第一篇:尺规三等分角不能的向量证明
定义:设S={Z0=1,Z1,...Zn}是n+1个复数,将
(1)Z0=1,Z1,...Zn叫做S-点;
(2)过两个不同的S-点的直线叫S-直线,以一个S-点为圆心、任意两个S-点之间的距离为半径的圆叫S-圆;
(3)由S-直线与S-直线、S-直线与S-圆、S-圆与S-圆相交的点也叫S-点。上面这个定义完全刻画了尺规作图过程,如果以P表示全体S-点的集合,那么P也就是从S={Z0=1,Z1,...Zn}出发通过尺规作图所得到的全部复数。
定理:设Z1,...Zn(n≥0)为n个复数。设F= Q(Z1,...Zn,Z1',...Zn'),(Z'代表共轭复数),那么,一个复数Z可由S={Z0=1,Z1,...Zn}作出的充要条件是 Z属于F(u1,...un)。其中u12属于F, ui2 属于F(u1,...ui-1)。换言之,Z含于F的一个2次根号扩张。
系: 设S={Z0=1,Z1,...Zn},F= Q(Z1,...Zn,Z1',...Zn'),Z为S-点,则 [ F(z):F] 是2的方幂。
以下证明三等分任意角不可能性,证明尺规作图不能三等分60度角: 证明:所谓给了60度角,相当于给了复数Z1=1/2+√3/2 i。从而S={Z0=1, Z1},F=Q(z1, z1')=Q(√-3)。如果能作出20度角,当然也能得到cos20,但是cos20满足方程 4x3-3x-1/2=0,即8x3-6x-1=0。由于8x3-6x-1在Q[x]中不可约,从而[Q(cos20):Q]=3,于是
6=[ Q(cos20, √-3):Q] = [F(cos20):Q]=[F(cos20):F] [F:Q]
由于[F:Q]=[Q(√-3):Q]=2,所以[F(cos20):F]=3,根据上面的系可知cos20不是S-点,从而20度不可能三等分。证毕
第二篇:浅谈尺规作图
浅谈尺规作图
所属县:广西百色市凌云县
单 位:广西百色市凌云县凌云中学
姓 名:唐奕清
内容提要:尺规作图,具有悠久的历史渊源、丰富的教学意义和现实内涵。但由于各种原因,尺规作图的教学存在着许多不利因素。我们需正视困难和问题,寻找解决问题的途径,提高尺规作图的教学质量。
关键词:尺规作图 教学意义 教学困难 提高途径
尺规作图,是指有限次使用无刻度的直尺和圆规来解决不同的几何作图问题。尺规作图有着悠久的历史,古希腊人最早提出了尺规作图。后经希腊数学家欧几里德在《几何原本》一书中以理论形式加以明确,并被人们一直所遵守,进而流传至今。
在我国,关于尺规作图的教学一直有着优良的教学传统。根据张景中院士的回忆,在1978年举行的全国中学生数学竞赛中,数学家苏步青就曾写信向主持命题工作的数学大师华罗庚建议,出一道有关尺规作图的题目作为考试试题。[1]这种重视尺规作图的意识,进一步在《全日制九年义务教育数学课程标准》中得到了体现。《标准》中明确要求学生能完成一些基本的尺规作图,并能根据一些基本作图探索一些问题;对于尺规作图的过程,要求能写出已知、求作和作法。
尺规作图不仅有悠久的历史渊源,也拥有着丰富的教学意义和现实内涵。首先,尺规作图能够丰富教学情境,培养学生的实践能力。众所周知,尺规作图是一种由学生实际执行的操作,具有不可替代的直观性,十分符合让学生自己动手解决问题的教学理念。在实际教学中,尺规作图是一种情境的创设,即要求在某种条件下,由学生自己动手解决问题。学生能作出一张符合要求的图形,是一种具有挑战性的创造活动,能够激发学生的创造性。因此,在几何教学中强调“观察、操作、推理”的今天,尺规作图理应得到足够的重视.[2] 其次,尺规作图能培养学生严谨的学习习惯、严密的逻辑思维和空间想象能力。尺规作图的一般步骤如下:①要求学生画出草图,假设图形已作出;②根据图形分析画法;③利用尺规严格操作并写出作法;④若要求证明,就给出证明;否则就写出结论。学生严格按照步骤进行作图的过程,正是一个猜想、操作、验证的过程,有助于学生养成严谨的学习习惯,培养学生严密的逻辑思维能力。[3]另外,尺规作图能有效的培养学生的空间想象能力。而空间想象能力正是立体几何教学中的重难点,它直接影响到学生学习立体几何的效果。从二维到三维的转变,是学生认识客观世界,改造世界的基础。尺规作图可以使学生积累相当的经验,能有效的培养学生的空间想象能力,是立体几何学习的关键所在。
第三,尺规作图既能展现数学美,又能培养学生的学习兴趣,具有良好的教学效果。数学美是一种特殊的美,是美的高级形式。著名哲学家沙利文曾说过:“优美的公式就如但丁神曲中的诗句,黎曼的几何与钢琴合奏曲一样优美。”在课堂教学中,向学生展示标准图形,能让学生充分感受数学美,启发思维,深化知识的理解。学生自己动手,尺规作图,则能提高审美认识,陶冶情操。
此外,尺规作图有着许多规范的作图语句,如:(l)过点X作某个平面的垂线,垂足为点X;(2)过点X作直线XX的平行线,交直线XX于点X;(3)在XX上截取XX=XX;(4)延长XX到点X,使XX=XX;(5)在线段XX上取中点X,连结XX等等。这些规范作图语句的使用,既可以避免在考试中出现不必要的失分,也能培养学生规范的书面表达能力和与他人合作交流的能力。因此,我们必须重视尺规作图的教学作用,正视有关尺规作图的教学问题。
然而,随着科学技术的发展、推广和工业生产的需要,各种各样精密的作图工具开始出现。这些工具的使用,虽然方便了人们的需要,但也使得一些人开始怀疑和轻视尺规作图的作用。目前,这种思想已经开始在课堂上漫延,一些教师出于各种原因,淡化了尺规作图,甚至于在课堂上根本不尺规作图。结合自身的教学实践,我个人认为出现这种现象有以下几个原因,并结合教学实际,提出一些解决问题的途径,与大家交流,仅供大家参考。
(1):正确认识教师的角色。
数学课程改革倡导以学生为本的教育理念,倡导数学教学是数学活动的教学,倡导平等交往、互动合作、共同发展的师生关系,这就要求教师能够正确认识自身角色。普通高中数学课程标准提出:教师不仅是课程的实施者,而且也是课程的研究、建设和资源开发的重要力量;教师不仅是知识的传授者,而且也是学生学习的引导者、组织者和合作者。[4]在日常的教学活动中,教师必须起到引导者和组织者的重要作用,引导学生养成尺规作图的良好习惯,组织专门的尺规作图教学,在教学活动的开展过程中与学生深入交流、合作,提高学生的尺规作图水平。
(2):高度认识尺规作图的作用。之所以出现教师上课“作草图”、学生解题“作草图”,甚至于在考试中也“作草图”的现象,对尺规作图作用的认识不够是根本原因。正所谓:天再高又怎样,踮起脚尖就更接近阳光,不管出现多少精密、复杂的制图仪器,尺规作图是掌握这些仪器的基础,在教学和社会实践活动中具有不可替代的作用。所以,在当前教材中,从小学、初中到高中数学教材,从平面作图到立体作图,都以专门的章节突显了尺规作图的特色和作用。因此,我们要高度认识到尺规作图的作用(前文已述,此处不再赘述),才能提高广大师生的尺规作图水平,达到数学新课程标准的要求。
(3):不舍本逐末,将尺规作图深入课堂,持之以恒。许多教师和学生认为:尺规作图很麻烦,需要一定的时间,对解题无甚帮助,影响到解题的速度。殊不知,这是本末倒置的做法。俄国数学家沙雷金就说过:未来的几何学习应当重视以下四个步骤,直观感知—操作确认—思辨论证—度量计算。但是中国的几何教学,把前两个步骤忽略了,变成纯粹的思辨论证,以及论证基础上的计算。缺乏直观,实际上就扼杀了几何。[5]这句话一语中的的点出了当前在几何教学中存在的问题。正确的做法是:在教学过程中,教师和学生都应当尺规作图,这样才可以增强学生的直观感知能力。而直观感知能力,是问题解决的第一步,也可为以后的作图和解题积累经验,提高尺规作图的速度和效率。此外,冰冻三尺,非一日之寒,培养学生的尺规作图能力不是一日这功。教师更不能“三天打渔,两天晒网”,而应当将尺规作图深入到几何教学的每一个环节,并且持之以恒,才能达到良好的培养尺规作图能力的效果。
(4):认真解决在尺规作图教学中遇到的问题。
在尺规作图的教学和使用过程中会遇到许多困难和障碍,正视这些问题,并有效地解决它,是提高尺规作图教学效果的关键。学生遇到的问题主要有心理障碍、操作障碍和语言障碍等等。解决这些问题的方法多样,许多专家和教师都各有妙招,大家可以查找相关文献去阅读,解决自己在具体教学中遇到的问题。但是有一个总的方针必须把握,那就是:首先应让学生明确作图题与证明题在本质、形式、思维依据、思维方式上的区别与统一,以减少论证思维对作图题的消极影响。其次,也是最重要的一条是根据学生逻辑推理思维往往要依赖直观、具体的形象的客观实际,要求学生在分析作图步骤之前,先按求作画出草图,并在草图中尽量标出已知的条件,使求作的图形形象而又具体地展现在学生面前,化抽象为直观。然后再根据已知条件,并以“两点定线”、“两线定点”的原则考虑作图的步骤。[6](5):引入多媒体教学方式,激发学习兴趣。虽然尺规作图仅限于使用无刻度的直尺和圆规,但这并不妨碍我们引入多媒体这一先进的教学手段。通过使用投影仪,教师可以使用和学生一样的直尺,圆规,进行作图。亲历亲为的教学,可以加强学生的直观感知,提高教学效果。此外,附带有尺规作图功能的作图软件,如:几何画板、authorware等软件都可轻松地展现详细、精确的制图过程。尺规作图的多媒体教学,既可节省教学时间,同时又可激发学生的学习兴趣。为以后学生使用更复杂、精密的制图仪器打好坚实的基础。当然,这要求教师们不断提高自身的综合素质,熟练掌握这些优秀、实用的尺规作图软件,与时俱进,否则会事倍功半,事得其反。
总之,尺规作图具有丰富的教学意义和现实意义,在几何教学中的意义越来越显著。广大师生应充分认识到尺规作图的重要内涵,正视在尺规作图教学中遇到的问题,解决它,从而不断提高教学质量,为学生的发展奠基。
参考文献
[1]张景中.新概念几何.中国少年儿童出版社.2002 [2]乐嗣康、崔雪芳、张奠宙.尺规作图教学的现代意义.中学数学月刊.2005年第12期
[3]刘芳.对尺规作图教学的三个思考.中学数学杂志.2009年第10期
[4]中华人民共和国教育部.普通高中数学课程标准(实验).北京:人民教育出版社.2003-4-1 [5]沙雷金[吕乃刚译].直观几何.上海:华东师范大学出版社.2001-1-1.[6]王孝波.尺规作图的学习障碍及教学对策.教学研究.1998年第1期
第三篇:用尺规作线段与角教案
4.6用尺规作线段与角
教学目标
1.会用直尺和圆规作一条线段等于已知线段. 2.会用直尺和圆规作一个角等于已知角. 3.会利用基本作图进行简单的尺规作图. 教学重难点
1.用尺规作线段(角)等于已知线段(角). 2.线段的和、差、倍、分的作法. 3.角的和、差、倍、分的作法. 教学过程
导入新课
在现实生活中,我们经常见到一些美丽的图案,如下列图案.
图案(1)、(2)、(3)是我们曾经画过的.想一想,这些图案是利用哪些作图工具画出的? 直尺、圆规和三角尺是常用的作图工具,利用这些工具可以作出很多的几何图形.在以后的作图中,我们运用最多的作图工具是没有刻度的直尺和圆规.我们把只用没有刻度的直尺和圆规的作图称为尺规作图.这一节我们就来学习用尺规作图——用尺规作线段与角.(板书课题)
推进新课
1.作一条线段等于已知线段
活动一:学生预习课本例1,教师按照下面作图步骤演示作图过程. 已知:线段AB.求作:线段A′B′,使A′B′=AB.作法:(1)作射线A′C′.(2)以点A′为圆心,以AB的长为半径画弧,交射线A′C′于点B′.A′B′就是所求的线段.
教师总结:今后的作图中,要注意作图步骤的书写.就现在来说,只要求大家了解尺规作图的步骤.
2.作一个角等于已知角
活动二:学生预习课本例2,教师按照例题的作图步骤演示作图过程. 已知:∠AOB(如图1).
求作:∠DEF,使∠DEF=∠AOB.图1 作法:
(1)在∠AOB上以点O为圆心,任意长为半径画弧,分别交OA,OB于点P,Q(如图1);(2)作射线EG,并以点E为圆心,OP长为半径画弧交EG于点D;(3)以点D为圆心,PQ长为半径画弧交第(2)步中所画弧于点F;(4)作射线EF(如图2).∠DEF即为所求作的角.
图2 教师总结:用尺规作图具有以下四个步骤:(1)已知,即:已知的条件是什么.
(2)求作,即:所要作的最终的结果是什么,满足什么条件.
(3)分析,即:分析如何作出所要求作的图形,一般不用写出来.(4)作法,这是作图的主要步骤,在这里要写清作图的过程.
巩固训练
1.课本练习
2.画一个钝角∠AOB,然后以O为顶点,以OA为一边,在角的内部画一条射线OC,使∠AOC=90°,正确的图形是().
3.下列尺规作图的语句错误的是(). A.作∠AOB,使∠AOB=3∠1 B.以点O为圆心作弧
C.以点A为圆心,线段a的长为半径作弧 D.作∠ABC,使∠ABC=∠1+∠2
本课小结
通过这节课的学习活动你有哪些收获?
本节课我们主要学习了用尺规作一条线段等于已知线段和作一个角等于已知角.正式呈现了尺规作图的步骤,写出了“已知”“求作”,且按照程序化的方式写出了“作法”.大家在今后的作图中,要按这些步骤进行.要特别注意的是:作图时一定要保留作图痕迹.
尺规作图与“几何作图三大难题”
尺规作图是指只用圆规和没有刻度的直尺来作图.由于对作图工具的限制,使得一些貌似简单的几何作图问题难以解决.利用尺规可以将任意角二等分,那么能利用尺规将一个任意角三等分吗?你能作出一个立方体的边,使该立方体的体积为给定立方体的2倍吗?利用尺规我们能作立方体和圆,那你能不能作一个正方形使其与给定的圆的面积相等?这三个由尺规作图引出的问题,便是数学史上著名的几何三大问题.它是公元前5世纪首次由古希腊雅典城内一个包括各方面学者的智者(巧辩)学派提出的.这三个作图题一般分别称为:1.三等分角;2.倍立方体;3.化圆为方.
第四篇:尺规作图专题详尽归纳
考点名称:尺规作图
【学习目标】
1.了解什么是尺规作图.
2.学会用尺规作图法完成下列五种基本作图:(1)画一条线段等于已知线段;(2)画一个角等于已知角;(3)画线段的垂直平分线;(4)过已知点画已知直线的垂线;(5)画角平分线.
3.了解五种基本作图的理由.
4.学会使用精练、准确的作图语言叙述画图过程. 5.学会利用基本作图画三角形等较简单的图形. 6.通过画图认识图形的本质,体会图形的内在美.
【基础知识精讲】 1.尺规作图:
定义:限定只用直尺和圆规来完成的画图,称为尺规作图.
注意:这里所指的直尺是没有刻度的直尺,由于免去了度量,因此,用尺规作图法画出的图形的精确度更高,它在工程绘图等领域应用比较广泛.
步骤:(1)根据给出的条件和求作的图形,写出已知和求作部分;(2)分析作图的方法和过程;(3)用直尺和圆规进行作图;(4)写出作法步骤,即作法。(根据题目要求来定是否需要写出作法)
2.尺规作图中的最基本、最常用的作图称为基本作图.任何尺规作图的步骤均可分解为以下五种.3.基本作图共有五种:
(1)画一条线段等于已知线段. 如图24-4-1,已知线段DE.
求作:一条线段等于已知线段. 作法:①先画射线AB.
②然后用圆规在射线AB上截取AC=MN. 线段AC就是所要作的线段.(2)作一个角等于已知角. 如图24-4-2,已知∠AOB.
求作:∠A′O′B′,使∠A′O′B′=∠AOB. 作法:①作射线O′A′;
②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D. ③以点O′为圆心,以OC长为半径作弧,交O′A′于C′. ④以点C′为圆心,以CD为半径作弧,交前弧于D′. ⑤经过点D′作射线O′B′,∠A′O′B′就是所求的角.(3)作线段的垂直平分线. 如图24-4-3,已知线段AB.
求作:线段AB的垂直平分线.
作法:①分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于点C和D.
②作直线CD.
直线CD就是线段AB的垂直平分线.
注意:直线CD与线段AB的交点,就是AB的中点.(4)经过一点作已知直线的垂线.
a.经过已知直线上的一点作这条直线的垂线,如图24-4-4.
已知:直线AB和AB上一点C,求作:AB的垂线,使它经过点C. 作法:作平角ACB的平分线CF.
直线CF就是所求的垂线,如图24-4-4. b.经过已知直线外一点作这条直线的垂线.
如图24-4-5,已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.
作法:①任意取一点K,使K和C在AB的两旁.
②以C为圆心,CK长为半径作弧,交AB于点D和E.
③分别以D和E为圆心,大于的长为半径作弧,两弧交于点F.
④作直线CF.
直线CF就是所求的垂线. 注意:经过已知直线上的一点,作这条直线的垂线转化成画线段垂直平分线的方法解决.(5)平分已知角.
如图24-4-6,已知∠AOB.
求作:射线OC,使∠AOC=∠BOC.
作法:①在OA和OB上,分别截取OD、OE.
②分别以D、E为圆心,大于的长为半径作弧,在∠AOB内,两弧交于点C.
③作射线OC.
OC就是所求的射线.
注意:以上五种基本作图是尺规作图的基础,一些复杂的尺规作图,都是由基本作图组成的,同学扪要高度重视,努力把这部分内容学习好.
通过这一节的学习,同学们要掌握下列作图语言:(1)过点×和点×画射线××,或画射线××.(2)在射线××上截取××=××.(3)以点×为圆心,××为半径画弧.
(4)以点×为圆心,××为半径画弧,交××于点×.
(5)分别以点×,点×为圆心,以××,××为半径作弧,两弧相交于点×.(6)在射线××上依次截取××=××=××.
(7)在∠×××的外部或内部画∠×××=∠×××. 注意:学过基本作图后,在作较复杂图时,属于基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了.
如:(1)画线段××=××.(2)画∠×××=∠×××.
(3)画××平分∠×××,或画∠×××的角平分线.(4)过点×画××⊥××,垂足为点×.(5)作线段××的垂直平分线××,等等. 但要注意保留全部的作图痕迹,包括基本作图的操作程序,不能因为作法的叙述省略而作图就不按程序操作,只有保留作图痕迹,才能反映出作图的操作是否合理.
【经典例题精讲】
例1 已知两边及其夹角,求作三角形. 如图24-4-7,已知:∠α,线段a、b,求作:△ABC,使∠A=∠α,AB=a,AC=b.
作法:①作∠MAN=∠α.
②在射线AM、AN上分别作线段AB=a,AC=b. ③连结BC.
如图24-4-8,△ABC即为所求作的三角形.
注意:一般几何作图题,应有下面几个步骤:已知、求作、作法,比较复杂的作图题,在作图之前可根据需要作一些分析.
例2 如图24-4-9,已知底边a,底边上的高h,求作等腰三角形.
已知线段a、h.求作:△ABC,使AB=AC,且BC=a,高AD=h.
分析:可先作出底边BC,根据等腰三角形的三线合一的性质,可再作出BC的垂直平分线,从而作出BC边上的高AD,分别连结AB和AC,即可作出等腰△ABC来.
作法:(1)作线段BC=a.
(2)作线段BC的垂直平分线MN,MN与BC交于点D.(3)在MN上截取DA,使DA=h.(4)连结AB、AC.
如图24-4-10,△ABC即为所求的等腰三角形.
例3 已知三角形的一边及这边上的中线和高,作三角形. 如图24-4-11,已知线段a,m,h(m>h).
求作:△ABC使它的一边等于a,这边上的中线和高分别等于m和h(m>h).
分析:如图24-4-12,假定△ABC已作出,其中BC=a,中线AD=m,高AE=h,在△AED中AD=m,AE=h,∠AED=90°,因此这个Rt△AED可以作出来(△AED为奠基三角形).当Rt△AED作出后,由可得到. 的关系可作出点B和点C,于是△ABC即
作法:(1)作△AED,使∠AED=90°,AE=h,AD=m.
(2)延长ED到B,使.
(3)在DE或BE的延长线上取.
(4)连结AB、AC.
则△ABC即为所求作的三角形.
注意:因为三角形中,一边上的高不能大于这边上的中线,所以如果h>m,作图题无解;若m=h,则作出的图形为等腰三角形.
例4 如图24-4-13,已知线段a.
求作:菱形ABCD,使其半周长为a,两邻角之比为1∶2.
分析:因为菱形四边相等,“半周长为a”就是菱形边长为,为此首先要将线段a等分,又因为菱形对边平行,则同旁内角互补,由“邻角之比为1∶2”可知,菱形较小内角为60°,则菱形较短对角线将菱形分成两个全等的等边三角形.所以作图时只要作出两个有公共边的等边三角形,则得到的四边形即为所求的菱形ABCD.
作法:(1)作线段a的垂直平分线,等分线段a.
(2)作线段AC,使.
(3)分别以A、C为圆心,为半径,在AC的两侧画弧,两弧分别交于B,D.
(4)分别连结AB、BC、CD、DA得到四边形ABCD,则四边形ABCD为所求作的菱形(如图24-4-14).
注意:这种通过先画三角形,然后再画出全部图形的方法即为“三角形奠基法”.
例5 如图24-4-15,已知∠AOB和C、D两点.
求作一点P,使PC=PD,且使点P到∠AOB的两边OA、OB的距离相等.
分析:要使PC=PD,则点P在CD的垂直平分线上,要使点P到∠AOB的两边距离相等,则P应在∠AOB的角平分线上,那么满足题设的P点就是垂直平分线与角平分线的交点了.
作法:(1)连结CD.
(2)作线段CD的中垂线l.
(3)作∠AOB的角平分线OM,交l于点P,P点为所求.
注意:这类定点问题应需确定两线,两直线的交点即为定点,当然这两直线应分别满足题目的不同要求.
【中考考点】
例6(2000·安徽省)如图24-4-16,直线
表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()
A.一处 B.二处 C.三处 D.四处 分析:到直线
距离相等的点在相交所构成的角的平分线上,可利用作角平分线的方法找到这些点.
解:分别作
相交所构成的角平分线,共可作出六条,三条角平分线相交的交点共有四个.
答案:D.
注意:本题应用了角平分线的性质,在具体作图时,不可只作出位于中心位置的一处,而要全面考虑其他满足条件的点.
例7(2002·陕西省)如图24-4-17,△ABC是一块直角三角形余料,∠C=90°,工人师傅要把它加工成—个正方形零件,使C为正方形的—个顶点,其他三个顶点分别在AB、BC、AC边上.
(1)试协助工人师傅用尺规画出裁割线(不写作法,保留作图痕迹);(2)工人师傅测得AC=80 cm,BC=120cm,请帮助工人师傅算出按(1)题所画裁割线加工成的正方形零件的边长.
解:(1)作∠ACB的平分线与AB的交点E即为正方形—顶点,作CE线段的中垂线HK与AC、BC的交点F、D即为所作正方形另两个顶点,如图24-4-17.
(2)设这个正方形零件的边长为x cm,∵DE∥AC,∴,∴.
∴x=48.
答:这个正方形零件的边长为48cm.
注意:本题是几何作图和几何计算相结合题目,要求读者对基本作图务必掌握,同时对作出图形的性质要清楚.
例8(2002·山西省)如图24-4-18①,有一破残的轮片(不小于半个轮),现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计两种方案,确定这个圆形零件的半径.
分析:欲确定这个圆形零件的半径,可以借助三角板,T形尺或尺规作图均可,图②中是这个零件的半径,图③中OB是这个零件半径. 解:如图24-4-18②③所示.
【常见错误分析】
例9 如图24-4-19,已知线段a、b、h.
求作△ABC,使BC=a,AC=b,BC边上的高AD=h.
并回答问题,你作出的三角形唯一吗?从中你可以得到什么结论呢? 错解:(1)作法:①作Rt△ADC,使AD=h,AC=b. ②在直线CD上截取CB=a.
如图24-4-20,则△ABC就是所求作的三角形.
(2)作出的三角形唯一.
(3)得出结论:有两边及一边上的高对应相等的两三角形全等.
误区分析:本题错解在于忽略了三角形的高可能在三角形内部也可能在三角形的外部. 正解:如图24-4-21,作法:①作Rt△ADC,使AD=h,AC=b. ②在直线CD上截取CB=a(在点C的两侧). 则△ABC,△AB′C都是所求作三角形.(2)作出的三角形不唯一.
(3)得出结论有两边及—边上的高对应相等的两三角形不一定全等. 注意:与三角形的高有关的题目应慎之又慎.
【学习方法指导】
学习基本作图,主要是运用观察法,通过具体的操作,了解各种基本作图的步骤,掌握作图语言.
【规律总结】
画复杂的图形时,如一时找不到作法,—般是先画出一个符合所设条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.有时,也可以根据已知条件和基本作图,先作局部三角形,再以此为基础,根据有关条件画出其余部分,从而完成全图,这种方法称为三角形奠基法.
拓展: 1.利用基本作图作三角形:(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.
2.与圆有关的尺规作图 :
(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.(3)作圆的内接正方形和正六边形 .
附件:尺规作图简史:
“规”就是圆规,是用来画圆的工具,在我国古代甲骨文中就有“规”这个字.“矩”就像现在木工使用的角尺,由长短两尺相交成直角而成,两者间用木杠连接以使其牢固,其中短尺叫勾,长尺叫股.矩的使用是我国古代的一个发明,山东历城武梁祠石室造像中就有“伏羲氏手执矩,女娲氏手执规”之图形.矩不仅可以画直线、直角,加上刻度可以测量,还可以代替圆规.甲骨文中也有矩字,这可追溯到大禹治水(公元前2000年)前.《史记》卷二记载大禹治水时“左准绳,右规矩”.赵爽注《周髀算经》中有“禹治洪水,……望山川之形,定高下之势,……乃勾股之所由生也.”意即禹治洪水,要先测量地势的高低,就必定要用勾股的道理.这也说明矩起源于很远的中国古代.春秋时代也有不少著作涉及规矩的论述,《墨子》卷七中说“轮匠(制造车子的工匠)执其规矩,以度天下之方圆.”《孟子》卷四中说“离娄(传说中目力非常强的人)之明,公输子(即鲁班,传说木匠的祖师)之巧,不以规矩,不能成方圆.”可见,在春秋战国时期,规矩已被广泛地用于作图、制作器具了.由于我国古代的矩上已有刻度,因此使用范围较广,具有较大的实用性.古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值.因此,在作图中对规、矩的使用方法加以很多限制,提出了尺规作图问题.所谓尺规作图,就是只有限次地使用没有刻度的直尺和圆规进行作图.古希腊的安那萨哥拉斯首先提出作图要有尺寸限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他有关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,因此他很自然地想到要有限次地使用尺规解决问题.后来以理论形式具体明确这个规定的是欧几里德的《几何原本》.由于《几何原本》的巨大影响,希腊人所崇尚的尺规作图也一直被遵守并流传下来.由于对尺规作图的限制,使得一些貌似简单的几何作图问题无法解决.最著名的是被称为几何三大问题的三个古希腊古典作图难题:立方倍积问题、三等分任意角问题和化圆为方问题.当时很多有名的希腊数学家,都曾着力于研究这三大问题,虽然借助于其他工具或曲线,这三大难题都可以解决,但由于尺规作图的限制,却一直未能如愿以偿.以后两千年来,无数数学家为之绞尽脑汁,都以失败而告终.直到1637年笛卡尔创立了解析几何,关于尺规作图的可能性问题才有了准则.到了1837年万芝尔首先证明立方倍积问题和三等分任意角问题都属于尺规作图不可能问题.1882年林德曼证明了π是无理数,化圆为方问题不可能用尺规作图解决,这才结束了历时两千年的数学难题公案.
第五篇:尺规作图知识归纳
考点名称:尺规作图
尺规作图:是指限定用没有刻度的直尺和圆规来完成的画图。一把没有刻度的直尺看似不能做什么,画一个圆又不知道它的半径,画线段又没有精确的长度。
其实尺规作图的用处很大,比如单用圆规找出一个圆的圆心,量度一个角的角度,等等。运用尺规作图可以画出与某个角相等的角,十分方便。尺规作图的中基本作图: 作一条线段等于已知线段; 作一个角等于已知角; 作线段的垂直平分线; 作已知角的角平分线; 过一点作已知直线的垂线。还有:
已知一角、一边做等腰三角形 已知两角、一边做三角形 已知一角、两边做三角形 依据公理:
还可以根据已知条件作三角形,一般分为已知三边作三角形,已知两边及夹角作三角形,已知两角及夹边作三角形等,作图的依据是全等三角形的判定定理:SSS,SAS,ASA等。注意:
保留全部的作图痕迹,包括基本作图的操作程序,只有保留作图痕迹,才能反映出作图的操作是否合理。
尺规作图方法:
任何尺规作图的步骤均可分解为以下五种方法: ·通过两个已知点可作一直线。·已知圆心和半径可作一个圆。·若两已知直线相交,可求其交点。·若已知直线和一已知圆相交,可求其交点。·若两已知圆相交,可求其交点。
【学习目标】
1.了解什么是尺规作图.
2.学会用尺规作图法完成下列五种基本作图:(1)画一条线段等于已知线段;(2)画一个角等于已知角;(3)画线段的垂直平分线;(4)过已知点画已知直线的垂线;(5)画角平分线.
3.了解五种基本作图的理由.
4.学会使用精练、准确的作图语言叙述画图过程. 5.学会利用基本作图画三角形等较简单的图形. 6.通过画图认识图形的本质,体会图形的内在美.
【基础知识精讲】 1.尺规作图:
限定只用直尺和圆规来完成的画图,称为尺规作图.
注意:这里所指的直尺是没有刻度的直尺,由于免去了度量,因此,用尺规作图法画出的图形的精确度更高,它在工程绘图等领域应用比较广泛.
2.尺规作图中的最基本、最常用的作图称为基本作图. 3.基本作图共有五种:
(1)画一条线段等于已知线段. 如图24-4-1,已知线段DE.
求作:一条线段等于已知线段. 作法:①先画射线AB.
②然后用圆规在射线AB上截取AC=MN. 线段AC就是所要作的线段.(2)作一个角等于已知角. 如图24-4-2,已知∠AOB.
求作:∠A′O′B′,使∠A′O′B′=∠AOB. 作法:①作射线O′A′;
②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D. ③以点O′为圆心,以OC长为半径作弧,交O′A′于C′. ④以点C′为圆心,以CD为半径作弧,交前弧于D′. ⑤经过点D′作射线O′B′,∠A′O′B′就是所求的角.(3)作线段的垂直平分线. 如图24-4-3,已知线段AB.
求作:线段AB的垂直平分线.
作法:①分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于点C和D.
②作直线CD.
直线CD就是线段AB的垂直平分线.
注意:直线CD与线段AB的交点,就是AB的中点.(4)经过一点作已知直线的垂线.
a.经过已知直线上的一点作这条直线的垂线,如图24-4-4.
已知:直线AB和AB上一点C,求作:AB的垂线,使它经过点C. 作法:作平角ACB的平分线CF.
直线CF就是所求的垂线,如图24-4-4. b.经过已知直线外一点作这条直线的垂线.
如图24-4-5,已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.
作法:①任意取一点K,使K和C在AB的两旁.
②以C为圆心,CK长为半径作弧,交AB于点D和E.
③分别以D和E为圆心,大于的长为半径作弧,两弧交于点F.
④作直线CF.
直线CF就是所求的垂线. 注意:经过已知直线上的一点,作这条直线的垂线转化成画线段垂直平分线的方法解决.(5)平分已知角.
如图24-4-6,已知∠AOB.
求作:射线OC,使∠AOC=∠BOC.
作法:①在OA和OB上,分别截取OD、OE.
②分别以D、E为圆心,大于的长为半径作弧,在∠AOB内,两弧交于点C. ③作射线OC.
OC就是所求的射线.
注意:以上五种基本作图是尺规作图的基础,一些复杂的尺规作图,都是由基本作图组成的,同学扪要高度重视,努力把这部分内容学习好.
通过这一节的学习,同学们要掌握下列作图语言:(1)过点×和点×画射线××,或画射线××.(2)在射线××上截取××=××.(3)以点×为圆心,××为半径画弧.
(4)以点×为圆心,××为半径画弧,交××于点×.
(5)分别以点×,点×为圆心,以××,××为半径作弧,两弧相交于点×.(6)在射线××上依次截取××=××=××.
(7)在∠×××的外部或内部画∠×××=∠×××.
注意:学过基本作图后,在作较复杂图时,属于基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了.
如:(1)画线段××=××.(2)画∠×××=∠×××.
(3)画××平分∠×××,或画∠×××的角平分线.(4)过点×画××⊥××,垂足为点×.(5)作线段××的垂直平分线××,等等. 但要注意保留全部的作图痕迹,包括基本作图的操作程序,不能因为作法的叙述省略而作图就不按程序操作,只有保留作图痕迹,才能反映出作图的操作是否合理.
【经典例题精讲】
例1 已知两边及其夹角,求作三角形. 如图24-4-7,已知:∠α,线段a、b,求作:△ABC,使∠A=∠α,AB=a,AC=b.
作法:①作∠MAN=∠α.
②在射线AM、AN上分别作线段AB=a,AC=b. ③连结BC.
如图24-4-8,△ABC即为所求作的三角形.
注意:一般几何作图题,应有下面几个步骤:已知、求作、作法,比较复杂的作图题,在作图之前可根据需要作一些分析.
例2 如图24-4-9,已知底边a,底边上的高h,求作等腰三角形.
已知线段a、h.求作:△ABC,使AB=AC,且BC=a,高AD=h.
分析:可先作出底边BC,根据等腰三角形的三线合一的性质,可再作出BC的垂直平分线,从而作出BC边上的高AD,分别连结AB和AC,即可作出等腰△ABC来.
作法:(1)作线段BC=a.
(2)作线段BC的垂直平分线MN,MN与BC交于点D.(3)在MN上截取DA,使DA=h.(4)连结AB、AC.
如图24-4-10,△ABC即为所求的等腰三角形.
例3 已知三角形的一边及这边上的中线和高,作三角形. 如图24-4-11,已知线段a,m,h(m>h).
求作:△ABC使它的一边等于a,这边上的中线和高分别等于m和h(m>h).
分析:如图24-4-12,假定△ABC已作出,其中BC=a,中线AD=m,高AE=h,在△AED中AD=m,AE=h,∠AED=90°,因此这个Rt△AED可以作出来(△AED为奠基三角形).当Rt△AED作出后,由可得到. 的关系可作出点B和点C,于是△ABC即
作法:(1)作△AED,使∠AED=90°,AE=h,AD=m.(2)延长ED到B,使.
(3)在DE或BE的延长线上取.
(4)连结AB、AC.
则△ABC即为所求作的三角形.
注意:因为三角形中,一边上的高不能大于这边上的中线,所以如果h>m,作图题无解;若m=h,则作出的图形为等腰三角形.
例4 如图24-4-13,已知线段a.
求作:菱形ABCD,使其半周长为a,两邻角之比为1∶2.
分析:因为菱形四边相等,“半周长为a”就是菱形边长为,为此首先要将线段a等分,又因为菱形对边平行,则同旁内角互补,由“邻角之比为1∶2”可知,菱形较小内角为60°,则菱形较短对角线将菱形分成两个全等的等边三角形.所以作图时只要作出两个有公共边的等边三角形,则得到的四边形即为所求的菱形ABCD.
作法:(1)作线段a的垂直平分线,等分线段a.
(2)作线段AC,使.
(3)分别以A、C为圆心,为半径,在AC的两侧画弧,两弧分别交于B,D.
(4)分别连结AB、BC、CD、DA得到四边形ABCD,则四边形ABCD为所求作的菱形(如图24-4-14).
注意:这种通过先画三角形,然后再画出全部图形的方法即为“三角形奠基法”.
例5 如图24-4-15,已知∠AOB和C、D两点.
求作一点P,使PC=PD,且使点P到∠AOB的两边OA、OB的距离相等.
分析:要使PC=PD,则点P在CD的垂直平分线上,要使点P到∠AOB的两边距离相等,则P应在∠AOB的角平分线上,那么满足题设的P点就是垂直平分线与角平分线的交点了.
作法:
(1)连结CD.
(2)作线段CD的中垂线l.
(3)作∠AOB的角平分线OM,交l于点P,P点为所求.
注意:这类定点问题应需确定两线,两直线的交点即为定点,当然这两直线应分别满足题目的不同要求.
【中考考点】
例6(2000·安徽省)如图24-4-16,直线
表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()
A.一处 B.二处 C.三处 D.四处 分析:到直线
距离相等的点在相交所构成的角的平分线上,可利用作角平分线的方法找到这些点.
解:分别作
相交所构成的角平分线,共可作出六条,三条角平分线相交的交点共有四个.
答案:D.
注意:本题应用了角平分线的性质,在具体作图时,不可只作出位于中心位置的一处,而要全面考虑其他满足条件的点.
例7(2002·陕西省)如图24-4-17,△ABC是一块直角三角形余料,∠C=90°,工人师傅要把它加工成—个正方形零件,使C为正方形的—个顶点,其他三个顶点分别在AB、BC、AC边上.
(1)试协助工人师傅用尺规画出裁割线(不写作法,保留作图痕迹);
(2)工人师傅测得AC=80 cm,BC=120cm,请帮助工人师傅算出按(1)题所画裁割线加工成的正方形零件的边长.
解:(1)作∠ACB的平分线与AB的交点E即为正方形—顶点,作CE线段的中垂线HK与AC、BC的交点F、D即为所作正方形另两个顶点,如图24-4-17.
(2)设这个正方形零件的边长为x cm,∵DE∥AC,∴,∴.
∴x=48.
答:这个正方形零件的边长为48cm.
注意:本题是几何作图和几何计算相结合题目,要求读者对基本作图务必掌握,同时对作出图形的性质要清楚.
例8(2002·山西省)如图24-4-18①,有一破残的轮片(不小于半个轮),现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计两种方案,确定这个圆形零件的半径.
分析:欲确定这个圆形零件的半径,可以借助三角板,T形尺或尺规作图均可,图②中是这个零件的半径,图③中OB是这个零件半径. 解:如图24-4-18②③所示.
【常见错误分析】
例9 如图24-4-19,已知线段a、b、h.
求作△ABC,使BC=a,AC=b,BC边上的高AD=h.
并回答问题,你作出的三角形唯一吗?从中你可以得到什么结论呢? 错解:(1)作法:①作Rt△ADC,使AD=h,AC=b. ②在直线CD上截取CB=a.
如图24-4-20,则△ABC就是所求作的三角形.
(2)作出的三角形唯一.
(3)得出结论:有两边及一边上的高对应相等的两三角形全等.
误区分析:本题错解在于忽略了三角形的高可能在三角形内部也可能在三角形的外部. 正解:如图24-4-21,作法:①作Rt△ADC,使AD=h,AC=b. ②在直线CD上截取CB=a(在点C的两侧). 则△ABC,△AB′C都是所求作三角形.(2)作出的三角形不唯一.
(3)得出结论有两边及—边上的高对应相等的两三角形不一定全等. 注意:与三角形的高有关的题目应慎之又慎.
【学习方法指导】 学习本单元基本作图,主要是运用观察法,通过具体的操作,了解各种基本作图的步骤,掌握作图语言.
【规律总结】
画复杂的图形时,如一时找不到作法,—般是先画出一个符合所设条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.有时,也可以根据已知条件和基本作图,先作局部三角形,再以此为基础,根据有关条件画出其余部分,从而完成全图,这种方法称为三角形奠基法.
考点一 尺规作图 1.定义:只用没有刻度的直尺和圆规作图叫做尺规作图. 2.步骤:(1)根据给出的条件和求作的图形,写出已知和求作部分;(2)分析作图的方法和过程;(3)用直尺和圆规进行作图;(4)写出作法步骤,即作法. 考点二 五种基本作图 1.作一线段等于已知线段; 2 .作一个角等于已知角; 3.作已知角的平分线; 4.过一点作已知直线的垂线; 5.作已知线段的垂直平分线. 考点三 基本作图的应用 1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;
(5)已知一直角边和斜边作直角三角形. 2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆
(即三角形的外接圆).(2)作三角形的内切圆.
尺规作图简史:
“规”就是圆规,是用来画圆的工具,在我国古代甲骨文中就有“规”这个字.“矩”就像现在木工使用的角尺,由长短两尺相交成直角而成,两者间用木杠连接以使其牢固,其中短尺叫勾,长尺叫股.矩的使用是我国古代的一个发明,山东历城武梁祠石室造像中就有“伏羲氏手执矩,女娲氏手执规”之图形.矩不仅可以画直线、直角,加上刻度可以测量,还可以代替圆规.甲骨文中也有矩字,这可追溯到大禹治水(公元前2000年)前.《史记》卷二记载大禹治水时“左准绳,右规矩”.赵爽注《周髀算经》中有“禹治洪水,……望山川之形,定高下之势,……乃勾股之所由生也.”意即禹治洪水,要先测量地势的高低,就必定要用勾股的道理.这也说明矩起源于很远的中国古代.春秋时代也有不少著作涉及规矩的论述,《墨子》卷七中说“轮匠(制造车子的工匠)执其规矩,以度天下之方圆.”《孟子》卷四中说“离娄(传说中目力非常强的人)之明,公输子(即鲁班,传说木匠的祖师)之巧,不以规矩,不能成方圆.”可见,在春秋战国时期,规矩已被广泛地用于作图、制作器具了.由于我国古代的矩上已有刻度,因此使用范围较广,具有较大的实用性.古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值.因此,在作图中对规、矩的使用方法加以很多限制,提出了尺规作图问题.所谓尺规作图,就是只有限次地使用没有刻度的直尺和圆规进行作图.古希腊的安那萨哥拉斯首先提出作图要有尺寸限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他有关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,因此他很自然地想到要有限次地使用尺规解决问题.后来以理论形式具体明确这个规定的是欧几里德的《几何原本》.由于《几何原本》的巨大影响,希腊人所崇尚的尺规作图也一直被遵守并流传下来.由于对尺规作图的限制,使得一些貌似简单的几何作图问题无法解决.最著名的是被称为几何三大问题的三个古希腊古典作图难题:立方倍积问题、三等分任意角问题和化圆为方问题.当时很多有名的希腊数学家,都曾着力于研究这三大问题,虽然借助于其他工具或曲线,这三大难题都可以解决,但由于尺规作图的限制,却一直未能如愿以偿.以后两千年来,无数数学家为之绞尽脑汁,都以失败而告终.直到1637年笛卡尔创立了解析几何,关于尺规作图的可能性问题才有了准则.到了1837年万芝尔首先证明立方倍积问题和三等分任意角问题都属于尺规作图不可能问题.1882年林德曼证明了π是无理数,化圆为方问题不可能用尺规作图解决,这才结束了历时两千年的数学难题公案.