毕业论文附录

时间:2019-05-13 14:28:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《毕业论文附录》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《毕业论文附录》。

第一篇:毕业论文附录

太阳能热水器营销环境分析

目前,我国热水器市场是三分天下,其一是电热水器,占据市场50%左右;其二是燃气热水器,占据着市场25—30%,但近年来呈下降趋势;其三是太阳能热水器,占据着市场的20—25%的份额,随着国家对可再生能源的重视,太阳能热水器市场正在不断的上升。但随着太阳能热水器行业竞争的加剧,“洗牌”已成为了太阳能热水器行业发展的必然,从无序到有序,从分散走向集中,太阳能热水器行业正日趋成熟。面对未来竞争激烈的太阳能市场,现有的太阳能企业的营销又该如何应对呢?

一、行业分析

随着国家对太阳能等环保、节能行业发展的大力支持,消费者对太阳能产品的认知度不断提高,太阳能行业遇到了千载难逢的发展良机。在“财富效应”的带动下,国内众多企业开始大举进入太阳能产业,使得太阳能产品“品牌”越来越多,竞争也日益激烈,行业的发发展面临瓶径,行业发展的瓶颈严重阻碍了太阳能热水器的产业健康高速发展,解决这些瓶颈问题是当务之急。要解决太阳能热水器产业存在的问题,需要行业内有影响力的企业联合起来,引领行业的发展方向。太阳能热水器安装困难主要是受自身产品特性的制约,可以试着改变策略,由以消费者个体为销售单位转向以消费群体为销售单位,例如与地产商合作进行小区整体安装。

二、政策分析

从2006年1月1日起开始实施的《可再生能源促进法》,为普通市民使用太阳能热水器扫清了一定的障碍,该法明确规定,任何单位和个人不能限制使用合格的太阳能产品。当然,在和谐社会的建设中,还有许多地方规章制度都在鼓励使用太阳能,如一些地区在新农村的建设中为安装太阳能提供补贴。促进推广应用太阳能热水器产业的发展有赖政策引导,一方面要制定标准,如政府职能部门要强制推行建筑节能标准规范,施工图审查应按建筑节能强制性条文进行,并指导行业协会制定太阳能热水器与建筑紧密结合的设计规范。特别对于政府性资金投资的工程项目,如体育场馆、医院、学校等,当需要供应热水时,在项目审批时应明确使用太阳能热水器节能技术。对于有研发能力,有专利技术和独立知识产权的企业,要给予贷款上的支持;培育一批大型骨干企业。另一方面要搭台,如通过举行太阳能热水器展览、具备相关的行业论坛等来为企业和商家、消费者三者搭建一个好的平台,培育和鼓励引导太阳能热水器的购买与应用。

三、市场分析

从市场类型去分析,工程市场、农村市场、城市社区市场等是三大主要战场:

对于小区,由于太阳能热水器的购买有一定的时机性,在搬入新家的时候是购买太阳能热水器的最佳时机,有很多潜在消费者嫌麻烦也不愿意专门前往卖场选购。这就启迪我们应

该把目光瞄准这些小区、新开发的楼盘,相信很多人愿意在搬入新家时安装一台太阳能热水器。具体可印做一些单张、小册子,给潜在消费者散发。同时,在当地的一些地产专业杂志上刊登广告,或者同开发商、物业等进行合作,在广告传播、捆绑销售等方面锁定购楼者这一潜在消费人群。

对于工程市场,如酒店、单位集体宿舍等,应该采取试点营销,让成功的案例告诉消费者,通过选一个示范点,免费或收取一点成本,为该区域消费者全部安装太阳能热水器。最后通过社会、媒体的报道,让这一成功的试点案例消费者,这样消费者更容易接受和相信。如在三四线市场围绕乡镇开展样板小区建设活动,使用后村民觉得太阳热水器安全、环保、节约能源、使用方便,其口碑的宣传将进一步促进太阳能热水器的销售与推广。

对于农村市场,由于各大中城市里太阳能品牌的市场争夺战已趋于白热化,许多企业纷纷将战场转移到农村,当前,广大农村消费者对太阳能热水器已经有了相当的认识,对产品的需求也有了明显的增多,对太阳能热水器的要求是从无到有,从小到大,对产品的外观、容量、品质、功能及服务的要求也在不断的进步,随着乡镇居民消费水平和消费意识的提高,农村太阳能市场即将进入一个快速发展时期。在农村市场的开拓中,要开发了适合农村消费者的太阳能热水器,如使用方便,维修方便等;要结合新农村建设,善于“借道”和整合资源,与“三下乡”结合起来,开展“农村屋顶计划”等,让太阳能进入广大的农村家庭。

四、技术分析

从胆到管,从色彩到款式,太阳能的技术在不断演进,“变频”、“变容”、“抗寒”、“锁热”、“健康”等概念不断推陈出新,作为太阳能热水器企业,产品通过技术创新是赢取市场的关键,要以不断的技术创新提升品牌形象,如荣事达太阳能与中国科技大学联合组建产学研一体化的研究实验室,主攻太阳能光伏产品与太阳能薄膜电池产品;与教育部光电系统工程研究中心合作,设立安徽太阳能科研中心,共同研发太阳能光电一体化热水器,如皇明通过技术研发开发出不同纬度与区位的太阳能,从发展趋势去看,原装一体将是未来发展的趋势与潮流。与此同时,太阳能热水器的服务也成了关键,在太阳能热水器行业,不仅要售后服务好,而且要售后跟进服务更好,否则将会影响太阳能热水器行业的健康发展。现在好多企业只是意识到太阳能热水器安装负责,对售前宣传、售中安装比较重视,而对售后跟进机会没做什么工作,他们认为,只有东西坏了才有售后服务。事实上,太阳能热水器应该进行一些定期的检修或回访等活动,提供快捷方便的服务,并塑造服务品牌。

总之,作为具有广大发展空间的太阳能热水器市场,未来的竞争肯定更加激烈,区域品牌、外来的品牌、替代品等将会决战不同区域市场,作为太阳能热水器企业,应该在激烈的环境中突围,通过知己知彼的分析,借力借势,整合资源,系统策划,塑造差异和培育竞争力,不断抢占“奶酪”,赢取更大的市场。

太阳能热水器市场现状分析

太阳能热水器已悄然成为第五大家电,以其省电、使用方便、环保节能等优点正在走进千家万户。综观目前太阳能行业的现状,散、杂、乱等现象是非明显,主要是由太阳能行业门槛较低,技术含量不高等原因造成的,笔者仅从个人对行业的简单调查情况来反思太阳能热水器的营销与策划。

市场现状分析

对终端的调查和小区的走访后笔者发现,以购买或安装太阳能热水器的用户,曾经使用过太阳能热水器的用户反映目前存在的主要问题如下:

1、品牌较杂。作为劳动密集型的产业,太阳能热水器品牌众多,李贵与李逵并存,造成消费者在购买时的混乱。用户对太阳能热水器使用现状的总体评价并不是很高,只有1/5的用户对使用情况表示非常满意,1/3的用户表示一般,近一半的用户表示不满意。

2、售后服务差。服务确实已成为当前太阳能热水器领域的头等问题。用户对太阳能热水器的服务满意度非常低,需对中小企业品牌的产品根本就没有售后服务体系,造成消费者对整个行业的不满。

3、许多产品存在质量问题。消费者希望自己的太阳能热水器随时能用,但绝大多数的太阳能热水器一到冬天就“冬眠”,仅能吸热,不能储热,或者是吸热的强度不够。冬季太阳能热水器集热管破裂、冻裂的现象时有发生,只有极少的产品一年四季都可以使用。冬季天寒地冻,消费者最需要热水,也最能体现太阳能热水器的使用价值,而产品若在这个时候“掉链子”,的确会给消费者造成不少的麻烦。

4、寿命较短。有的太阳能热水器虽然还放在屋顶,但已经不能生产热水;有的太阳能热水器虽然还能生产热水,但生产的热水已经不能达到洗浴的温度,或者生产的热水量越来越少。这些看似没有问题的太阳能热水器,都已经达不到正常的使用效果。据相关调查结果显示,只有10%的太阳能热水器能够基本满足用户的用水要求。而一半用户反映,太阳能热水器还在“服役”,但是已经不好用了,要么水温不高,要么提供的热水量太少,无法满足日常生活的需要。

5、热水不够用。调查发现,就是有多户用户反映,目前太阳能热水器提供的热水量不够用,希望能早日用上热水量充足、使用方便的新型太阳能产品。当前,市场中50%以上的太阳热水器根本无法满足消费者的要求,这些产品虽然价格很低,但是存在着很多先天性不足,如得热量低、规格小、提供的热水非常有限。

营销策划与思考

从产品的角度分析:一是产品的品质和产品功能创新。太阳能热水器需要形成差异化的品质特征,如万家乐的储热、申豪的抗菌、赛奥的抗寒,皇明的去水垢等;二是品牌。品牌是企业的无形资产,随着消费者理性的增加,在购买过程中的品牌意识越来越强,因此应该注重品牌,加强传播;三是在质量方面应该进一步加强,确保太阳能热水器的质量和内在的品质,四是安装与快速的售后服务。在产品安装过程中,安装应考虑固定牢固和结构安全、防风、防雷及屋面排水等因素,同时,提供快速的售后服务通道,降低消费者购后风险。从市场细分和消费行为方面分析,由于太阳能热水器不同于一般的家电,并非都要进卖场,用户群体一般是新开发的小区、更新换代的用户,在这是作为赠品或者礼品。因此,要针对不同的客户开发不同的渠道:如将其作为陪嫁品或者礼品就应该进商场或者卖场;将其作为工程开拓或者针对民用,就应该直接与工程部门、物业等联系,或走专卖的道路。不同群体的消费行为也不同,如作为陪嫁品的可能关注品牌或者价位,作为工程的可能考虑安装和美观,作为民用的可能考虑售后和价格等。因此,太阳能热水器在营销过程中,应该正确定位,对位营销。

从定位和促销的角度分析,随着新农村运动的开展,太阳能下乡也是未来的发展趋势和趋势。如何开拓农村市场?这需要产品在影响策略方面进行定位,特别要考虑到农村市场的特殊性,如产品要使用方便,传播要及时到位,价格要低等,同时需要促销创新,一方面将产品的性能、特点、作用即可提供的服务等信息传递给消费者,引起消费其注意,激发其购买;另一方面通过促销可以快速提高企业声誉,提升企业形象,从而拥有稳定的市场占有率,巩固产品的市场地位。在具体的销售过程中,太阳能热水器可采取售后服务促销、广告促销、方便促销、捆绑促销、有奖促销等策略,为企业带来盈利和好的声誉。

总之,在变革和竞争激烈的环境下,太阳能热水器的销售需要突围,进行产品和营销策略的创新,通过创新产品、准确定位、有效促销等来促进销售,同时需要整合营销传播,将文化和科技融入太阳热水器,塑造强势品牌,促进企业的快速增长。

市场调查:太阳能热水器今后发展何去何从?

提起家用热水器,就不得不关注太阳能产品,来自各种渠道的消息表明:近年来,太阳能热水器一直迅猛发展,目前,太阳能热水器已经占据了整个热水器市场的11.2%的份额,并以每年20%~30%的高增长率成为令业界瞩目的后起之秀。从节能环保的角度来说,太阳能热水器无疑是热水器的首选商品—但大部分中国人似乎还不具备这种观念。要想拥有“三分天下”甚至更美好的未来,太阳能热水器似乎还要走很长一段路。

竞争激烈根据国家经贸委资源与综合利用司的资料,我国已经是世界上最大的太阳能热水器生产和使用国,全国太阳能热水器行业现有3500多家企业,年产量在850万平方米左右,年产值超过100亿元,从业人员达10多万人—但目前行业排名前10位的只占太阳能热水器市场份额的17%,行业集中度低,产品众多难辨别。众多的厂商参与生产,使太阳能热水器竞争加剧,而电、燃气与太阳能截然不同的技术特点和使用特性,则使太阳能热水器行业竞争表现得更为复杂。特别是近年来,一些家电企业,例如澳柯玛、万家乐、小鸭等介入,使太阳能热水器行业逐渐带上了家电业竞争的色彩,广告战、渠道战、技术战、概念战,都被派上了用常相关机构统计数据表明,2002年,我国太阳能热水器厂家的广告费用达124亿元,高居三种热水器之首。皇明太阳能有限公司总经理黄鸣认为:对于太阳能热水器行业来说,家电企业的介入应该是有益的,因为他们可加大竞争的力度,从而促进行业发展。但是由于这些企业初涉太阳能行业,缺少经验和技术,取得成功还需要时间。业内行家分析说,太阳能热水器的利润空间从10%~50%不等,比电、燃气热水器都要大,高额的利润回报是众多厂家纷纷介入的主要因素;其次,太阳能热水器能源费用消耗近乎于零,相对更容易为消费者接受,市场前景较好。该人士还指出,目前,几乎还没有家电企业在太阳能行业取得突出业绩。

一些小厂用质次价低的材料,生产成本低,产品价格也比优质产品低,但产品质量不能保证,更谈不上提供周到的售后服务。例如,在选材和制作工艺上,用0.6mm的不锈钢做出的内胆成本肯定比0.3mm的高,再如真空管的制造技术工艺水平的高低,也直接影响着产品的价格。冯建华强调:“质次价低的产品充斥市场,既给消费者带来损害,也影响了行业发展”。有企业还反映,由于各地都有自己的太阳能热水器生产厂家,外省企业的销售、安装工作在部分省市受阻,克服地方保护主义也是很多企业希望解决的问题。

业内人士指出,如果能抑制小企业的产生,将会有效地改善目前竞争较混乱的局面。目前国内外都没有太阳能热水器企业运作经验可以借鉴,所以很多行业标准欠缺,尤其是现代化的制造流水线根本没有标准可以参照,全行业大部分企业几乎还没有成熟的流水线,正因为这样,整个行业进入的门槛比较低,造成大量小企业进入。所以,目前规避太阳能热水器行业信誉风险的最主要的方式是,国家需要尽快出台质量保证、维修服务、理赔标准等行业标准规范,提高行业进入门槛的高度,同时引导太阳能热水器产品的品牌消费观念。发展受限来自电、燃气热水器方面的竞争使一些太阳能热水器厂家感到压力很重,消费者的认同度也使厂家觉得任重而道远。业内人士指出:太阳能热水器的发展目前还受到一些非良性因素限制,如何寻求行业的出路是许多太阳能热水器厂家必须思考的问题。

第二篇:毕业论文附录英文翻译

附录

SLAC-PUB-3620 April 1985(A)APPLICATION OF GPS IN A HIGH PRECISION ENGINEERING SURVEY NET WORK

ROBERT RULAND, ALFRED LEICK ABSTRACT.A GPS satellite survey was carried out with the Macrometer to sup-port construction at the Stanford Linear Accelerator Center(SLAC).The networkconsists of 16 stations of which 9 stations were part of the Macrometer network.The horizontal and vertical accuracy of the GPS survey is estimated to be l-2 m m and2-3 m m respectively.The horizontal accuracy of the terrestrial survey,consisting of angles and distances,equals that of the GPS survey only in the“loop”portion ofthe network.All stations are part of a precise level network.The ellipsoidal heightsobtained from the GPS survey and the orthometric heights of the level network are used to compute geoid undulations.A geoid profile along the linac was computed by the National Geodetic Survey in 1963.This profile agreed with the observed geoid within the standard deviation of the GPS survey.Angles and distances were adjusted together(TERRA),and all terrestrial observations were combined with the GPS vector observations in a combination adjustment(COMB).A comparison of C O M B and TERRA revealed systematic errors in the terrestrial solution.A scale factor of 1.5 ppm f.8 ppm was estimated.This value is of the same magnitude as the over-all horizontal accuracy of both networks.INTRODUCTION At the Stanford Linear Accelerator Center a new project is under construction,the Stanford Linear Collider(SLC).The shape of the completed SLC will be like a tennis racket with the handle being the existing linac and the curved parts being the new North and South collider arcs.The diameter formed by the loop will be about 1 km.To position the approximately 1000 magnets in the arc tunnels,a network of nearby reference marks is necessary(Pietryka 1985).An error analysis has shown that a tunnel traverse cannot supply reference points with the required accuracy.Therefore,a control.network with vertical-penetrations will support the tunnel traverses.-The required absolute positional accuracy of a control point is f 2 m m(Friedsam-1984).This two-dimensional surface net must be oriented to the same datum as defined by the design coordinate system.This design coordinate system is used to express the theoretical positions of all beam guiding elements.Since this coordinate system defines the direction of the existing two mile long linear accelerator(linac)as its Z-axis,the SLC coordinate system must integrate points along the linac in order to pick up its direction.Therefore,three linac stations have been added to the SLC net.Figure 1 shows the resulting network configuration.The disadvantageous configuration is obvious,especially since there is no intervisibility between linac stations 1,10 and 19 to stations other than to 42 and 20.To improve this configuration,one would have to add stations northerly and southerly of the linac.However,due to local topography,doing that would have tripled the survey costs.This was the situation when it was decided to try GPS technology,although it was at that time not yet proven that the required 2 m m standard deviation positional accuracy could be obtained.SURVEY DESIGN The horizontal control network consists of 16 stations,12 in the„loop‟,and 4 along the linac.Because of financial considerations,not all 16 stations have been included in the GPS survey.Only the 4 linac and 5„loop‟stations were occupied by the GPS survey.The intent was to determine the coordinates of the loop stations,including station 42,by conventional means,i.e.triangulation and trilateration,followed by an inner constraint adjustment.Then the GPS information would be used to orient the net to the direction of the linac(Ruland 1985).Conventional Horizontal Net All monuments are equipped with forced centering systems and built either as massive concretears or steel frame towers,both with independant observation platforms.The observation schedule consists of directions and distances with standard deviations of 0.3 mgon and 2 mm,respectively.Conventional Vertical Net All 16 stations are part of a high precision level network.To minimize errors and simplify repeated leveling,both benchmarks and turning points are permanently monumented.Doublerunning the entire net requires about 700 setups.The standard deviation for a 1 km double-run line is 0.3 mm.GPS Survey

The GPS survey,which utilized the five available satellites,was carried out in August 1984 by Geo-Hydro Inc.The whole observation window was used for each station.In general three Macrometers were put to use.Linac Laser Alignment System

For the frequent realignment of the linear accelerator,the linac laser alignment system was designed and installed.This system is capable of determining positions perpendicular to the axis of the linac(X and Y)to better than f.l m m over the total length of 3050 m.To do so,a straight line is defined between a point source of light and a detector.At each of the 274 support points,a target is supported on a remotely actuated hinge.To check the alignment at a desired point,the target at that point is inserted into the lightbeam by actuating the hinge mechanism.The target is actually a rectangular Fresnel lens with the correct focal length so that an image of the light source is formed on the plane of the detector.This image is then scanned by the detector in both the vertical and the horizontal directions to determine the displacement of the target from the predetermined line.The targets are mounted in a 60 cm diameter aluminum pipe which is the basic support girder for the accelerator.The support girder is evacuated to about 10/.Lof Hg to prevent air refraction effects from distorting or deflecting the alignment image(Hermannsfeldt 1965).Using this system it was possible to determine the X-coordinates of the four linac stations,independant of terrestrial or GPS survey techniques,to better than ±0.l mm.ANALYSIS OF LEVELING DATA

To check for blunders,the L-l norm adjustment technique was applied(FUCHS 1983).Several blunders have been identified and cleared.A L-2 norm adjustment was then carried out with CATGPS(Collins 1985)in a minimally constrained fashion by fixing the height of station 41 to its published value of 64.259m.The choice of this particular station as well as the specific numerical value is,of course arbitrary for the purpose of the adjustment.CATGPS is suitable for adjusting leveling data if the latitudes and longitudes of the stations are fixed.The results of the level adjustment are summarized in Table 1(Column Level).ANALYSIS OF GPS DATA

All GPS vectors and their respective(3x3)covariance matrices as received from Geo-Hydro were subjected to an inner constraint least squares solution for the purpose of blunder detection and to get an unconstraint estimate of the obtained accuracy.Table 1 Summary of Adjustment Results

Inner Constraint GPS Solution

Applying data

snooping(Baarda

1976)on

the

residuals

the

vector observation(39-42)was suspected-of containing a blunder of about 1.3 cm.A recomputation was carried out at GeoHydro and,indeed,the time bias was not fixed in the original computation.Fixing the time biasin the case of short vectors is the standard procedure in Macrometer vector computation.The components of the recomputed vector agreed within 2 m m with the adjusted values of the original network solution.Upon implementing the corrected observations the residuals did not suggest the existence of other blunders.The inner constraint solution was carried out with MAC(Leick 1984);the results are documented in Table 1,Table 2,and Fig.2.The quality and homogeneity of the GPS network is well documented by the tables and the figure.The standard deviations for the horizontal positions are between 1 and 2 m m and for the vertical positions between 2 and 3 mm respectively.If one computes the standard deviations and the adjusted length for all observed vectors and their ratios,then the average ratio is 1:690000.This value yields another characterization of the horizontal accuracy achieved in this GPS survey.Minimum Constraint GPS Solution This solution defines the reference datum.The most simple set of minimal constraints are i imposed by fixing one station to account for the translatory component of the GPS polyhedron.The rotation and the scale are inherent in the Macrometer vector measurement and processing technique.The published geodetic latitude and longitude(NAD 1927)are adopted for station 41.The ellipsodial height for this station is equated to its orthometric height given above.Thus_the defined ellipsoid differs only slightly from the classical definition of a local reference ellipsoid(At the initial point the geodetic latitude and longitude equal astronomical latitude and longitude respectively;one geodetic and one astronomical azimuth are equated,and the ellipsodial height is taken as zero.)This classical definition makes the ellipsoid tangent to the equipotential surface at the initial point.Since the choice of the numerical values for station 41 are totally immaterial as far as the adjustment of GPS vectors is concerned,the classical definition of the local reference ellipsoid could have been used as well.The deflections of the vertical happen to be known in his adequate for this project as long as the correction of the measured horizontal angles due to deflections of the vertical are negligible since no attempt is made to apply these corrections.Table 2 Standard Deviations of GPS Solution

Figure 2 Error Ellipses from GPS Inner Constraint Solution

SHAPE OF THE GEOID The shape of the geoid in the area of the survey follows readily from a comparison of the ellipsoidal and orthometric heights according to

H=h-N

Figure3 shows the geoidal profile along the linear accelerator.The figure shows an unexpected dip of the-observed geoid at station 20.It so happens that this station required an observation tower of 20 m for the terrestrial measurements and that the height above the ground monument was measured trigonometrically.Assuming that the geoid follows the dashed line one can deduce an error in the height of the tower platform of about 8mm.In the context of an earlier survey for the construction of the linear accelerator the Coast and Geodetic Survey computed a geoid profile between stations 1 and 42.The report(Rice 1966)lists the components of the deflection of the vertical for stations 1 and 42,and for a non-existing station halfway between stations 10 and 19.From these values the Coast and Ge9detic Survey computed a function for the undulation.All linear values are in feet.The variable z is measured from station 1.It is stated in the report that this function gives undulations with an accuracy estimate of better than 0.001 ft.No procedure is given as to how this accuracy estimate was obtained.The undulation curve,derived from the following function,is shown in Fig.3.:

610214310(x)11.4331*10(x)6.0629*10(x)N =11.102*

The.deviation between this curve and the observed geoid just barely exceeds,at station 10,the standard deviation for the Macrometer determined height difference from 1 to 10,and is within the standard deviation at stations 19 and 42.Figure 3 Geoid Profile Incidentally,the over-all slope of the observed geoid is a consequence of adopting geodetic rather than astronomic positions as minimal constraints at station 41.The east-west component of the deflection of the vertical at station 42 is 1.84 arcsec which accounts for 27 m m of the 22 mm geoidal slope between stations 1 and 42.Figure 4 Geoid Undulation Contours Figure 4 shows an attempt to draw contours of equal geoid heights.The small number of G P S stat&rs and their area1 distribution effects the accuracy of the contours.ANALYSIS OF THE TERRES TRIAL OBSERVATIONS The triangulation and trilateration data were also checked for blunders applying the L-l norm technique(Fuchs 1980).The terrestial observations are then adjusted using the S-dimensional model of CATGPS.The reference ellipsoid is the one defined above for the minimal constraint G P S vector solution,i.e.the same numerical values for station 41 are held fixed.The orientation in azimuth is achieved by holding the latitude of station 35 fixed to the numerical value computed for the minimal constraint GPS solution.The height of station 41 is constrained to the GPS solution as well.A consequence of this definition is that the terrestrial system(U)and the satellite system(S)coincide.Since the triangulation and trilateration observations do not contain much information in the third dimension,the ellipsoidal heights of the remaining stations are introduced as observed parameters.The heights are shown in Table 3.Table 3 Orthometric Height H and Ellipsidal Height H The elliposidal heights for the GPS stations follow immediately from the&iinrmal c&straint GPS vector adjustment,whereas the ellipsoidal heights of the remaining points are computed from the orthometric heights and the interpolated geoid undulations.The standard deviations for the latter set of heights are derived from a guess for the accuracy of the geoid interpolations.In order to investigate the relative weighting of theles and the distances,two separate adjustments are ried out with CATGPS,each having only one type observation.The result is shown in Table 1.The le for the angle adjustment is provided by fixing the gitude of station 35.The stations 1,10,and 19 are luded from these adjustments because of the weak of that part of the network.In the next step angles and distances are combined in a common ustment which excludes(TERRA A)and includes(TERRA B)th e 1m‟at stations 1,10,and 19 respectively

COMBINED ADJUSTMENT CATGPS is finally used to adjust the terrestrial observations and the GPS vectors together.The minimal constraints are implemented by assigning to the latitude and longitude of station 41,to the latitude of station 35,and to the ellipsoidal heights of stations 1,33,and 39 the minimum constraint GPS results as constants.In this way the GPS vector observations will determine the heights of all stations,i.e.the leveled orthometric heights do not enter this adjustment at all.Table 1 shows that the estimated rotation parameters differ only insignificantly from zero.Their theoretical value is zero because of the specific choice of the numerical values of the coordinates held fixed.A different selection for the fixed coordinate values at station 41,e.g.astronomical positions,would have resulted in estimated rotation parameters significantly different from zero.The estimated scale factor is 1.5 ppm which is about twice its estimated standard deviation.INTERPRETATION Table 1 shows the a-posteriori variances of unit weight for all adjustments.It is seen that these values for the adjustments GPS,ANGLES,and DIST are all slightly above one,but are acceptable at a significance level of.05.Since the three variances of unit weight(1.13,1.11.1.17)are of nearly the same size,one could scale the variance of the GPS vectors,the angles,and the distances by a common scale.This would formally reduce the a-posteriori variances for TERRA(A),TERRA(B),and COMB,but would not change the outcome..of the adjustments.There appears to be no need to scale the variance for the GPS vector observation,the terrestrial angles and distances by separate(different)factors.Table 4 Compilation of Adjustment Results Table 4 shows the adjusted coordinates for the GPS vector adjustment,the combined angle and distance adjustment TERRA(B),and the combination solution COMB.The column“COMB-TERRA”shows for each coordinate the discrepancies in milhmeters between the cornbinedmsolution and the terrestrial solution.The comparison is permissable since solutions in the same terrestrial system(U)are compared.There is a large discrepancy in latitude at station1.However,this discrepancy can be readily explained by a weakness of the terrestrial solution TERRA.The lateral position(with respect to the linac)is only determined by the angles(33-20-1)and(20-N-l).Note that the separation of stations 20-l and 10-l is 3500m and 2500m respectively.The discrepancies COMB-TERRA(B)are shown in Fig.5.There appears to be a systematic effect along the linac in the ter-I I Irestrial observations.The deviation definitely exceeds what can be expected from the formal standard deviations of the terrestrial solution TERRA(B).Several partial solutions were carried out and the residuals were inspected in all cases.No evidence could be found for the existance of blunders in the data.If one excludes the stations 1,10,and 19,then the combination solution and terrestrial solution agree within 1 mm.A verification of whether either the GPS or the terrestrial observations along the linac are systematically debased could finally be obtained through utilizing the linac laser alignment system.A comparison of the X-coordinates of the linac stations from the TERRA and COMB solution with those determined using the linac alignment system was done by means of a seven parameter transformation after the ellipsoidal coordinates had been converted into Cartesian coordinates.The results are shown in table 5.Looking at the(LINAC-COMB)CO~UIIUI,the values of the differences are insignificant with respect to the standard deviations of the COMB-solution.In other words,the COMB-solution reflects the correct geometry of the linac;whereas the significant differences in the(LINAC-TERRA)column indicate that the geometry of the stations in the systems is not congruent.The column GPS-COMB shows only small discrepancies.The latitudinal differences are all smaller than 2 mm.The discrepancies in the east-west direction are somewhat larger.A proper interpretation of these discrepancies requires that one distinguish between the two coordinate systems involved.The combination solution C O M B(as well as TERRA)refers to the terrestrial coordinate system(U).B ecause of the specific choice of the coordinates of the fixed station 41 and the futed latitude of station 10,the terrestial coordinate system(U)and the satellite system(S)are parallel.This is confirmed by the estimates of the rotation angles listed in Table 1.However,the same table lists a scale of±l.5 ppm.Going back to the definition of these transformation parameters it is seen that a positive scale estimate implies that the polyhedron determined by GPS observations(satellite system)is bigger than the one determined from the terrestrial observations.This is readily confirmed by comparing the longitudes of stations 1,41,and 35 for the GPS and the C O M B solutions in Table 4.The scale factor is,of course,also present in the latitudinal discrepancies,but to a lesser extent,because of the predominently east-west extension of the whole network.The longitudinal effect of the scale factor onaation 1 relative to station 41 is 1.5 ppm*3200 m=5.4 mm.This is the value by which the longitudinal separation of stations 1 and 41 should be increased in COMB.In fact,the effect of the scale on the longitudes of all stations is computed as(-5,-3,-2,0,-1,0,1,2)in millimeters.Differencing these values with those listed in Table 4 under column“GPS-COMB”yields the discrepancies in which the effect of the scale is eliminated.The values are(O,O,-l,O,-,-l,-l,O,-3)in millimeters.These values and those listed for the latitude are of the same size.They reflect the“non-scale”discrepancies between the GPS solution and the combination solution.Their smallness reflects the dominance of the GPS vector observations in the combination solution.Table 5 Linac Comparison

CONCLUSIONS The leveling data were used only to compute(interpolate)the geoid undulations.The accuracy of these undulations depends directly on the accuracy of the leveling and the vertical components of the GPS survey.Processing the phase observations“line by line”yielded a completely acceptable accuracy for this project.Comparison with the terrestrial observations demonstratesthat the_GPS accuracy statements(standard deviations)are,indeed,meaningful and not toooptimistic.Compared against the standard of the precise network and especially the linac laser alignment system measurements,it could be proven that the GPS technique in a close range application is capable of producing results with standard deviations in the range of l-3 m m and,therefore,can be applied for engineering networks.The GPS survey has made it possible for the weak network of the linac(stations 1,10,19,42)to be tied accurately to the loop network.The terrestrial observations did not control the latitudinal position of station 1 accurately.To determine station 1 accurately with terrestrial observations would have required the design of a“classical”network which would have been difficult and expensive because of the visibility constraints due to topography and buildings(which did not exist during the first survey for the linac).The GPS survey served as a standard of comparison for the terrestrial solution and revealed the existence of systematic errors in the latter solution even though a thorough analysis of the terrestrial observations did not reveal such errors.Since the estimated scale factor of 1.5 ppm f.8 ppm is of the same magnitude as the over-all horizontal accuracy of both networks,no conclusion can be drawn as to internal scale problems of either the electronic distance measurement devices or the Macrometer.REFERENCES Baarda,W.(1976):Reliability and Precision of Networks,Presented Paper to the VIIth International Course for Engineering Survey of High Precision,Darmstadt.Collins,J.,Leick A.(1985):Analysis of Macrometer Network with Emphesis on the Montgomery(PA)County Survey,Presented Paper to the First International Symposium on Precise Positioning with the Global Positioning System,Rockville.Fuchs,H(31980):Untersuchungen

zur

Ausgleichung

durch

Minimierender Absolutsummeder Verbesserungen,Dissertation,Technische Universitlt Graz.Fuchs,H.,Hofmann-Wellenhof,B.,Schuh W.-D.(1983):Adjustment and Gross Error Detection of Leveling Networks,in:H.Pelzer and W.Niemeier(Editors):Precise Levelling,Diimmler Verlag,Bonn,pp.391-409.Friedsam,H.,OrenW.,PietrykaM.,PitthanR.,Ruland

Hermannsfeldt,W.(1965):L‟mat Alignment Techniques,Paper presented to the IEEE Particle Accelerator Conference,Washington D.C.Leick A.(1984):M August 1984.acrometer Surveying,Journal of Surveying Engineering,Vol.110,No.2

Pietryka,M,Friedsam H.,Oren W.,Pitthan R.,Ruland R.(1985):The Alignment of Stanford‟s new Electron-Positron Collider,Presented Paper to the 45th ASP-ASCM Convention,Washington D.C.Rice,D.(1966):Vertical Alignment-Stanford Linear Accelerator-,in:Earth Movement Investigations

Ruland,R.,Leick,A.(1985):Usability of GPS in Engineering Surveys,Presented Paper to the 45th ASP-ASCM Convention,Washington D.C.and

Geodetic

Control

for

Stanford

Linear

Accelerator Center,Aetron-Blume-Atkinson,Report No.ABA 106.R.(1984):SLC-Alignment Handbook,in:Stanford Linear Collider Design Handbook,Stanford,pp.8-3-8-85.附录

斯坦福直线加速器中心-3620 1985年4月

(A)

GPS在精密工程测量网中的应用

RobertRuland,AlfredLeiek 摘要:测距仪被用来进行GPS卫星测量,以支援斯坦福直线加速器中心(SLAC)的建设。该测量网由16个测站组成,其中有9个是瓦lacrometer网的测站。GPS测量的平面和高程精度,估计分别为1mm到2mm和2mm到3mm。由边角测量组成的地面测量的平面精度仅在该网的“环形”部分与GPS测量精度相同。所有测站都是精密水准网的一部分。由GPS测得的大地高和水准测量网的正高,可用来计算大地水准面差距。美国大地测量局于1963年对一条沿直线加速器方向的大地水准面剖面进行了计算。此剖面与上述水准面的吻合程度在GPS测量的标准差允许范围以内。之后将其角度和边长一起进行了平差,还将全部地面观测值与GPS向量观测值一起,进行了一次联合平差。比较COMB和TERRA的结果,发现在地面网的解算中存在着系统误差。估计尺度因子为1.5ppm0.8ppm。此值与两网总的平面精度具有相同的量值。

引言

斯坦福直线加速器中心(SLAC)正在建设一项新的工程——斯坦福直线碰撞器(SLC)。它建成后的形状如同一把带把的网球拍。拍柄是已有的直线加速器,而弯曲部分是新碰撞器的北、南两条弧,其环形的直径约一公里。为了在弧形隧道内定出近千块磁铁的位置,有必要由附近的参考标志组成一个控制网(pietryka 1985)。误差分析表明,仅用一条隧道导线是不能以所需要的精度提供参考点的。因此,建立了一个(可从顶部)垂直贯通的控制网,以支持隧道导线。控制点所需要的绝对定位精度为2mm(Friedsman 1984)。

这个二维地面网应根据设计坐标系时所规定的那个基准进行定向。所设计的这个坐标系,是用来表示所有的射束导向元件的理论位置的。该坐标系规定,将现有两英里长的直线加速器(linac)的方向作为其Z轴,SLC坐标系必须与沿直线加速器的那些点结合起来,以得到它的方向。因此,三个直线加速器测站也被纳入SLC网。图1表示了该网最后的形状。

该网的形状不佳是显而易见的,特别是由于直线加速器上测站1、10和19到其它测站之间不存在通视条件(除了40号测站和20号测站以外)。为了改善该网的构形,必须在直线加速器的北面和南面增设一些测站。但由于局部地形的限制,将使测量费用增加两倍。

以上就是当时决定试验GPS方法的背景,尽管当时GPS能否达到所要求的2mm标准差的定位精度尚未被证实。

测量方案

平面控制网由16个测站组成:环形部分12个测站,沿直线加速器4个测站。出自经济方面的考虑,并非全部16个点都被纳入了GPS测量网,只有直线加速器部分4个站和环形部分5个站进行了GPS测量。这样做的目的,是用常规方法——三角测量和三边测量方法定出包括42号测站在内的环形部分测站的坐标,随之再进行一次内约束平差,然后用GPS信息将网调整至直线加速器的方向(Ruland,1955)。

1、常规平面网

全部标石都装有强制对中系统,并建造了坚固为混凝土测墩或钢架结构的站标。测墩和标石都建立了独立的观测台。观测项目包括方向和距离,其标准分别为0.3mgon和0.2mm。

2、常规高程网

全部15个测站都是精密水准网的一个组成部分。为将误差减至最小程度,并简化重复水准测量作业,水准点和转点上都埋没了永久性标石。整个网的双程测量大约需要设站700个。双程每公里标准差为0.3mm。

3、GPS测量

1984年8月,Geo-Hydro公司利用5个可用的卫星进行了GPS测量。每个测站都利用了整个观测窗口,通常使用三台测距仪。

4、直线加速器的激光准直系统 为了对直线加速器进行反复的经常性的调整,我们设计并安装了直线加速器的激光准直系统。该系统可用来测定直线加速器轴线之垂线方向的数值(X和Y),在全长305米的范围内精度可优于0.lmm。这样,点光源与探测器之间的直线即可确定。在274个支持点的每个点上,均有一个由遥控驱动关节支持的站标。为了检查待测点是否在准直线上,只要驱动关节机械,使该点的站标移至光束中。站标实际上是一个矩形Fresnel透镜,它具有已调准的焦距,以使光源在探测器平面上成像,然后再由探测器在垂直和水平方向对该成像进行扫描,以确定站标自预定直线的偏移量。站标安置在一个60cm直径的铝管内,而铝管又是加速器的基本支承梁。支承梁抽空到大约1加水银柱的大气压,以防止空气折射效应对准直成像产生畸变和偏转(Hermannsfeldt 1965)。

利用这一系统可以不依赖于地面测量或GPS测量技术,独立地确定直线加速器部分的四个测点的X坐标,其精度均优于±0.1mm。

水准测量资料的分析

为了检核粗差,曾使用了L-1范数平差技术(Fuchs,1983),并检出和剔除了一些粗差。之后,将41号测站的高程固定在已知值64.259M上,用CATGPS(Collins,1985)程字按最小约束条件形式进行了一次L-2范数平差。就平差目的而言,选择这一特定点以及这样的特定数值,当然是任意的。如果测站的经纬度被固定,那么对水准测量数据平差来说,CATGPS将是非常适用的,水准网平差结果汇总于表1中(见水准测量一栏)。

GPS资料分析

为了检验粗差并得到所获精度的非约束条件估值,曾对从Geo-hydro公司接收到的全部GPS向量及它们各自的协方差矩阵,进行了一次内约束条件的最小二乘解算。

1、内约束条件的GPS解算

根据对残差进行的数据探测,怀疑39到42的向量观测包含着大约1.3cm的粗差。Geo-Hydro公司对此进行了二次重算。在初始计算中,时偏实际上未加固定。对短向量情况来说,固定时偏是计算测距仪向量的一种标准处理方法。重算向量的分量同初始网的解算的平差值符合程度在2mm以内。完成观测量改正后,其残差并不能使人联想到其它粗差的存在。内约束条件的解算可借助于MAC程序来完成,计算结果列于表

1、表2和图2中。以上图表充分表明了GFS网的质量和均匀性。平面位置和高程位置的标准差,分别为1~2mm和2~3mm。如果对所有观测向量计算标准差和平差后的长度,以及它们的比率的话,则其平均比率为1:690000。此值给出了这次GPS测量所达到的平面测量精度的另一特性。

2、极小约束条件的GPS解算

这一解算确定了参考基准。最简单的一组极小约束条件是强制固定一个测站,以计算GPS多面体的平移分量。旋转和尺度(因子)是Hacromoter向量测量和数据处理技术中固有的。41号测站采用已公布的大地纬度(北美1927年基准),并令该点的大地高与上面所给的正高相等。因此这样定义的椭球与经典定义的某一局部参考椭球(在原点上大地纬度和经度分别等于其天文纬度和经度,大地方位角与天文方位角相等,并取大地高为零)将相差甚微。这一经典定义使得椭球在原点与等位面相切。因此就GPS向量平差而论,对41号测站选择什么数值根本无关紧要,故局部参考椭球的定义同样可以利用。在这种情况下,垂线偏差恰好是已知的(见下文)。只要是垂线偏差而引起的水平角观侧的改正是微不足道的,任何关于局部参考系的定义对于这一方案都是适用的,更何况并没有打算利用这些改正数。

大地水准面形状

比较大地高和正高,根据H=h-N可容易得到测区的大地水准面形状。图3表示了沿直线加速器方向的大地水准面剖面图。

上图表明,所测得的大地水准面在20号侧站上出现了意料不到的凹陷。为了进行地面侧量正巧需在该测站上建一座20米高的观测站标。该坐标相对于地面标石的高度是用三角法测量的。假定大地水准面随虚线延伸,从而可以推断站标平台的高度约含有8mm的误差。由于这个原因,为了建造直线加速器早先曾进行过一次测量。在那次测量中,美国海岸大地测量局计算了1至42号测站之间的大地水准面剖面。Rioe在1966年的报告中列举了1号侧站和42号测站,以及10至19号测站正中的一个不存在的点的垂线偏差分量。根据这些值,海岸大地测量局对大地水准面的差求得一个函数。所有线值均以英尺为单位。变量x从一号测站开始度量。报告指出该函数给出的大地水准面差距具有优于0.001英尺的估计精度,但并未给出怎样得到这一精度估值的过程。图3表示了按函数

N=11.102*106(x)11.4331*1010(x)26.0629*1014(x)3

求得的大地水准面差距曲线。这一曲线与测得的大地水准面之间的偏差,在10号测站上明显地超出了用测距仪测定的1至10号测站的高差的标准差,但是19和42号测站则在标准差范围内。

顺便要说明的是,所测得的大地水准面的总斜率,与其说是采用了41号测站的天文坐标作为最小约束条件,倒不如说是采用其大地坐标作为最小约束条件的结果。42号测站上东西方向的垂线偏差分量为1.84弧秒。此值正是在1至42号测站之间导致大地水准面倾斜27mm的原因。

图4是试图描绘大地水准面高程的等值线图。由于GPS测站数目太少,其在测区的分布亦欠佳,因而影响了等值线的精度。

六、地面测量分析

对于三角测量和三边测量同样也用L-1范数技术(Fuehs1980)进行了粗差检验。然后利用CATGPS三维模型将地面测量值进行平差。采用的参考椭球是上面解算最小约束条件的GPS向量时所定义的椭球,即对41号测站采用同样的数值并固定不变。确定方位时是把35号测站的纬度值固定到从最小约束条件之GPS答解中求得的数值。此外,41号侧站的高程亦受到GPS解算的约束。这样定义的结果,使得地面测量系统(U)与卫星系统(S)互相重合。既然三角测量和三边测量中没有包含许多第三维的信息,那末其余点的大地高将作为观测参数而被采用。这些高程参数可参看表3。

对于GPS测站来说,大地高可以从极小约束条件的GPS向量平差中直接得到,而其余点的大地高则要由正高和内插得到的大地水准面差距计算得到。后者的标准差可由大地水准面内插精度的估值推知。为了研究角度和距离为相对权,利用CATGPS分别进行了两次平差,每次只包含一种观测量。平差结果可参看表1。对角度平差来说,其尺度是以固定35号测站的经度来保证的。

1、10和19号点被排除在这些平差之外,其原因是网的那一部分构形过于单薄。下一步是把角度和矩离联合起来,分别按不包含直线加速器测站1、10及19(TERRA-A)和包含这些测站(TERRA-B)的两种方案进行边角共同平差。

七、联合平差

最后,用CATGPS进行地面观测资料和GPS向量的总体平差。最小约束是这样完成的:规定41号测站的经纬度、35号测站的纬度,以及1、33和39号测站的大地高作为常量,并等于极小约束条件的GPS结果。按照这种方法,GPS向量的观测值将决定所有测站的高程,即水准测量测得的正高根本不参予平差计算。表1说明,估算的旋转参数与零的差异仅仅是微不足道的。由于专门选定的坐标数值保持不变,故它们的理论值应为零。在41号测站上选择不同的坐标固定值,例如选择天文坐标,将会使旋转参数的估值明显不等于零。估算的尺度因子为1.5ppm,这大约是其标准差估值的2倍。我们就可以把GPS向量、角度和边长的方差用一个共同的比例加以改变。这样,形式上将使TERR(A)、TERRA(B)以及COMB的后验方差减小,但并不改变其平差结果。对GPS向量观测资料、地面角度测量和距离测量方差乘以不同的因子看来是不必要的。表4给出了GPS向量平差、边角联合的TERR八(B)平差,以及联合解算COMB平差后为坐标。“COMB一TERRA”一栏对各坐标给出了联合解算与地面观测解算之间以毫米为单位的不符值这样比较是允许的,因为这些解算是在同一地面坐标系(U)内完成的。在1号测站的纬度中出现了大的不符值,但该不符值出现的原因,很容易用地面测量解TERRA比较弱予以解释,横向位置(相对于直线加速器而言)仅决定于角度(33-20-1)和(20-10-1)。注意到测站20到1和10到1之间的距离分别为35O0m和2500m。COMB-TERRA(B)的差值见图5

在沿直线加速器的地面观测中,看来存在着系统性的影响。其偏差无疑超过了从地面测量解算TERRA(B)求得的正规的标准差之预期值。已进行了一些局部解算,并检查了所有情况下的残差,但在数据中未找到存在粗差的证据。如果不把1、10和19号测站包括进去,则联合解算和地面测量解算的符合程度在lmm以内。无论是对GPS,还是对地面测量,要证明沿直线加速器的观测精度是否系统地下降,最终都可利用直线加速器上的激光准直系统加以解决。曾把从地面解算(TERRA)和联合解算(COMB)得到的直线加速器测点的X坐标,和利用准直系统(LINAC)所确定的同名点的坐标进行了一次比较。这次比较是把椭球坐标转化为笛卡尔坐标后,利用七参数转换的方法进行的,其结果参看表5。其差值与联合解算的标准差相比较是微不足道的,换句话说,联合解算COMB反映了直线加速器的正确几何形状。而在(LINAC-TERRA)一栏中有重大差异,说明在该系统中测点的几何位置是不适合的。

GPS-COMB一栏显示出二者仅有一些小的不符值。纬向差均小于2mm。东西方向的不符值稍大一些。要恰当地解释这些不符值尚需对有关的两个坐标系加以区分。联合解算COMB(TERRA也一样)是以地面坐标系(U)为参考的。由于对41号测站的坐标和10号测站纬度之固定值进行了专门选择,故地面坐标系和卫星坐标系是平行的。这可由表1所列旋转角之估值加以证实。但是在同一表中却给出了±1.5ppm尺度因子。回顾这些转换参数的定义,可以看出,正的尺度因子估值意味着由GPS观测(卫星系统)确定的多面体,大于地面观测所确定的多面体。把表4中所列的利用CPS和COMB所确定的1、41和35号测站的经度进行比较,就很容易证实这一点。尺度因子当然也存在于纬度不符值之巾,但仅在很小的程度上有影响,因为整个网基本上是按东西方向延伸的。尺度因子对1号测站相对于41号测站的经向影响为1.5ppm·3200m=5.4mm。这就是在联合平差中1号测站和l1号测站之间的经度差所应该增大的数值。事实上,经计算尺度对各测站的经度影响分别为(-5,-3,-2,0,-1,0,1,2)毫米。取这些值与表4“GPS-COMB”一栏中所列值之差即得不符值,在这些新不符值中尺度影响被消除。这些值以毫米为单位分别为(0,0,-1,0,-1,-1,0,-3)。它们与表中对纬度所列之值大小相同,这反映了在GPS和联合解算之间“无尺度影响”不符值。这些值很小,恰恰说明GPS向量观测资料在联合解算中的权威性。

九、结论

水准测量资料仅用于计算大地水准面差距。大地水准面差距的精度直接取决于水准测量和GPS测量垂直分量的精度。逐条处理基线相位观测资料,得到了对该工程来说完全满意的精度。与地面测量的比较证明,CPS精度的说明(标准差)是有意义的,其精度估计是合适的。

与精密网的标准比较,特别是与直线加速器激光准直系统的测量结果进行比较可以证明,GPS测量技术在近距离测量中能给出标准差在1到3毫米范围内的结果,因此可用于工程测量网。

GPS测量使得构形较差的直线加速器测量网(1、10、19和42号测点)能够精确地连接到环形网上。地面观测资料不能精确地控制1号测站的纬向位置。为了用地面观测资料精确求定1号测站,需设计一个“经典”测量网。但由于地形和建筑物(在对直线加速器进行第一次测量期间它们是不存在的)对通视条件的限制,实现此方案将是很困难、很昂贵的。纵然对于地面观测资料详细的分析没有显露出系统误差,但GPS测量却为地面测量的解算提供了一个比较标准,并揭示了后者解算中存在系统误差。

鉴于尺度因子的估值1.5ppm±0.8ppm与两网的综合平面精度具有同一量级,故就内部的尺度问题而言,不能作出结论,是电子测距仪器所致,还是由光学测距仪所致。

第三篇:出租车计价器毕业论文附录

北京信息科技大学

毕业设计(论文)附录

题 目:

学 院: 专 业:

学生姓名: 班级/学号 指导老师/督导老师:

起止时间:2012 年 月 日 至 2012 年 月 日

目录

附件1 原理图············································共 1 页

附件2 PCB图 ··········································· 共 1页

附件3 程序代码 ········································· 共 19 页

附件4 外文资料翻译 ····································· 共 11 页

原理图

PCB图

程序代码

#include #define uchar unsigned char #define uint unsigned int

uchar table2[]=“0123456789abcdef”;

sbit lcdwr=P2^6;sbit lcdrs=P2^5;sbit lcden=P2^7;sbit beep=P2^4;sbit sclk=P3^7;sbit io=P3^6;sbit rst=P3^5;sbit scl=P3^0;sbit sda=P3^1;

uchar model;//模式标志位

uchar yue,ri,xq,shi,fen,miao;//月,日,星期,时,分,秒 uchar qibu=50,danjia=5;uint zongjia,lucheng,zzongjia,zlucheng;uchar xiugai;//修改时间和起步价单价标志 uint zj;uint zlc;uchar zu;//组数 uint count;//定时器中的数

uint waitmiao,waitfen;//等待时间 uint count1,count2;//外部中断中的数 uchar xsfen,xsmiao;//行驶时间 uchar wait;//等待标志 uint speed;//速度标志

uchar cycount;//速度采样值

void delayms(uint x){ uint i,j;for(i=x;i>0;i--)

for(j=110;j>0;j--);} void delay(){;;} /****************************** 1602液晶部分

******************************/ void yjwrite_com(uchar com){ lcdrs=0;P0=com;delayms(5);lcden=1;delayms(5);lcden=0;} void yjwrite_date(uchar date){ lcdrs=1;P0=date;delayms(5);lcden=1;delayms(5);lcden=0;} void yjinit(){ lcdwr=0;lcden=0;yjwrite_com(0x38);

yjwrite_com(0x0c);yjwrite_com(0x06);yjwrite_com(0x01);//显示清0,指针清0 } /*************************************************************************************** DS1302时间部分

***************************************************************************************/ void write_byte(uchar com,uchar date)//向DS1302模地址写数据 { uchar i;rst=0;sclk=0;rst=1;for(i=0;i<8;i++){

if(com&0x01)io=1;

else io=0;

com>>=1;

sclk=0;

delayms(1);

sclk=1;} sclk=0;for(i=0;i<8;i++){

if(date&0x01)io=1;

else io=0;

date>>=1;

sclk=0;

delayms(1);

sclk=1;} sclk=0;rst=0;} uchar read_byte(uchar com){ uchar i,date;rst=0;sclk=0;rst=1;for(i=0;i<8;i++){

if(com&0x01)io=1;else io=0;

com>>=1;

sclk=0;

delayms(1);

sclk=1;} for(i=0;i<8;i++){

if(io)date|=0x80;

date>>=1;

sclk=1;

delayms(1);

sclk=0;} sclk=0;rst=0;return date;} void ds1302init(){ sclk=0;rst=0;write_byte(0x8e,0);//写保护寄存器,最高位WP=1,写保护,WP=0,不写保护 // write_byte(0x90,0);//充电控制寄存器(此处为不充电)

write_byte(0x90,0xa5);//充电控制寄存器,设置为充电状态 } /*void reset_1302(){ write_byte(0x8e,0);write_byte(0x80,0);//秒

write_byte(0x82,0x43);//分

write_byte(0x84,0x13);//时

write_byte(0x86,0x14);//日

write_byte(0x88,0x10);//月

write_byte(0x8a,0x05);//星期

write_byte(0x8c,0x11);//年

write_byte(0x8e,0x80);//写保护

} */

/****************************************************************************** AT24C02存储与读取部分

******************************************************************************/ void start1(){ sda=1;delay();scl=1;delay();sda=0;delay();} void stop1(){ sda=0;delay();scl=1;delay();sda=1;delay();} void respons(){ uchar i;scl=1;delay();while((sda==1)&(i<250))i++;scl=0;delay();} void init(){ sda=1;delay();scl=1;delay();} void write_byte1(uchar date){ uchar i,temp;temp=date;for(i=0;i<8;i++){

temp=temp<<1;

scl=0;

delay();

sda=CY;

delay();

scl=1;

delay();} scl=0;delay();sda=1;delay();} uint read_byte1(){ uchar i,k;scl=0;delay();sda=1;delay();for(i=0;i<8;i++){

scl=1;

delay();

k=(k<<1)|sda;

scl=0;

delay();} return k;} void write_add(uchar address,uint date){ start1();write_byte1(0xa0);respons();write_byte1(address);respons();write_byte1(date);respons();stop1();} uint read_add(uchar address){ uchar date;start1();write_byte1(0xa0);respons();write_byte1(address);respons();start1();write_byte1(0xa1);respons();date=read_byte1();stop1();return date;} /***************************************************************************************** 键盘检测

*****************************************************************************************/ uchar key_scan(){ uchar k=0,temp;static uchar key_up=1;P1=0xff;temp=P1;if(temp!=0xff&&key_up){

delayms(10);

key_up=0;

temp=P1;

if(temp!=0xff)

{

temp=P1;

switch(temp)

{

case 0xfe:k=1;break;

case 0xfd:k=2;break;

case 0xfb:k=3;break;

case 0xf7:k=4;break;

case 0xef:k=5;break;

case 0xdf:k=6;break;

case 0xbf:k=7;break;

case 0x7f:k=8;break;

}

} } temp=P1;if(temp==0xff){

key_up=1;} return k;} void display_time();/**************************************************************************************** 时间起步价和单价调整部分

****************************************************************************************/ void tiaoshi(){ uchar i;uchar t=0,n=1;write_byte(0x8e,0);//写保护寄存器,最高位WP=1,写保护,WP=0,不写保护

yue=read_byte(0x89);ri=read_byte(0x87);xq=read_byte(0x8b);shi=read_byte(0x85);fen=read_byte(0x83);miao=read_byte(0x81);yue=(yue/16)*10+yue%16;ri=(ri/16)*10+ri%16;xq=(xq/16)*10+xq%16;shi=(shi/16)*10+shi%16;fen=(fen/16)*10+fen%16;miao=(miao/16)*10+miao%16;t=key_scan();if(t==6){ n++;if(n==10){

n=0;

xiugai=0;} } if(t==8){n=0;xiugai=0;} while(n){ t=key_scan();if(t==8){n=0;xiugai=0;} if(t==6){

n++;

if(n==10)

{

n=0;

xiugai=0;

goto a;

}

} switch(n){

case 1:

yjwrite_com(0x80);yjwrite_com(0x0f);delayms(5);

switch(t)

{

case 2:

yue++;

if(yue==13)yue=1;

write_byte(0x88,((yue/10)*16+yue%10));//

break;

case 3:

;

;

yue--;

if(yue==-1)yue=12;

write_byte(0x88,((yue/10)*16+yue%10));

break;

}

yjwrite_com(0x80);yjwrite_date(table2[yue/10]);yjwrite_date(table2[yue%10])

break;

case 2:

yjwrite_com(0x80+3);yjwrite_com(0x0f);delayms(5);

switch(t)

{

case 2:

ri++;

if(ri==32)ri=0;

write_byte(0x86,((ri/10)*16+ri%10));//日

break;

case 3:

ri--;

if(ri==-1)ri=31;

write_byte(0x86,((ri/10)*16+ri%10));

break;

}

yjwrite_com(0x80+3);yjwrite_date(table2[ri/10]);yjwrite_date(table2[ri%10])

break;case 3: yjwrite_com(0x80+6);yjwrite_com(0x0f);delayms(5);switch(t){

case 2:

xq++;

if(xq==8)xq=1;

write_byte(0x8a,((xq/10)*16+xq%10));//星期

break;

case 3:

xq--;

if(xq==-1)xq=7;

write_byte(0x84,((xq/10)*16+xq%10));

break;} yjwrite_com(0x80+5);yjwrite_date('-');yjwrite_date(table2[xq%10]);

break;

case 4:

yjwrite_com(0x80+0x40);yjwrite_com(0x0f);delayms(5);

switch(t)

{

case 2:

shi++;

if(shi==24)shi=0;

write_byte(0x84,((shi/10)*16+shi%10));

break;

case 3:

shi--;

if(shi==-1)shi=23;

write_byte(0x84,((shi/10)*16+shi%10));

break;

}

yjwrite_com(0x80+0x40);yjwrite_date(table2[shi/10]);yjwrite_date(table2[shi%10]);

break;

case 5:

yjwrite_com(0x80+0x43);yjwrite_com(0x0f);delayms(5);

switch(t)

{

case 2:

fen++;

if(fen==60)fen=0;

write_byte(0x82,((fen/10)*16+fen%10));//分

break;

case 3:

fen--;

if(fen==-1)fen=59;

write_byte(0x82,((fen/10)*16+fen%10));//分

break;

}

yjwrite_com(0x80+0x40+3);yjwrite_date(table2[fen/10]);yjwrite_date(table2[fen%10]);

break;

case 6:

yjwrite_com(0x80+0x46);yjwrite_com(0x0f);delayms(5);

switch(t)

{

case 2:

miao=0;

write_byte(0x80,((miao/10)*16+miao%10));//秒

break;

case 3:

miao=0;

write_byte(0x80,((miao/10)*16+miao%10));//秒

break;

}

yjwrite_com(0x80+0x40+6);yjwrite_date(table2[miao/10]);yjwrite_date(table2[miao%10]);

break;

case 7: //起步价调整

yjwrite_com(0x80+11);yjwrite_com(0x0f);

qibu=read_add(2);

switch(t)

{

case 2:qibu++;write_add(2,qibu);break;

case 3:qibu--;write_add(2,qibu);if(qibu==-1)qibu=0;break;

}

yjwrite_com(0x80+11);

//显示起步价

yjwrite_date(table2[qibu/100]);

yjwrite_date(table2[qibu%100/10]);

yjwrite_date('.');

yjwrite_date(table2[qibu%10]);

break;

case 8: //单价调整

yjwrite_com(0x80+0x40+11);yjwrite_com(0x0f);

danjia=read_add(0);

t=key_scan();

switch(t)

{

case 2:danjia++;write_add(0,danjia);break;

case 3:danjia--;write_add(0,danjia);if(danjia==-1)danjia=0;break;

}

yjwrite_com(0x80+0x40+11);

//显示单价

yjwrite_date(table2[danjia/100]);

yjwrite_date(table2[danjia%100/10]);

yjwrite_date('.');

yjwrite_date(table2[danjia%10]);

break;

case 9:zu=0;yjwrite_com(0x01);write_add(250,zu);

yjwrite_com(0x80);

yjwrite_date('C');yjwrite_date('l');yjwrite_date('e');yjwrite_date('a');

yjwrite_date('r');yjwrite_date('.');yjwrite_date('.');

for(i=3;i<247;i++)

{

write_add(i,0);

delayms(5);

}

yjwrite_com(0x80+0x40);yjwrite_date('O');yjwrite_date('K');

break;

} // display_time();} a: xiugai=0;write_byte(0x8e,0x80);//ds1302写保护

yjwrite_com(0x0c);//1602液晶取消光标闪烁 } /*********************************************** 按键处理函数

***********************************************/ void key_do(){ uchar num1,num2;uchar key=0;key=key_scan();switch(key){

case 1:model++;if(model==3)model=0;break;

case 4:

//启动按键

TR0=1;

EX0=1;

count=0;count1=0;lucheng=0;zongjia=0,count2=0;

waitmiao=0;

waitfen=0;

xsfen=0;

xsmiao=0;

break;

case 5:

//停止按键

TR0=0;

EX0=0;

num1=lucheng/256;

write_add((7+zu*2),num1);

num2=lucheng%256;

delayms(5);

write_add((8+zu*2),num2);

num1=zongjia/256;

delayms(5);

write_add((127+zu*2),num1);

num2=zongjia%256;

delayms(5);

write_add((128+zu*2),num2);

delayms(5);

zu++;

if(zu==60)zu=0;

write_add(250,zu);

zzongjia=zzongjia+zongjia;

num1=zzongjia/256;

write_add(5,num1);

delayms(5);

num2=zzongjia%256;

write_add(6,num2);

delayms(5);

zlucheng=zlucheng+lucheng;//计算出累计的总路程

num1=zlucheng/256;//当总路程超过255时,一个字节就存储不下了,需要分成两个字节存储

write_add(3,num1);

num2=zlucheng%256;//分离出总路程的低位字节

delayms(7);

write_add(4,num2);//存储总路程的低位字节

break;

case 6:xiugai=!xiugai;break;

case 7:

wait=!wait;

if(wait==1)EX0=0;

else EX0=1;

break;

case 8:model=0;xiugai=0;break;} } void chaxun(){ static uchar n=0;uchar key=0,num,num1,a=0;num=read_add(3);//读取总路程的高位

num1=read_add(4);//读取总路程的高位

zlucheng=num*256+num1;num=read_add(5);//读取总总价的高位 num1=read_add(6);//读取总总价的高位 zzongjia=num*256+num1;yjwrite_com(0x80);yjwrite_date(table2[qibu/100]);//显示起步价 yjwrite_date(table2[qibu%100/10]);yjwrite_date('.');yjwrite_date(table2[qibu%10]);yjwrite_com(0x80+8);

//显示单价 yjwrite_date(table2[danjia/100]);yjwrite_date(table2[danjia%100/10]);yjwrite_date('.');yjwrite_date(table2[danjia%10]);yjwrite_com(0x80+0x40);yjwrite_date(table2[zlucheng/1000]);//显示总路程 yjwrite_date(table2[zlucheng%1000/100]);yjwrite_date(table2[zlucheng%1000%100/10]);yjwrite_date('.');yjwrite_date(table2[zlucheng%10]);yjwrite_date('k');yjwrite_date('m');yjwrite_com(0x80+0x40+8);

//显示总总价 yjwrite_date(0x5c);//显示人民币的符号 yjwrite_date(table2[zzongjia/1000]);yjwrite_date(table2[zzongjia%1000/100]);yjwrite_date(table2[zzongjia%1000%100/10]);yjwrite_date('.');yjwrite_date(table2[zzongjia%10]);

key=key_scan();switch(key){ case 1:a=0;model=0;break;case 2:a=1;n++;if(n==60)n=0;break;case 3:a=1;n--;if(n==-1)n=59;break;case 8:a=0;model=0;break;} while(a){ key=key_scan();switch(key){

case 1:a=0;model++;break;

case 2:n++;if(n==60)n=0;break;

case 3:n--;if(n==-1)n=59;break;

case 8:a=0;break;

}

if(key==2||key==3)

{

yjwrite_com(0x01);

num=read_add(7+2*n);//读取总路程的高位

num1=read_add(8+2*n);//读取总路程的高位

zlc=num*256+num1;

num=read_add(127+2*n);//读取总总价的高位

num1=read_add(128+2*n);//读取总总价的高位

zj=num*256+num1;

yjwrite_com(0x80);

//显示组数

yjwrite_date(table2[(n+1)/10]);

yjwrite_date(table2[(n+1)%10]);

yjwrite_com(0x80+0x40);

//显示路程

yjwrite_date(table2[zlc/100]);

yjwrite_date(table2[zlc%100/10]);

yjwrite_date('.');

yjwrite_date(table2[zlc%10]);

yjwrite_date('k');

yjwrite_date('m');

yjwrite_com(0x80+0x40+8);

//显示总价

yjwrite_date(0x5c);

yjwrite_date(table2[zj/100]);

yjwrite_date(table2[zj%100/10]);

yjwrite_date('.');

yjwrite_date(table2[zj%10]);

} } } void display_time(){ uchar i;uchar time[11];yue=read_byte(0x89);ri=read_byte(0x87);xq=read_byte(0x8b);shi=read_byte(0x85);fen=read_byte(0x83);miao=read_byte(0x81);time[0]=yue/16;//提取月的第一位数据,读出来的时间是16进制的,所以对16取模

time[1]=yue%16;//提取月的第二位数据 time[2]=ri/16;time[3]=ri%16;time[4]=xq%16;time[5]=shi/16;time[6]=shi%16;time[7]=fen/16;time[8]=fen%16;time[9]=miao/16;time[10]=miao%16;yjwrite_com(0x80);for(i=0;i<2;i++){ yjwrite_date(table2[time[i]]);} yjwrite_date('-');for(i=2;i<4;i++){ yjwrite_date(table2[time[i]]);} yjwrite_date('-');yjwrite_date(table2[time[4]]);yjwrite_com(0x80+11);

//显示起步价 yjwrite_date(table2[qibu/100]);yjwrite_date(table2[qibu%100/10]);yjwrite_date('.');yjwrite_date(table2[qibu%10]);yjwrite_com(0x80+0x40+11);

//显示单价 yjwrite_date(table2[danjia/100]);yjwrite_date(table2[danjia%100/10]);yjwrite_date('.');yjwrite_date(table2[danjia%10]);yjwrite_com(0x80+0x40);for(i=5;i<7;i++){ yjwrite_date(table2[time[i]]);} yjwrite_date(':');for(i=7;i<9;i++){ yjwrite_date(table2[time[i]]);} yjwrite_date(':');for(i=9;i<11;i++){

yjwrite_date(table2[time[i]]);}

} void main(){ uchar fristtime=0,fristtime1=0,fristtime2=0;ds1302init();//ds1302初始化

init();//24c02初始化

yjinit();//1602液晶初始化 // reset_1302();danjia=read_add(0);qibu=read_add(2);TMOD=0X01;TH0=(65536-50000)/256;TL0=(65536-50000)%256;EA=1;ET0=1;IT0=1;zu=read_add(250);PT0=1;while(1){

key_do();

switch(model)

{

case 0:

fristtime1=0;

fristtime2=0;

if(fristtime==0)

{

yjwrite_com(0x01);

fristtime=1;

}

if(lucheng>30)

zongjia=(qibu*10+(danjia*(lucheng-30)))/10;

else

zongjia=qibu;

yjwrite_com(0x80);

//显示行驶时间

yjwrite_date(table2[xsfen/10]);

yjwrite_date(table2[xsfen%10]);

yjwrite_date('-');

yjwrite_date(table2[xsmiao/10]);

//

yjwrite_date(table2[xsmiao%10]);yjwrite_date(' ');yjwrite_date(table2[waitfen/10]);//显示等待时间

yjwrite_date(table2[waitfen%10]);yjwrite_date('-');yjwrite_date(table2[waitmiao/10]);yjwrite_date(table2[waitmiao%10]);yjwrite_date(' ');yjwrite_date(table2[speed/100]);//显示速度

yjwrite_date(table2[speed%100/10]);yjwrite_date('.');yjwrite_date(table2[speed%10]);if(speed>650)beep=0;else beep=1;yjwrite_com(0x80+0x40);

//显示路程的yjwrite_date(table2[lucheng/100]);yjwrite_date(table2[lucheng%100/10]);yjwrite_date('.');yjwrite_date(table2[lucheng%10]);yjwrite_date('k');yjwrite_date('m');yjwrite_date(' ');yjwrite_date(table2[(zu+1)/10]);//显示当前组数

yjwrite_date(table2[(zu+1)%10]);yjwrite_date(' ');yjwrite_com(0x80+0x40+10);

//显示总价

yjwrite_date(0x5c);yjwrite_date(table2[zongjia/1000]);yjwrite_date(table2[zongjia%1000/100]);yjwrite_date(table2[zongjia%1000%100/10]);yjwrite_date('.');yjwrite_date(table2[zongjia%10]);break;case 1: fristtime=0;fristtime2=0;if(fristtime1==0){

yjwrite_com(0x01);

fristtime1=1;} display_time();if(xiugai==1){

tiaoshi();

}

break;

case 2:

fristtime=0;

fristtime1=0;

if(fristtime2==0){yjwrite_com(0x01);fristtime2=1;}

chaxun();

break;

}

}

} void timer0()interrupt 1 { TH0=(65536-50000)/256;TL0=(65536-50000)%256;count1++;if(count1==20){

speed=cycount*9;

cycount=0;

count1=0;

xsmiao++;

if(wait==1)

{

waitmiao++;

if(waitmiao==60){waitmiao=0;waitfen++;}

}

if(xsmiao==60)

{

xsmiao=0;

xsfen++;

}

} } void ex0()interrupt 0 { count++;cycount++;if(count==12){

} count=0;count2++;} lucheng=count2*1;

外文资料翻译

ABSTRACT In this paper, a multi-channel taximeter that is able to deal with more than one passenger simultaneously is proposed.In order to demonstrate the theory of operation of the proposed system, a complete design for an experimental three-channel taximeter(whose prototype has been built under grant from the Egyptian Academy for Scientific and Technological Research)is presented.System location, outline, block diagrams as well as detailed circuit diagrams for the experimental taximeter are also included.1.INTRODUCTION Transporting people in the morning from their homes to their works and back in the afternoon has become a big problem in big cities especially in undeveloped countries.As a partial solution of this problem, the authorities in some countries had, unofficially, left the taxicab drivers to carry different passengers to different places at the Same time.For example, a taxicab with four seats may carry four different passengers without any relation between them except that their way of travelling is the same.Accordingly, it has become very difficult to rely on the present conventional single-channel taximeter to determine the fare required from each passenger separately.Accordingly, an unfair financial relation was created between the taxicab driver, owner, passengers and the state taxation department.Under these circumstances, taxicab drivers force the passengers to pay more than what they should pay.In some cases passengers had to pay double fare they should pay.With the present conventional single-channel taximeter, taxicab owners are not able to determine the daily income of their taxicab.In some cases(a taxicab with four seats)they may only get one quarter of the income of the taxicab(collected by the taxicab driver).From which they should pay the salary of the taxicab driver as well as the cost of fuel, minor and major repairs in addition to the car depreciation.As a matter of fact the position of the taxicab owners is not so bad as it seems.A general agreement has been reached between the taxicab drivers and owners such that the drivers should guarantee a fixed daily income to the owners as well as the paying for the cost of fuel as well as the minor repaires.Even though the taxicab drivers still share the large portion ofthe income of the taxicab.Also with the presence of the single-channel taximeter, it has become very difficult for the state taxation department to know the yearly income of the taxicab and accordingly it has become very difficult to estimate the taxes to be paid by the taxicab owners.In order to face this problem, the state taxation department had to impose a fixed estimated taxes for each seat of the taxicab whatever the income of the taxicab.In this paper, we introduced a multichannel taximeter that can deal with more than one passenger simultaneously.I t should be pointed out that by the term passenger we mean a one person or a group of related persons.I t should also be pointed out that our proposed multi-channel taximeter is not, simply, a multi display readouts.As a matter of fact it contains logic circuits that automatically changes the fare per killometer of travelling distance or per minutes of 'waiting time according to the number of passengers hiring the taxicab.In the following part and as an example, we will present a complete design for a three-channel taximeter.Block diagrams as well as detailed circuit diagrams of the experimental three-channel taximeter are also included.A prototype has been built under grant from the Egyptian Academy for Scientific and Technological Research.2.AN EXPERIMENTAL THREECHANNEL TAXIMETER Theory of operation of our experimental device to work as an electronic digital taximeter is based on t h e fact thathe speedometer cable rotates one revolution for each meter of travelling distance.Accordingly, if the speedometer cable is coupled with a speed sensor that generates a single pulse for each meter of travelling distance, then our taximeter could be three up counter modules associated with a speed sensor unit.However, our experimental taximeter is not simply a three display readouts.As a matter offact it contains logic circuits that automatically changes the fare per kilometer of travelling distance or per minutes of waiting time according to the number of passengers hiring the taxicab.The device may be splitted into two main parts: The first is the speed sensor unit which may be located anywhere in the taxicab such that an easy coupling to the speedometer cable can be achieved.The second unit contains the main electronic circuit, the displayand control panel.The unit should be located somewhere in front of both the driver and the passengers.A possible components locations is shown in Figure 1.A.Speed Sensor Unit The main function of this unit is to supply train of pulses whose frequency is proportional to the angular rotation of the wheels.A possible form of a speed sensor is shown in Figure 2.If may consist of a tj.pica1 permanent magnet sine wave generator with its output connected to a pulse shapping circuit(two general purpose silicon diodes, 1K ohms resistor and a schmit trigger inverter).In order to find some way to detect the movement of the taxicab, the output of the sine wave generator is rectified through a general purpose silicon diode Dl then smoothed by a 1000 F capacitor.The output voltage at terminal Q is then limited to the value of 4.7 volts by using a Ik ohms resistor as well as a zener diode ZD.The level of the voltage at terminal Q would be high whenever the taxicab is moving and will be zero otherwise.This voltage can be used for the automatic switching from distance fare to time fare.B.Main Electronic and Display Unit A suggested shape for the main electronic and display unit is shown in Figure 3.The control and display panel contains all ' controls necessary for operating the taximeter as well as four readout displays.The first channel will give the sum of money required from the first passenger, while the second and third readouts are for the second and third passengers, respectively.The fourth readout will give the total income of the taxicab.The contents of the last readout should be nonvolatile and be able to be retained even during parking the taxicab.The channel rotary selector switchs 1 , 2 and 3 have fully clockwise/anticlockwise positions.In the fully anticlockwise position, the counter of the corresponding readout is blancked and disabled.In the fully clockwise position, the counter is unblanked, cleared to zero and enabled to be ready for counting the sum of money required from the first, second and third passengers, respectively.Pushing the total sum pushbutton 4 unblanks the fourth readout enabling any person to retain the readout corresponding to the total income.After the release of the pushbutton, the fourth readout will be blanked again.This unit also contains the main electronic circuit which will be fully described in the following section.3.DESCRIBTION OF THE MAIN ELECTRONIC CIRCUIT The general block diagram of the main electronic circuit is shown in Figure 4.It consists of five subcircuits designated by the symboles CTI up to CT4supporting circuits, these are: The number of passenger deticition circuit CTI, travelling distance scaling circuit CT2, waiting time scaling circuit CT3, circuit CT4 which generates clock pulses for the display circuit.A.Number of Passengers Detection Circuit CT1 As shown from the general block diagram, the circuit CTI has three inputs I, 2 and 3 as well as three outputs J, K and L.The function of the circuit is to supply a high level voltage at terminals J, K or L if and only if one, two or three passengers are hiring the taxicab, respectively.The term passenger, here, means one person or a group of related persons.When a passenger is getting into the cab, we simply turn on a free readout display by turning the corresponding rotary selector switch to a fully clockwise direction.This will automatically disconnect the corresponding terminal I, 2 or 3 from ground.The logical relation between various input terminals I, 2 and 3 and the output terminals J, K and L is shown in Table 1.As a combinational circuit we start the design by deriving a set of boolean functions.A possible simplified boolean functions that gives minimum number of inputs to gates may be obtained from Table I.A possible logical diagram that is based on the above derived expressions is shown in Figure 5.It consists of two inverters, four 2-input AND, to3-input AND two 3-input OR gates B.Tavelling Distance Scaling Circuit CT2 As shown from the block diagram of Figure 4, the circuit CT2 has four input J, K, L and E and one output M.The function of the circuit is to supply a single pulse at the output M for a certain number of pulses generated at the output of the speed sensor(certain number of meters travelled by the taxicab), according to the number of passengers hiring the car.A suggested fare per kilometer of travelling distance is shown in colomn two of Table 2.the circuit, in this case, should supply a single pulse at the output M for every 100, 125 or 143 pulses generated at the input terminal E according to the level of voltage at input terminale 3, K or L, respectively.Our circuit could be, as shown in Figure 5, three decade counters, connected as a three digit frequency divider whose dividing ratios 100, 125 and 143 are automatically selected by the voltage level at terminals J, K and L, respectively.A possible circuit diagram that may verify the above function is shown in Figure 6.It consists of three decade counters type 7490, one BCD-to decimal decoder type 7445, three 4-input AND, one 3-input ANDone 2-input AND two 3-input OR gates.C.Time Scaling Circuit CT3 As shown in the block diagram, the time scalingcircuit will have four inputs J, K, L and F and one output N.The function of this circuit and accordingto colomn three of Table 2(fare per 2 minuts of waiting time)is to supply a single pulse at the output N for every 120, 240 or 360 pulses supplied at the input terminal F from the I Hz clock according to level of voltage at inputs J, K and L, respectively.Time scaling circuit would be similar to the distance scaling circuit but with different diving ratios.A Possible circuit diagram is shown in figure 7.It consists, in this case, of three decade counter type 7490, two 3-input AND, one 5-input AND, one 2-input AND one 3-input OR gates.D.Circuit CT4 Which Generates Clock Pulses for Display Circuit The function of this circuit is to supply one, two or three pulses at the output terminal R for each pulse generated at any of the terminals N or M, according to the voltage level at the input terminals J, K or L, respectively.The output P will receive a pulse for each pulse generated at any of the input terminals N or M.This function can be performed by the circuit shown in Figure 8, it consists of one ripple counter type 7493, one half of a dual JK masterslave flip-flops circuit type 7476, three inverters, three 2-input AND, one 3-input AND, one 2-input OR and one 3-input OR gates.When a pulse is generated at either input terminals N or M, a high level voltage will be generated at the output Q of the flip-flop.This will g a t e t h e I Khz signal to be connected to the input A of the ripple counter as well as to the output terminal R.When one, two or three pulses are counted by the ripple counter, according to the level of voltage at the input terminals J, K and L, respectively, a high is generated to reset the counter and change the state of the flip-flopsuch that Q becomes low.Hence, the 1 KHz signal is disabled to reach the outputerminal R or the input A of the ripple counter.In order to ensure the proper function of the circuit, the flip-flop should be cleared whenever a new channel is operated.This has been achieved by the input 5 and will be explained later when describing the function of the channels rotary selector switchs.E.Display Circuit As shown in Figure 2, the display panel would contain three 4-digit displays that give the sum of money required from each passenger separately as well as a one six-digit display that gives the total income of the taxicab.A possible wiring diagram for the display circuit is shown in Figure 9.Rotating any of the rotary selector switches to fully clockwise direction will supply the corresponding display by5 volts through terminals 1, 2 and 3, respectively.The corresponding display will be unblanked by supplying a low level of voltage through terminals A, C and G, respectively.Keeping terminals 8, D and H, respectively, at low level will keep them reset to zero.The corresponding display is then enabled by removing the low voltage from terminals B, D, and H, respectively, to be ready for counting the sum of money required from the corresponding passenger starting from zero.The counting pulses for these three displays are supplied through terminal P.The total sum display will be enabled whenever any of the three displays is enabled(this is done by a 3-input OR gate as shown in Figure 8).Retaining the contents of the last display will be done by unblanking it by supplying a low level of voltage to terminal I as shown in Figure 10 b.F.Changing Over Between Time and Distance Fares In the following part, two different methods for changing over between time andistance fares are suggested: The first is to switch to time fare whenever the distance fare is less than the time fare.Hence, a simple look to fares table(Table 2)can show that time fare should be used whenever the taxicab moves with speed less than 50 m/min.A possible circuit that can perform this switching action is shown in Figure IO c.It contains one rpm limit switch and a one inverter as well as two 2-input AND gates.The contacts of the limit switch are normally closed and will be opened whenever the angular speed of the speedometer cablexceeds 50 rmp.The second alternation is to connect the input of the inverter in Figure 10 c.to the output terminal Q of the speedometer circuit, Figure 2.In this case, the switching into time fare will be done whenever the taxicab is at stand still.G.Function of the Rotary Selector Switches The voltage levels that should be supplied by the terminals of the rotary selector switches in order to ensure proper operation by the electronic circuit are given in Table 3.Connection of three rotary selector switches each witb four decks of five poles each, that satisfy the logic function of Table 3, is shown in Figure 10 a.Rotating any of the three switches into fully clockwise direction will pass through five positions.The function of the rotary selector switches can be described starting from the first position passing through variousteps until reaching the final position as follows: Initial position: In this position a low voltage level is applied to terminals I, 2 and 3, this will disconnect the 5 volts supply from the three first displays, set the three inputs of the number of passenger detection circuit CTI to low level.A low voltage level is applied to terminals 8, D and H, this is to ensure that the total income display is disabled.Voltage levels at terminals A, C, G and S are at no care condition.Step I: Rotating any of the rotary selector switches one step toward clockwise direction will supply 5 volts to the corresponding display, provides a high level voltage at terminals 1, 2 or 3 indicating that one passenger have entered the taxicab.A high level voltage should be applied to terminals A, C or G in order to ensure that the corresponding display is still blanked.Other terminals B, D, H and S are kept unchanged.Step 2: Rotating the rotary selector switch one step further, will change the state of voltages at terminal A, C or G to be at low level and unblanks the corresponding display.States of voltages at terminals I, 2, 3 and S are remained unchanged.Terminals B, D and H should be remained at low level to ensure that the corresponding readout is cleared to zero while unblanking the display.二、中文翻译

摘要

本文提出了一种出租车多通道计价的方案,能同时处理一个以上乘客的情形。为了从理论上说明本方案,提出了一个实验上的三通道型的士的完整设计(其原型是根据埃及科学和技术研究学院的研究而建成得)。.导言

在不发达的国家,早上把人们从他们家送到工作的地方,然后下午送回来已成为一个大问题,尤其是在大城市。

作为解决这个问题的一个部分,在某些国家出租车用来解决这个问题,送人们从一个地方到另外一个地方。例如,出租车的四个席位可携带四个不同的没有任何关系的乘客,除了他们的路线是相同的。

因此,依靠目前的传统的单车道计价以确定所需的票价,把每个乘客的计费分开,这已成为一个非常困难的问题。因此,在出租车司机,车主,乘客和国家税务部门之间存在着不公平的财政关系。

在这种情况下,出租车司机强迫乘客支付多于他们所应付的。在某些情况下乘客支付了他们应付车费的双倍。

本常规单频道计程车,出租车司机不能够确定出租车日常收入。在某些情况下(出租车的4个席位),他们可能只有出租车四分之一的收入(大部分的出租车司机)。从这些支付工资的出租车司机以及作为燃料费用外,还要维修以及汽车折旧等费用。事实上,出租车业主并非似乎如此糟糕。一项在出租车司机和车主之间的协议已经达成,司机应保证每天固定收入,以及向业主支付燃料以及维修的费用。即使如此,还是有的出租车司机的很大一部分份额之收入的出租车。现在还存在的单声道计价,已经变得非常,国家税务部门也知道这种困难 每年估计出租车业主的收入支出,以及应支付的税务也很困难。

为了应对这一问题,国家税务部已实行固定估计税,每个座位的出租车不论收入。在本文中,我们介绍了多通道的士计程表,可处理超过一名乘客同时进行的情况。我应该指出,我所说的长期旅客指一个人或一组相关的人。我同时也应指出,我们提出的多渠道的计价,不是简单地说,一个多显示读数。作为一个先进的事项,事实上它包含逻辑电路,可以自动计算变化的车费以及每公里行走距离或每分钟的候车时间按照乘客人数雇用出租车。在下面的部分,我举出一个例子,我们将介绍一个完整的三通道计价。框图以及详细的电路图,实验三通道计价功能也包括在内。原型下已建成 埃及赠款科学学院 和技术研究。.实验THREECHANNEL 出租车计价器理论的运作我们的实验装置从事电子数字计价依据。事实上速度电缆旋转1 圈的每米距离行驶。因此,如果车速电缆耦合与速度传感器,产生一个单脉冲每平方米的旅行距离,那么,我们的的士可以三倍于反模块相与速度传感器的单位。然而,我们的实验是计价而不仅仅是只显示三个读数。事实上,它包含逻辑电路,可以根据每公里的行驶距离或每分钟等候时间按照乘客人数雇用出租车来自动改变车费。该装置可能会分成两个主要部分组成:第一是速度传感器,这个传感器可位于任何地方,在出租车内进行这样一个简单的耦合车速电缆是可以实现的。

单位包含了主要的电子电路,显示器以及控制面板。该单位应位于前排的司机和乘客之间。

A. 速度传感器

其主要职能是本单位提供脉冲的培训,这个脉冲的频率会于旋转角度相适合。一种可能的形式一个速度传感器。如果可以包含正弦波发生器的输出连接到脉冲整形电路的永磁器件(2通用芯片二极管,1000欧姆的电阻和施密特触发逆变器)。

为了找到某种方式来检测出租车的运动,正弦波发生器的输出是纠正通过一个通用的硅二极管延胡索乙然后平滑的1000年F电容。那个输出电压在终端Q是当时限于价值4.7伏特用益欧姆的电阻以及一个齐纳二极管ZD。出租车的终端电压在终端Q将高电压降为零。这电压可作为改变出租车从距离计费到时间计费方式的开关电压。

主要的电子和显示单元

一个建议是主要形式的电子和显示单元。控制和显示器面板包含所有'控制所必需的经营的士以及四个可读显示器。第一频道将给出从第一乘客,第二乘客,第三乘客分别应付的费用,第四个会给出总收入给予出租车。最后读出的数据会包括停车的费用等等费用。频道选择器开关1,第2和第3个,按顺时针/逆时针的立场。在充分逆时针的立场,反相应的读出是未标明和残疾人。以顺时针方向则是未定义的,清除为零,对于第一第二第三的乘客分别计费。第四号推进总钮第四次读出,使任何人保留读出相应的总收入。经过释放按钮,第四次读出将再次保留。这个单位还包含主要电子电路将在下一节充分描述。描述的主要电子电路

它由五个部分指定的电脑符号与电话系统整合成为4个支撑电路,它们是:判断乘客数量电路CT1,旅行距离电路CT2,等待时间电路CT3,时钟脉冲显示电路CT4。

乘客人数检测电路CT1如图所示的一般框图,该电路电脑与电话系统整合有三个输出:1,2和3相对应于三个输出J,K和L。

这个循环电路函数包含高电压的终端 J,K或L,如果有1个或者2,3个乘客分别租用出租车。这个组里的任意乘客都是一组相关的人。当一个乘客进入出租车后,我们只是表示这样一种情况,自由读出显示在谈到相应的旋转选择开关,以一个完全顺时针方向。这将自动断开相应的终端1,2或3个从地面。逻辑关系各种输入端子之间第1,第2和第3个输出端J,K和L是列于表1。作为一个组合电路,我们开始设计产生了一系列布尔函数。

一种可能的逻辑图的基础上,它包括两个变频器,4个2输入和3输入以及2个3输入或门。B.行驶距离标量环路CT2,电路CT2有4个输入J,K,L及E和1个输出M,输出功能的电路是供应单脉冲的输出M的某一些脉冲产生的输出的速度传感器(出租车行驶了一定得距离),根据乘客的人数租用的汽车。我们建议票价按每公里行驶距离显示在两个表格2里面。

表2 这个环路,在这种情况下,应提供单脉冲的输出M的每100,125或143脉冲所产生的输入端根据级别的电压输入终端3,K或L。

我们的电路按图5显示,三个十年的计数器,作为一个三位数分频器的分比率100,125和143个自动选定的电压一级终端J,K和L分别。一种可能的线路图可被验证,它包括三个十年的计数器7490,一个声BCD-以杜威解码器输入7445,3个4输入和1个3输入以及1个2输入和2个3输入或门。

时间缩放电路CT3.时间缩放电路含有4个输入端 J,K,L及F和一个输出端N,这个电路的函数根据表格2的意思(车费每2分钟的等待时间)是在J,K和L分别供应单脉冲到输出端N时,提供单脉冲的输出N。时间缩放电路将类似于距离标量环路,但是有不同的行驶比率。它包括3个十进制计数器7490,2个3输入与门和一个5输入与门,1个2输入与门和一个3输入或门。

电路产生时钟脉冲的显示电路CT4 这条电路的作用根据电压电平在输入终端J、K或者L,分别供应1,2或者脉冲在每脉冲的输出终端R引起在任何终端N或M。无论输入端N或者M中的谁发送脉冲,都只有一个脉冲能被输出端P接收。它由一个反向计数器7493构成,其中一半是双JK主从触发器电路,型号为7476,包括三个变频器,三个2输入与门,一个3输入与门,1 2输入或门以及一个3输入或门。当脉冲引起在输入的终端N或M,触发器的输入Q上将产生高级电压。这个门信号将被连接到计数器的输入A并且连接到输出终端R。当第一,第二或第三个脉冲由涟波计数器开始计数,J,K,L端会分别根据电压的大小来使产生重置或者翻转来改变状态,然后Q端变为输出低电压。因此,1 KHz信号没有能力到达输出端R或是计数器的输入端A。为了确保电路的函数准确无误,当切换到新频道时,触发器要清零。对于功能选择开关旋转渠道的描述,稍后会以一个成功的5输入门函数来解释。显示电路

该显示面板将包含三个4位数显示器,这样可以给出每个乘客应付车费的总和,一个六位数显示器可以给出出租车的总收入。以顺时针方向旋转所选择的开关将提供相应的显示,这可以通过5伏电压来分别控制1,第2和3终端。对应的显示通过供应低级电压通过终端A、C和G,分别。保持终端D和H在低级状态下重置为零对应的显示分别通过终端B,D,H而改变低压状态,并准备好从对应的乘客那里计算出相应的计数款额,计数脉冲这三个显示器通过终端提供总额。计数器还将通过终端P为3个显示器提供脉冲只要这三个显示器中任意一个是正常的,那么总额将被显示出来。

时间和距离变化时车费的改变

在下面的部分,两种不同的方法使得时间和距离改变从而导致车费发生变化,有如下建议:首先是当以路程计价的费用低于以时间计费的费用时,采用时间计费。从此,一个简单的票价表显示当出租车移动速度小于50米/分时应该采用时间计费方式。一种可能的电路可以执行此开关行动如图10c,它包含一个转速限位开关和一个反转器以及两个2输入与门。接触的限位开关通常是封闭,只有当角速度超过50RMP的时候才会打开。第二个改变将中断连接到图10C的输入端,输出端Q连接速度的电路。在这种情况下,只要出租车的状态保持静止,那么计费开关就会处于关闭状态。

功能选择旋转开关

功能选择开关旋转的电压应提供的该终端的旋转选择开关,以确保正常运行的电子电路列于表3。每5个杆就有4个板连接着3个旋转选择开关,每个符合逻辑功能表3,旋转任何三个切换到完全顺时针方向将通过5个职位。功能的旋转选择开关可以说是从第一的位置通过直到达到最后的立场如下:

初始位置:在这个位置上的低电压电平适用于第一第二和第三终端,浙江断开来自三个中一个显示器的5伏特电压供应,设置三个显示器,乘客检测电路并与电路系统整合到较低的水平。终端D,H采用低电压,这是为了确保显示的总收入选项已被禁用。

步骤1:以顺时针方向旋转任何旋转选择开关一格将提供5伏特电压到相应的显示,提供一个高等级的电压终端1,2或3,这表明一名乘客已经进入了出租车。终端C,G应为高电平,以确保相应的显示仍然是笼罩。其他端口,如D,H端口保持不变。

步骤2:旋转旋转选择开关1,然后将在终端A,C或G上改变电压使其处于低电压状态,并会产生相应的显示。终端1,2,3以及S上的电压状态保持不变。终端B,D和H应保持在较低水平,以确保当显示为无数据时相应的读出清除为零。

第四篇:附录3:毕业论文正文格式

北京联合大学

毕业论文

引 言(宋体小三加粗居中段前段后1行)

(内容宋体小四首行缩进2字符)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX(毕业论文正文内所有页面的页边距设置为上:3cm、下:2.5cm、左:3cm、右:2.5 cm、页眉:2cm、页脚:1.7cm,行距为20磅,装订线在左侧。页眉的线条宽度为1磅,页眉上的“北京联合大学”字样为隶书小五号加粗、“毕业论文”字样为宋体五号。正文内的页码格式为“--23--”、“-2-”等、字体为Times New Roman小五号居中。)

3北京联合大学

毕业论文XXXXXXXXXXXXXXXXXX(宋体小三加粗段前段后1行)

(内容宋体小四首行缩进2字符)XXXXXXXXXXXXXXXXXX

2.1 XXXXXXXXXXXXXXXXXX(宋体四号加粗段前段后0.5行)

(内容宋体小四首行缩进2字符)XXXXXXXXXXXXXXXXXX

5北京联合大学

毕业论文

致 谢(宋体小三加粗居中段前段后1行)

(内容宋体小四首行缩进2字符)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

7北京联合大学

毕业论文

参考文献(宋体小三加粗居中段前段后1行)

(内容宋体小四)参考文献按在正文中出现的顺序列于文末,请采用 GB7714 - 87 《文后参考文献著录规则》的新规定,其中包括作者、书名 / 文章名、出版社(需要加城市名)/ 刊名、出版年份 / 刊发卷期、起止页码。其中:专著 [M]、期刊文章 [J]、报纸文章 [N]、论文集 [C]、学位论文 [D]、报告 [R]、析出文献 [A]、未说明的文献 [Z]。体例如下:

[1]黄济.教育哲学通论[M].太原:山西教育出版社,1998: 9-10.[2]〔美〕约翰·杜威.民主主义与教育[M].王承绪译.北京:人民教育出版社,2001:5.[3]Clark Kerr.The Uses of the University 4th [M].Cambridge: Harvard University Press,1995: 50.[4]顾明远.现代生产与现代教育[J].外国教育动态,1981,2(1):1.[5]George Pascharopoulos.Returns to Education: A Further International Update and Implications[J].The Journal of Human Resources , 1985, 20(4):36-38.[6]潘懋元.开展高等教育理论的研究[N].光明日报,1978-12-07(4).[7]鲁洁.超越与创新[C].北京:人民教育出版社,2001:8-9.[8]陈洪捷.德国古典大学观及其对中国的影响[D].北京:北京大学高等教育科学研究所,1998:7-8.[9]魏新.关于扩大高等教育规模对短期经济增长作用的研究报告[R].北京:北京大学高等教育科学研究所,1999:13.[10]Martin Trow.The Transition from Elite to Mass Higher Education [R].Paris: OECD,1974:7.[11]叶澜.关于加强教育科学“自我意识”的思考[A].瞿葆奎.教育学文集·教育与教育学[C].瞿葆奎,沈剑平选遍.北京:人民教育出版社,1993:758-759.[12]Roger Geiger.The Ten Generations of American Higher Education[A].Philip G.Altbach et al.American Higher Education in the Twenty-first Century: Social, Political, and Economic Challenges [C].Baltimore: Johns Hopkins University Press,1999: 38-39.[13]王明亮.关于中国学术期刊标准化数据库系统工程的进展[EB/OL].http://,1998-08-16.注释格式一并参考上述格式。

第五篇:大学生毕业论文正文、参考文献、附录(图)、致谢

论文题目

引言

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx。

„„„„„„„„„„„„„.XXXXXXXXX(一级标题另起一页,居中)

1.1XXXXX

„„„„„.1.1.1XXXXXXXXX

„„„„„.XXXXXXXXXX(一级标题另起一页,居中)

2.1XXXXXXXXXXXXX

„„„„„„

参 考 文 献(一级标题另起一页,居中)

[1]陈有民.园林树木学[M].北京:中国林业出版社,1999.376~377.

[2]李晓丹,司龙亭,刘志勇,等.黄瓜组织培养中外植体的选择及播种方式[J].蔬菜,2004

(7):2~3.说明:凡论文中引用的主要文献,均应在“参考文献”标题下按规定的格式列出,并以在文中引用的先后为序编号排列。各类文献的表达形式按教务处《毕业论文指导手册》的有关要求进行。

附录(一级标题另起一页,居中)

„„„„

致谢(一级标题另起一页,居中)

„„„„„„„„

2010年x月x日

下载毕业论文附录word格式文档
下载毕业论文附录.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    大学生毕业论文正文、参考文献、附录(图)、致谢范文

    论文题目 引 言 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx。 „„„„„„„„„„„„„. 1 XXXXXXXXX(一级标题......

    附录Ⅲ实验报告参考格式范文大全

    附录 Ⅲ实验报告参考格式一、低碳钢拉伸实验报告学院(系)专业 班 实验日期 姓名 学号 同组者姓名一、实验目的 二、实验设备 仪器名称及型号:、、;三、试件尺寸及有关数据(画出......

    春游策划书附录

    附录一:长兴游乐园地图附录二:长兴游乐园机动游戏汇总碰碰车、旋转飞机、水上乐园、过山车、飞越壕沟、水中漫步、活鬼城、...宇宙飞船、彩虹飞车、巧夺天宫、飞天转椅、青蛙跳、......

    最新易错字附录(范文模版)

    附录一:100个最常见易错字详解 (注:下列词语中加粗的黑体字为容易写错的字) 1.安装: “安”与“装”同义,都指按照一定的方法、规格把机械或器材(多指成套的)固定在一起的地方。 2......

    投标函及投标函附录(范本)

    一、投标函及投标函附录(一)投标函致:1.根据你方招标工程项目工程招标文件,遵照《中华人民共和国招标投标法》等有关规定,经踏勘项目现场和研究招标文件的投标须知、合同条款、图......

    附录:调查报告封

    江苏城市职业学院供应链调查报告调查报告题目 办 学 点 (系)财经系专班学学起地指导教生讫姓日 业物流管理级物流(1)班号092101350440名蒋琳期2011.11.12点江苏城市职业学院定淮......

    投标函及投标函附录

    一、投标函及投标函附录(一)投标函(招标人名称):1.我方已仔细研究了(项目名称)(标段编号)施工招标文件的全部内容,愿意以人名币(大写)元(¥)的投标总报价(此处价格应从投标报价汇总表中自动读......

    投标函及投标函附录

    一、投标函及投标函附录 (一) 投标函致:(招标人名称)在考察现场并充分研究 人民币(大写):元 RMB¥:元的投标价格和按合同约定有权得到的其他金额,并严格按照合同约定,施工、竣工和交......