1题、第2题中的(1)全课小结
第二课时
数的改写
数的大小比较 教学要求:
使学生进一步理解数的改写方法,能正确熟练地把一个较大的多位数改写以“万”或“亿”作单位的数和求近似数;能正确熟练地进行分数改写以及分数、小数、百分数之间的互化。
进一步理解整数、小数、分数比较大小的方法,能正确熟练地进行这些数的大小比较。教学过程:
1.讲述复习内容,提出目标要求 2.复习数的改写
(1)读出下列各数:235800
345000
345000000 当学生读出来以后,让学生思考:
如何将这两个数分别改写成以万、亿作单位的数? 如何求一个整数近似数?
把一个数改写成以万或亿作单位的数与求一个整数的近似数人什么联系和区别?
235800=23.58万
345000000=3.45亿
235800≈24
345000000≈3亿
应使学生明确,把一个数改写成以万、亿或其它单位的数,得到的是准确值时,用等号联接两个数,而求近似数,得到的是近似值,用约等号联接两个数。
(2)复习求小数近似数的方法,并比较与求整数近似数人何相同点? 让学生讲清求小数近似数的方法,然后,找出二者相同点: 一般都是用四舍五入法。
“舍”或“入”都是由规定位数的下一位数值决定的。完成教材76页下的“做一做”
复习分数之间的改写和分数、小数、百分数之间的互化。先让学生举例说说分数有哪几种,然后做练习,2)
分数 小数 百分数 1/20
0.75
45% 举例说说怎样判断一个分数能不能化成有限小数? 复习数的大小比较
练习教材77页的“做一做” 巩固练习
教材78页第2题中(2)题、79页3题、4题。教材79页5题、6题。
第三课时
数的整除;分数、小数的基本性质。
教学要求:
使学生进一步理解整除、约数、倍数、公约数、公倍数、最大公约数、最小公倍数、质数、合数、互质数、质因数、分解质因数、能被2、3、5整除数的特征等概念,并进一步理解它们之间的联系与区别。进一步理解分数、小数、的基本性质;小数点移动引起小数大小变化的规律。教学过程:
今天我们复习有关数的整除的知识和分数、小数的基本性质。这部分知识的要领较多,它又是有关运算和解决这些概念,掌握有关概念的联系。复习数和整除
由“整除”这个基本概念引出有关概念。举例说说什么叫整除,什么叫约数和倍数。如24÷6=4
36÷12=3 24能被6整除
36能被12整除
思考:3÷2=1.5
6÷1.5=4这两个式是否表示整除关系?为什么?
总结整除的概念:
应注意两点:1)被除数和除数(不等于0)必须是整数:
2)商也是整数且没有余数。
进一步理解质数、合数、互质数、质因数、分解质因数的概念,以及它们之间的关系。
(把24、36分解质因数,通过分解来进一步理解上述概念)举例说说能被2、3、5整除数的特征,以及偶数与奇数。
通过上述分析过程,逐步形成下列板书:
教材81页上的“做一做” 复习分数、小数的基本性质
在括号里填上合适的数,并说出根据。
1/2=()/4=6/()=()/20
6/18=()/6=3/()=1/()在()里填“>”“<”或“=”
12.05()12.050
1.402()1.420
0.03()0.0300
0.08()0.8 举例说说小数点移动位置后,小数大小会发生什么变化? 完成81页下的“做一做” 巩固练习
完成教材练习十六中第1、2题。
写出能同时被2、3、5整除的最小两位数。完成教材练十六中第3、4、5、6题。
练习十六第7~12题。